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Abstract

In this paper we tackle the problem of unsupervised

domain adaptation for the task of semantic segmentation,

where we attempt to transfer the knowledge learned upon

synthetic datasets with ground-truth labels to real-world

images without any annotation. With the hypothesis that

the structural content of images is the most informative and

decisive factor to semantic segmentation and can be read-

ily shared across domains, we propose a Domain Invariant

Structure Extraction (DISE) framework to disentangle im-

ages into domain-invariant structure and domain-specific

texture representations, which can further realize image-

translation across domains and enable label transfer to im-

prove segmentation performance. Extensive experiments

verify the effectiveness of our proposed DISE model and

demonstrate its superiority over several state-of-the-art ap-

proaches.

1. Introduction

Semantic segmentation is to predict pixel-level semantic

labels for an image. It is considered one of the most chal-

lenging tasks in computer vision. Due to the renaissance

of deep learning in recent years, we witness a great leap

brought to this task. Since the inception of Fully Convolu-

tional Network (FCN), which is built upon pre-trained clas-

sification models (e.g. VGG [21] and ResNet [7]) and de-

convolutional layers, numerous techniques have been pro-

posed to advance semantic segmentation, such as enlarging

receptive fields [2, 27] and better preserving contextual in-

formation [28], to name a few. However, these approaches

rely largely on supervised learning, thereby calling for ex-

pensive pixel-level annotations.

To circumvent this issue, one solution is to train seg-

mentation models on synthetic data. The computer graph-

ics technology nowadays is able to synthesize high-quality,

photo-realistic images for a virtual scene. It is thus possi-
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Figure 1. Comparison of the conventional domain adaptation for

semantic segmentation and our proposed method. Instead of mak-

ing the entire feature representation domain invariant, we align

only the distributions of the structure component across domains.

ble to build up a dataset for supervised semantic segmenta-

tion (e.g. GTA5 [17] and SYNTHIA [18]) based on these

synthetic images. During the rendering process, their pixel-

level semantic labels are readily available. Nevertheless,

segmentation models trained on synthetic datasets often

have difficulty achieving satisfactory performance in real-

world scenes due to a phenomenon known as domain shift

– i.e. synthetic and real-world images can still exhibit con-

siderable difference in their low-level texture appearance.

Domain adaptation is thus proposed to transfer the

knowledge learned from a source domain (e.g. synthetic

images) to another target domain (e.g. real images). One

common approach is to learn a domain-invariant feature

space across domains by matching their feature distribu-

tions, where different matching criteria have been explored,

e.g. minimizing the second order statistics [23] and domain

adversarial training [6, 8, 25] . There is also a recent re-

search work [24] which introduces distribution alignment
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directly in the structural output space for the task of se-

mantic segmentation. However, these approaches are all

driven by a strong assumption that the entire feature or out-

put space of two domains can be well aligned (see Figure

1 (a)) to yield a domain-invariant representation that is also

discriminative for the tasks in question.

In this paper, we propose a Domain Invariant Structure

Extraction (DISE) framework to address unsupervised do-

main adaptation for semantic segmentation. We hypothe-

size that the high-level structure information of an image

would be the most effective for its segmentation prediction.

Thus, our DISE aims to discover a domain-invariant struc-

ture feature by learning to disentangle domain-invariant

structure information of an image from its domain-specific

texture information, as illustrated in Figure 1 (b).

Our method distinguishes from similar prior works in

(1) learning an image representation comprising explic-

itly a domain-invariant structure component and a domain-

specific texture component, (2) making only the structure

component domain invariant, and (3) allowing image-to-

image translation across domains which further enables la-

bel transfer, with all achieved within one single framework.

Although DISE shares some parallels with domain separa-

tion networks [1] and DRIT [13], its emphasis on the sep-

aration of structure and texture information and the ability

to translate images across domains and meanwhile maintain

structures clearly highlight the novelties. Extensive experi-

ments on standardized datasets confirm its superiority over

several state-of-the-art baselines.

2. Related Work

In comparison to image classification where there exist

many prior works addressing the domain adaptation prob-

lem, semantic segmentation is considered a much more

challenging task to apply domain adaptation, since its out-

put is a segmentation map full of highly structured and con-

textual semantic information. We review several related

works here and categorize them according to the use of

three widely utilized strategies: distribution alignment, im-

age translation, and label transfer. Different works may

differ in their choice and conducting order of these strate-

gies, as contrasted in Table 1.

Firstly, similar to the case of domain adaptation for

image classification, different criteria may be applied to

match distributions across domains in the feature space (e.g.

[9, 20, 26, 30]) or in the output space. The representative

work of the latter is proposed by Tsai et al. [24], where ad-

versarial learning is applied on segmentation maps, based

on spatial contextual similarities between the source and tar-

get domains . However, the assumption that the whole fea-

ture or output space of the two domains can be well aligned

often proves impractical, considering the substantial differ-

ence in appearance (namely, texture) between synthetic and

Table 1. Different strategies adopted by prior works on domain

adaptation for semantic segmentation. IT, DA, LT stand for Im-

age Translation, Distribution Alignment, and Label Transfer, re-

spectively. Order denotes the order in which these strategies are

applied.

Methods IT DA LT Order

Sankaranarayanan

et al. [20]
X X IT→DA

Hong et al. [9] X --

Wu et al. [26] X X X IT→DA→LT

Tsai et al. [24] X --

Chen et al. [3] X --

Hoffman et al. [8] X X X IT→LT, DA

Zhu et al. [30] X X IT→DA

Our DISE X X X DA→IT→LT

real-world images in some applications.

Secondly, the recent advance in image-to-image transla-

tion and style transfer [10, 12, 29] has motivated the trans-

lation of source images to gain texture appearance of target

images, or vice versa. On the one hand, this translation pro-

cess allows segmentation models to use translated images

as augmented training data [8, 26]; on the other hand, the

common feature space learned in the course of image trans-

lation can facilitate learning a domain-invariant segmenta-

tion model [20, 30].

Finally, the image-to-image translation makes possible

the transfer of labels from the source domain to the target

domain, providing additional supervised signals to learn a

model applicable to target-domain images [8, 26]. How-

ever, the direct image-translation may be harmful to learn-

ing, due to the risk of carrying over source specific informa-

tion to the target domain.

Our proposed DISE makes use of all three strategies but

differs from these prior works in several significant ways.

We hypothesize that the high-level structure information of

an image would be the most informative for its semantic

segmentation. Thus, the DISE is to disentangle high-level,

domain-invariant structure information of an image from

its low-level, domain-specific texture information through a

set of common and private encoders.

3. Method

In this paper, we propose a Domain Invariant Structure

Extraction (DISE) framework to address the problem of un-

supervised domain adaptation for semantic segmentation.

The emphasis on explicitly regularizing the common and

private encoders towards capturing structure and texture in-

formation, along with the ability to translate images from

one domain to another for label transfer, underlines the nov-

elties of our method. The following gives a formal treat-

ment of the DISE. We begin by an overview of its frame-
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Figure 2. An overview of the proposed domain-invariant structure extraction (DISE) framework for semantic segmentation. The DISE

framework is composed of a common encoder Ec shared across domains, two domain-specific private encoders, Es
p, E

t
p, a pixel-wise

classifier T , and a shared decoder D. It encodes an image, source-domain or target-domain, into a domain-specific texture component zp
and a domain-invariant structure component zc, as shown in part (a). With this disentanglement, it can translate an image xs (respectively,

xt) in one domain to another image x̂s2t (respectively, x̂t2s) in the other domain by combining the structure content of xs (respectively,

xt) with the texture appearance of xt (respectively, xs), as shown in parts (b) and (c). This further enables the transfer of ground-truth

labels from the source domain to the target domain, as illustrated in part (d).

work. Next, we present in detail the loss functions used,

followed by a description of implementation details.

3.1. Domain Invariant Structure Extraction

The DISE aims to learn an image representation com-

prising a domain-invariant structure component and a

domain-specific texture component. The setting assumes

access to Ns annotated source-domain images Xs =
{(xsi , y

s
i )}

Ns

i=1, with each image xsi ∈ R
H×W×3 having

height H , width W and C-way per-pixel label of object

categories ysi ∈ {0, 1}H×W×C , and Nt unannotated target-

domain images Xt = {xti}
Nt

i=1. As shown in Figure 2 (a),

there are five sub-networks in DISE, namely, the common

encoder Ec shared across domains, the domain-specific pri-

vate encoders
{

Es
p, E

t
p

}

, the shared decoder D, and the

pixel-wise classifier T . They are parameterized by θc, θsp,

θtp, θd and θt, respectively.

Given a source-domain image xs as input, the com-

mon encoder Ec produces zsc = Ec(x
s; θc) to character-

ize its domain-invariant, high-level structure information

while the source-specific private encoderEs
p generates zsp =

Es
p(x

s; θsp) for capturing its remnant aspects that are largely

related to domain-specific, low-level texture information.

These two components
{

zsc , z
s
p

}

are complementary to each

other; when combined together, they allow the decoder D

to minimize a reconstruction loss Ls
rec between the input

xs and its reconstruction x̂s2s = D(zsc , z
s
p; θd). Likewise, a

target-domain image xt can be encoded and decoded sim-

ilarly to minimize Lt
rec, yielding ztc = Ec(x

t; θc), z
t
p =

Et
p(x

t; θtp) and xt ≈ x̂t2t = D(ztc, z
t
p; θd), where the pri-

vate encoder Et
p, like its counterpart Es

p, extracts the target-

specific texture information. It is the structure components

zsc , z
t
c that will be used by classifier T to predict segmen-

tation maps, ŷs = T (zsc , θt), ŷ
t = T (ztc, θt) in source and

target domains accordingly.

The disentanglement between structure and texture in-

formation is realized by the regularization coming from im-

age translation with domain adversarial training [14] and

perceptual loss minimization [12]. As illustrated in Fig-

ure 2 (b) and (c), we consider any pair of source- and

target-domain images with their respective representations

xs = {zsc , z
s
p} and xt = {ztc, z

t
p}. We first interchange

their domain-specific components, and then decode them

into two unseen, translated images x̂s2t = D(zsc , z
t
p; θd)

and x̂t2s = D(ztc, z
s
p; θd). If the common and private en-

coders behave as we expect them to capture the structure

and texture information, respectively, the translated image

x̂s2t (respectively, x̂t2s) should hold the high-level struc-

ture the same as xs (respectively, xt) while exhibiting simi-

lar low-level texture appearance to xt (respectively, xs). To



this end, we train our networks by imposing domain ad-

versarial losses Lt2s
trans adv,L

s2t
trans adv [14] and perceptual

losses Lt2s
trans str,L

t2s
trans tex,L

s2t
trans str,L

s2t
trans tex [12] at

the output of the decoder D in order to ensure the do-

main and perceptual similarities between these translated

images and their counterparts in the source or target do-

mains. This image translation functionality of DISE further

allows the transfer of ground-truth labels from the source

domain to the target domain. More specifically, since the

target-domain-like images x̂s2t share the same structure

component as xs, we consider the ground-truth labels ys

of xs to be the pseudo labels for x̂s2t on grounds of our

hypothesis that the segmentation prediction for an image

depends solely on its structure information.

Finally, we make the structure components zsc , z
t
c invari-

ant to the domain from which they are extracted by mini-

mizing another domain adversarial loss Lseg adv at the out-

put of the classifier T , as well as the negative log-likelihood

functions of the ground-truth labels ys with respect to xs

and x̂s2t, i.e. Ls
seg and Ls2t

seg (see Figure 2 (d)).

3.2. Learning

The training of the proposed DISE is to minimize a

weighted combination of the aforementioned loss functions

with respect to the parameters {θc, θ
s
p, θ

t
p, θd θt} of the five

sub-networks:

L =λsseg Ls
seg + λseg adv Lseg adv + λrec Lrec

+ λtrans str Ltrans str + λtrans tex Ltrans tex

+ λtrans adv Ltrans adv + λs2tseg Ls2t
seg,

(1)

where the combination weights λ’s are chosen empirically

to strike a balance among the model capacity, reconstruc-

tion/translation quality, and prediction accuracy. In the fol-

lowing, we elaborate on each of these loss functions.

Segmentation Loss. The segmentation loss Ls
seg(θc, θt)

given by the typical cross-entropy based on the source-

domain ground truths ys is to train supervisedly the com-

mon encoder Ec and the classifier T in order to predict seg-

mentation maps ŷs for source-domain images xs.

Output Space Adversarial Loss. Inspired by Tsai et al.

[24], we introduce an adversarial loss Lseg adv(θc, θt) at

the output of the classifier T , in the hopes of making the

common encoder Ec and the classifier T generalize well on

target-domain images. Specifically, we first train a discrim-

inator Dseg
adv to distinguish between the source prediction ŷs

and the target prediction ŷt at the patch level [11] by min-

imizing a supervised domain loss (i.e. Dseg
adv should ideally

output 1 for each patch in the source prediction ŷs and 0 for

that in the target prediction ŷt). We then update the com-

mon encoder Ec and the classifier T to fool the discrimina-

tor Dseg
adv by inverting its output for ŷt from 0 to 1, that is,

by minimizing

Lseg adv(θc, θt) = −
1

H ′W ′

∑

h′,w′

log(Dseg
adv(ŷ

t)h′,w′), (2)

where h′, w′ are patch coordinates and H ′ = H/16,W ′ =
W/16 with the factor 16 accounting for the downsampling

in the discriminator Dseg
adv .

Reconstruction Loss. The reconstruction loss

Lrec(θc, θ
s
p, θ

t
p, θd) is to ensure that the two domain-

invariant and domain-specific components zc, zp of an

image representation together form a nearly complete

summary of the image. To encourage the reconstruction to

be perceptually similar to the input image, we follow the

notion of perceptual loss [12] to define our quality metric

Lperc(x, y;w) as a weighted sum of L1 differences be-

tween feature representations extracted from a pre-trained

VGG network [22]. In symbols, we have

Lperc(x, y;w) =
∑

l∈L

w(l)

N (l)

∥

∥

∥
ψ(l)(x)− ψ(l)(y)

∥

∥

∥

1
, (3)

where ψ(l)(x) (respectively, ψ(l)(y)) is the activa-

tions of the l-th layer of the pre-trained VGG net-

work for input x (respectively, y), N (l) is the num-

ber of activations in layer l, w(l) gives a separate

weighting to the loss in layer l, and L refers to

{relu1 1,relu2 1,relu3 1,relu4 1,relu5 1} of

the VGG network. As pointed out in [12], the higher layers

of VGG network tend to represent the high-level structure

content of an image while the lower layers generally de-

scribe its low-level texture appearance. Equation 3 is then

used to regularize the reconstruction of both source- and

target-domain images by minimizing the sum of their re-

spective perceptual losses:

Lrec(θc, θ
s
p, θ

t
p, θd)

= Ls
rec + Lt

rec

= Lperc(x̂
s2s, xs;wrec) + Lperc(x̂

t2t, xt;wrec),

(4)

where the weighting wrec is set to weight more on higher

layers.

Translation Structure Loss. As motivated previously in

Section 3.1, an image produced by translation across do-

mains should keep its structure unchanged. The translation

structure loss Ltrans str(θc, θ
s
p, θ

t
p, θd) as defined in Equa-

tion 5 measures the differences in high-level structure be-

tween the translated image x̂s2t and the image xs from

which the structure component of x̂s2t is derived, and like-

wise, between x̂t2s and xt. This is achieved by choosing for

the perceptual metric a weightingwstr that again stresses on

the feature reconstruction losses in higher layers of the pre-

trained VGG network. Our goal is to penalize the translated



images which differ significantly in structure from the im-

ages with which they share the same structure component

zc, thereby getting zc to encode explicitly the structure as-

pect of an image.

Ltrans str(θc, θ
s
p, θ

t
p, θd)

= Ls2t
trans str + Lt2s

trans str

= Lperc(x̂
s2t, xs;wstr) + Lperc(x̂

t2s, xt;wstr)

(5)

Translation Texture Loss. The translation texture loss

Ltrans tex(θc, θ
s
p, θ

t
p, θd) further requires that the translated

image x̂s2t (respectively, x̂t2s) should resemble closely in

texture the image xt (respectively, xs), since they share the

same texture component zp. In doing so, zp has to en-

code explicitly the texture aspect of an image. Inspired

by the work of AdaIN [10], we propose a weighted met-

ric Ltex(x, y;w) to measure channel-wisely the difference

in the mean value of their activations extracted from a pre-

trained VGG network:

Ltex(x, y;w)

=
∑

l∈L

w(l)

C(l)

∑

c

∥

∥

∥
µc(ψ

(l)(x))− µc(ψ
(l)(y))

∥

∥

∥

1
,

(6)

where C(l) is the number of channels in layer l of the VGG

network, w(l) specifies the weighting given to layer l, and

µc(·) returns the mean activation of channel c. Like the

translation structure loss, the translation texture loss also

involves the two types of translation:

Ltrans tex(θc, θ
s
p, θ

t
p, θd)

= Ls2t
trans tex + Lt2s

trans tex

= Ltex(x̂
s2t, xt;wtex) + Ltex(x̂

t2s, xs;wtex),

(7)

where the weighting wtex of the perceptual metric is now

chosen to emphasize more on early layers.

Translation Adversarial Loss. In addition to the afore-

mentioned perceptual losses, we also employ adversarial

losses Ltrans adv(θc, θ
s
p, θ

t
p, θd) to adapt the translated im-

ages x̂s2t and x̂t2s to appear as if they were images out of

the target and source domains, respectively. To this end, we

adopt LSGAN [16] and Patch Discriminator [11].

Label Transfer Loss. The label transfer loss Ls2t
seg(θc, θt) is

given by a typical cross-entropy loss that trains supervisedly

the common encoder Ec and the classifer T on translated

images x̂s2t with pseudo labels ys.

3.3. Implementation

Networks. For experiments, we use a base model, refer-

ring collectively to the common encoder Ec and the pixel-

wise classifier T , similar to the segmentation network in

[24], which is built on DeepLab-v2 [2] with ResNet-101

[7]. We obtain initial weights by pre-training on PASCAL

VOC [5] dataset, and at training time, reuse the pre-trained

batchnorm layer. The common encoder Ec outputs the fea-

ture maps of the last residual layer (layer4) as zc. For the

private encoders Es
p, E

t
p, we adopt a convolutional neural

network containing 4 convolution blocks, followed by one

global pooling layer and one fully-connected layer. The

output of the private encoder Es
p (respectively, Et

p) is an

8-dimensional representation zsp (respectively, ztp). For the

shared decoder D, we use three residual blocks and three

deconvolution layers. The input to the decoder is a concate-

nation of the private code zp, the feature maps zc, and a flag

indicating the domain of the private code.

Training Details. We implement DISE with Pytorch on

a single Tesla V100 with 16 GB memory. The full train-

ing takes 88 GPU hours. Due to limited memory, at train-

ing time, we resize input images to 512×1024 and perform

random cropping with a crop size of 256×512. However,

at test time, the input images are of size 512×1024. For

fair comparison, we follow Tsai et al. [24] and resize the

output predictions from 512×1024 to 1024×2048 at evalu-

ation time. We train our model for 250,000 iterations with a

batch size of 2. We use the SGD solver with an initial learn-

ing rate of 2.5× 10−4 for the common encoder Ec and the

classifier T ; the Adam solver with an initial learning rate of

1.0 × 10−3 for the decoder D; and the Adam solver with

an initial learning rate of 1.0× 10−4 for the others. All the

learning rates decrease according to the polynomial decay

policy. The momentum is set to 0.9 and 0.99.

4. Experimental Results

In this section, we perform experiments on typical

datasets for semantic segmentation. We compare the perfor-

mance of our proposed method with several state-of-the-art

baselines and conduct an ablation study to understand the

effect of various combinations of loss functions on segmen-

tation performance. The code and pre-trained models are

available online1.

4.1. Datasets

For experiments, we follow the common protocol

adopted by most prior works; that is, taking synthetic

dataset GTA5 [17] or SYNTHIA [18] with ground-truth an-

notations as the source domain, and Cityscapes dataset [4]

as the target domain where no annotation is available dur-

ing training. At test time, the evaluation is conducted on the

validation set of Cityscapes. The details of these datasets

are described as follows.

1https://github.com/a514514772/

DISE-Domain-Invariant-Structure-Extraction



Cityscapes [4] is a real-world dataset composed of street-

view images captured in 50 different cities. Its data split

includes 2975 training images and 500 validation images,

with each having a spatial resolution of 2048 × 1024 and

19 semantic labels at the pixel level. Note again that no

ground-truth label is used in model training.

GTA5 [17] is a synthetic dataset containing 24996 images

of size 1914 × 1052. These images are collected from com-

puter game Grand Theft Auto V (GTAV) and come with

pixel-level semantic labels that are fully compatible with

Cityscapes [4].

SYNTHIA is another synthetic dataset composed of 9400

annotated synthetic images with the resolution 1280 × 960.

Like GTA5, it has semantically compatible annotations with

Cityscapes [4]. Following the prior works [9, 20, 24, 26],

we use the SYNTHIA-RAND-CITYSCAPE subset [18].

4.2. Performance Comparison

We compare the performance of our method against sev-

eral baselines, including the models of [3, 9, 19, 20, 24, 26].

Of these, the works [3, 9, 24] are representative of the con-

ventional adaptation that matches distributions of feature or

output spaces across domains based on adversarial training;

the works [20, 26] are typical of those that map source-

domain images to the target domain at the pixel level by im-

age translation or style transfer; and Saleh et al. [19] stands

out from the others by object detection-based method for

foreground instances. More details of these works can be

found in Section 2.

GTA5 to Cityscapes. Table 2 shows that as compared to the

baselines, our method achieves the state-of-the-art perfor-

mance of 45.4 in mean intersection-over-union (mIoU). A

breakdown analysis further reveals that it outperforms most

of the baselines by a large margin in predicting ”Road”,

”Sidewalk, ”Wall”, ”Fence”, ”Building”, and ”Sky” classes.

These are classes that often appear concurrently in an im-

age and tend to be spatially connected. Moreover, some of

them, e.g. ”Road” and ”Sidewalk”, exhibit highly similar

texture appearance. We thus attribute the good performance

of our scheme to its ability to filter out the domain-specific

texture information in forming a domain-invariant structure

representation for semantic segmentation.

In Figure 3, we show qualitative results comparing our

method against ”Source Only” (i.e. no adaptation) and

”Conventional Adaptation” (i.e. without disentanglement

of structure and texture). For the latter, we present results

of [24]. It is clear that the segmentation predictions made

by our method look most similar to the ground truths. On

closer examination, we see that our model can better discern

the difference between ”Sidewalk” and ”Road” as compared

to the baselines. It also does a good job at identifying rare

classes such as ”Pole” and ”Traffic Sign”. These obser-

vations suggest that our structure-based representations are

indeed more discriminative than other representations that

may have encoded both structure and texture information as

with the ”Conventional Adaptation”.

SYNTHIA to Cityscapes. We also evaluate all models on

the more challenging SYNTHIA dataset. Specifically, we

follow [24] to compare results based on semantic predic-

tions for only 16 classes. Table 3 presents quantitative re-

sults in terms of per-class IoU and mIoU. It is seen that most

of the aforementioned discussions made with GTA5 dataset

can be carried over to SYNTHIA. Although the prior work

[9] performs closely to our model in terms of mIoU, the su-

periority of our method in classes like ”Road”, ”Sidewalk”,

”Building”, ”Sky” still remains.

4.3. Ablation Study

The following presents a study of four variants of our

model by comparing their performance with four distinct

training objectives:

• Source Only: Training with annotated GTA5

dataset [17] by minimizing Ls
seg only, i.e. without any

domain adaptation.

• Seg-map Adaptation: Training with annotated GTA5

dataset [17] together with domain adaptation at the

output space by minimizing Ls
seg and Lseg adv . This

corresponds to the method in [24], which aligns seg-

mentation predictions across domains.

• DISE w/o Label Transfer: Training with all loss

functions except label transfer loss, i.e. the setting for

seg-map adaptation plus disentanglement of structure

and texture components.

• DISE: Training with all loss functions.

Table 4 compares the performance of these settings in

terms of mIoU. As expected, without any domain adapta-

tion, ”Source Only” shows the worst performance with a

39.8 mIoU. The performance improves by 2.8 with Seg-

map Adaptation”, arriving at a 42.6 mIoU, when introduc-

ing domain adaptation at the output space. An even higher

gain of 4.3 over ”Source Only” is seen for the setting of

”DISE w/o Label Transfer”, confirming the benefit of dis-

entangling the structure and texture components. Finally,

with additional augmented data due to label transfer, the

DISE achieves the best performance.

4.4. ImagetoImage Translation

In Figure 4, we show qualitative results of image-to-

image translation with DISE for two settings, S2T and T2S.

With S2T (respectively, T2S), we combine the structure

content of images in GTA5 (respectively, Cityscapes) in col-

umn (a) with the texture appearance of images in Cityscapes



Table 2. Comparison results on Cityscapes when adapted from GTA5 in terms of per-class IoU and mIoU over 19 classes.
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Sankaranarayanan

et al. [20]
FCN8s [15] 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.3 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1

Wu et al. [26] FCN8s [15] 88.5 37.4 79.3 24.8 16.5 21.3 26.3 17.4 80.8 30.9 77.6 50.2 19.2 77.7 21.6 27.1 2.7 14.3 18.1 38.5

Hong et al. [9] FCN8s [15] 89.2 49.0 70.7 13.5 10.9 38.5 29.4 33.7 77.9 37.6 65.8 75.1 32.4 77.8 39.2 45.2 0.0 25.5 35.4 44.5

Chen et al. [3] PSPNet [28] 76.3 36.1 69.6 28.6 22.4 28.6 29.3 14.8 82.3 35.3 72.9 54.4 17.8 78.9 27.7 30.3 4.0 24.9 12.6 39.4

Wu et al. [26] PSPNet [28] 85.0 30.8 81.3 25.8 21.2 22.2 25.4 26.6 83.4 36.7 76.2 58.9 24.9 80.7 29.5 42.9 2.5 26.9 11.6 41.7

Chen et al. [3] Deeplab v2 [2] 85.4 31.2 78.6 27.9 22.2 21.9 23.7 11.4 80.7 29.3 68.9 48.5 14.1 78.0 19.1 23.8 9.4 8.3 0.0 35.9

Tsai et al. [24] Deeplab v2 [2] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

Saleh et al. [19] Deeplab v2 [2] 79.8 29.3 77.8 24.2 21.6 6.9 23.5 44.2 80.5 38.0 76.2 52.7 22.2 83.0 32.3 41.3 27.0 19.3 27.7 42.5

Ours Deeplab v2 [2] 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4

Table 3. Comparison results on Cityscapes when adapted from SYNTHIA in terms of per-class IoU and mIoU over 16 classes.
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Sankaranarayanan

et al. [20]
FCN8s [15] 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1

Wu et al. [26] FCN8s [15] 81.5 33.4 72.4 7.9 0.2 20.0 8.6 10.5 71.0 68.7 51.5 18.7 75.3 22.7 12.8 28.1 36.5

Hong et al. [9] FCN8s [15] 85.0 25.8 73.5 3.4 3.0 31.5 19.5 21.3 67.4 69.4 68.5 25.0 76.5 41.6 17.9 29.5 41.2

Wu et al. [26] PSPNet [28] 82.8 36.4 75.7 5.1 0.1 25.8 8.04 18.7 74.7 76.9 51.1 15.9 77.7 24.8 4.1 37.3 38.4

Chen et al. [3] Deeplab v2 [2] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.2

Tsai et al. [24] Deeplab v2 [2] 84.3 42.7 77.5 9.3 0.2 22.9 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 40.0

Ours Deeplab v2 [2] 91.7 53.5 77.1 2.5 0.2 27.1 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 41.5

Table 4. Ablation study results on Cityscapes when adapted from

GTA5 in terms of mIoU. We present results for no adaptation

(Source Only), adaptation at the output space only (Seg-map

Adaptation), adaptation at the output space together with struc-

ture and texture disentanglement (DISE w/o Label Transfer), and

adaptation with all losses considered (DISE).

Method A B C D mIoU

Source Only X 39.8

Seg-map Adaptation X X 42.6

DISE w/o Label Transfer X X X 44.1

DISE X X X X 45.4

A: Ls
seg

B: Lseg adv

C: Lrec + Ltrans str + Ltrans tex + Ltrans adv

D: Ls2t
seg

(respectively, GTA5) in columns (b) and (d) to produce

translated images in columns (c) and (e), respectively. We

see that DISE is very effective in translating images from

one domain to another with high quality. In all cases, the

translated images preserve well the structure content while

producing the desired texture appearance. This also val-

idates our use of the ground-truth labels of the source-

domain images as pseudo labels for their translated images

with texture appearance similar to target-domain images.

5. Conclusion

In this paper, we hypothesize that the high-level structure

information of an image is most decisive to semantic seg-

mentation and can be made invariant across domains. Based

on this hypothesis, we propose a novel framework, Domain

Invariant Structure Extraction (DISE), to disentangle the

representation of an image into a domain-invariant struc-

ture component and a domain-specific texture component,

where the former is used to advance domain adaptation for

semantic segmentation. The DISE also allows transfer of

ground-truth labels from the source domain to the target

domain, providing additional supervision for learning a seg-

mentation network suitable for target-domain images. Ex-

tensive simulation results on typical datasets confirms the

superiority of DISE over several state-of-the-art methods,

justifying our initial hypothesis.
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(a) Target Image (b) Ground Truth (c) Source Only (d) Conventional Adapt. (e) DISE (ours)
Figure 3. Segmentation results on Cityscapes when adapted from GTA5. From left to right, (a) Target Image, (b) Ground Truth, (c) Source

Only, (d) Conventional Adaptation [24], (e) and DISE.
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Figure 4. Sample results of translated images. S2T: the structure content of GTA5 images in (a) are combined with the texture appearance

of Cityscapes images in (b) and (d) to output translated images in (c) and (e), respectively. T2S: the structure content of Cityscapes images

in (a) are combined with the texture appearance of GTA5 images in (b) and (d) to output translated images in (c) and (e), respectively.
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