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Supplementary Material

A. Detail of Feature Extraction
First, we transform point clouds and images into two unified rep-
resentations: frontal view depth maps (IFV

R , IFV
I ∈ RH×W ) and

BEV images (IBEV
I , IBEV

R ∈ RH′×W ′
). These representations

allow us to effectively compare and fuse sensor data from different
perspectives.

To extract features from radar data (the mis-calibrated images
IFV
R , IBEV

R ), we employ the first three blocks of ResNet [7] as
the network structure. This setup, which includes convolutional
and pooling layers, is well-suited for extracting low-level image
features such as edges and textures. Additionally, considering the
sparse nature of radar data and its distinct characteristics compared
to image data, we train the radar-specific ResNet from scratch to
effectively capture the relevant features.

For the depth map IFV
I and pseudo-BEV map IBEV

I , which
are derived from the input image using a depth estimation net-
work, feature extraction is performed using just two convolutional
layers. Given that these image-derived maps are rich in semantic
information, this simplified network configuration has proven suf-
ficient for extracting detailed features while avoiding unnecessary
complexity

To enhance semantic content in the frontal view, context fea-
tures are extracted from the original input image using ResNet18’s
first three blocks with pretrained weights from ImageNet [4].
These blocks excel in capturing rich contextual information, which
is integrated with features extracted from depth map IFV

I to pro-
duce a comprehensive feature representation enriched with seman-
tic information. This fusion not only enhances semantic details in
the frontal view but also improves contrast and consistency across
multi-view features.

Finally, we obtain feature sets from different perspectives for
radar and camera, represented as FFV

R , FFV
I ∈ RH/8×W/8×C

and FBEV
R , FBEV

I ∈ RH′/8×W ′/8×C , where H and W are the
dimensions of the frontal view image, and H ′ and W ′ are the di-
mensions of the BEV image.

B. Detail of Multi-Modal Cross-Attention
Mechanism

The output OI←R of the Multi-Modal Cross-Attention Mecha-
nism, as shown in Eq. (1), is computed by concatenating the image
feature fI , reshaped from FI to dimensions (m× c), with the at-
tended feature mI←R. This concatenated feature is then processed
through a feed-forward network (FFN) that employs LayerNorm
[1], GELU [8] activation functions, and linear layers, resulting in
the output reshaped to OI←R ∈ Rh×w×c. Similarly, OR←I is
computed using the same process, as shown in Eq. (2).

OI←R = Θ(FI ,mI←R)

= reshape(FFN(concat[fI ,mI←R]), (h,w, c)),
(1)

OR←I = Θ(FR,mR←I)

= reshape(FFN(concat[fR,mR←I ]), (h,w, c)),
(2)

Figure 1. Illustration of bounding box B. Suppose we consider
only the y and z axes to calculate wB based on δ

The cross-attention maps II←R, IR←I between radar and im-
age features will be computed according to the following equation:

II←R = reshape(
m

max
j

(Softmax(aIR)ij), (h,w, 1)) (3)

IR←I = reshape(
m

max
j

(Softmax(a⊤IR)ij), (h,w, 1)) (4)

C. Detail of Noise-Resistant Matcher
Fig. 1 illustrates the principle of the noise-resistant matcher, which
simplifies by removing the x-axis. The radar point cloud is com-
puted based on azimuth angle θ and distance R, all lying on the
radar point plane with a constant y-axis value of 0. However, in
reality, radar points are reflected from objects at a distance from
the radar plane, leading to the appearance of uncertain elevation
angle ϕ within the vertical FOV boundary. Therefore, we depict
the gray points in figure as potential actual radar points within the
FOV, at the same distance R but with varying elevation angles ϕ.

For potential actual radar point, there is an error in both the
x and z axes, corresponding to ∆x and ∆z as defined in [34].
Using these errors, we define a region encompassing neighboring
LiDAR points. Essentially, each radar point creates a bounding
box b to identify LiDAR neighbors associated with potential ac-
tual radar points. This 3D bounding box is fixed with a parameter
δ, which is the allowable height error threshold, and the width and
depth correspond to ∆x and ∆z, respectively. In Fig. 1, when
the allowable height limit for the potential actual radar point is
δ, the maximum allowable z value for the gray point is when it
coincides with the radar point (blue) P c

r (X
c
r , Y

c
r , Z

c
r), and the



Figure 2. Calibration results by projecting radar points onto the FV image

Figure 3. Examples of FV cross-attention maps highlight the important regions the model focuses on.



Scenario Methods Rotation (◦)

Mean Roll Pitch Yaw

Urban

LCCNet-1 2.969 3.123 2.703 3.081
NetCalib2 2.643 0.742 3.221 3.966
CalibDepth 3.656 2.088 3.913 4.966
Coarse [31] 4.395 3.148 4.645 5.392
Fine [31] 4.956 3.152 5.195 6.520

Ours 1.875 0.934 2.609 2.082

Rain

LCCNet-1 2.394 3.400 1.929 1.853
NetCalib2 2.612 0.644 2.781 4.411
CalibDepth 3.412 1.686 4.299 4.251
Coarse [31] 4.092 2.060 4.663 5.554
Fine [31] 4.776 2.050 5.269 7.007

Ours 1.922 0.622 3.273 1.870

Table 1. Cross-dataset evaluation on the aiMotive dataset. The
nuScenes-trained models are evaluated on aiMotive scenarios (ur-
ban and rain) with an initial rotation error range within 10°.

minimum allowable z value is at (Zc
r − ∆z), similarly for the

x-axis. Therefore, the center of the 3D bounding box b is defined
as (Xc

r −∆x/2, yc
r, Z

c
r −∆z/2).

Additionally, in reality, LiDAR points will not fit exactly with
potential actual radar points due to measurement inaccuracies of
both the radar and LiDAR sensors. Therefore, we add an offset to
the width, height, and depth by a fixed error ∆s, forming the 3D
bounding box B. Both parameters δ and ∆s are tuned based on
the unit meter.

D. Implementation Details
We resized the original 1600x900 images to 400x192 pixels.
Training was conducted on an NVIDIA GTX 3090 GPU for 50
epochs using the Adam optimizer with an initial learning rate of
1e-4, halving it every 8 epochs. The loss function weights were
set to λ = 0.75 and β = 0.1. In the Regression Head, the LSTM
module had a fixed iterative step size of 3. In the noise-resistant
matcher section, we selected a threshold τ of 3, ∆s of 0.5, and δ
of 1.

E. Additional Experimental Results
E.1. Cross-dataset evaluation
We compared our RC-AutoCalib with other related methods on the
aiMotive [26] dataset, as shown in Tab. 1. In this experiment, all
models were trained on the nuScenes dataset and directly tested on
two scenarios from aiMotive. Our method outperformed others in
both scenarios, demonstrating the superior gener alization ability
of our model.

E.2. Positive-Negative Balance in Feature Matching
Supervision Loss

In Tab. 2, we experimented with different values of λ for
Lmatching , including 0.9, 0.75, and 0.5. When λ was set to 0.75,

λ
Rotation(◦) Translation(cm)

Mean Roll Pitch Yaw Mean X Y Z

0.9 0.460 0.142 0.222 1.017 10.896 12.561 7.503 12.625
0.75 0.427 0.130 0.199 0.953 9.498 12.564 3.295 12.635
0.5 0.442 0.153 0.209 0.9634 11.295 12.547 8.699 12.638

Table 2. Ablation Study on Positive-Negative Balance in Feature
Matching Supervision Loss

Range Methods Rotation(◦) Translation (cm)
Mean Roll Pitch Yaw Mean X Y Z

KITTI

CalibNet 0.410 0.150 0.900 0.181 7.82 12.10 3.49 7.87
CalibRCNN 0.428 0.199 0.640 0.446 5.30 6.20 4.30 5.40
CalibDNN 0.210 0.110 0.350 0.180 5.07 3.80 1.80 9.60

CalNet 0.200 0.100 0.380 0.120 3.03 3.65 1.63 3.80
Ours 0.142 0.066 0.096 0.268 1.941 2.479 0.998 2.347

nuScenes CalibDepth 0.408 0.215 0.226 0.794 8.33 11.19 4.27 9.53
Ours 0.208 0.142 0.148 0.337 3.183 1.010 0.7836 7.836

Table 3. Comparison of the method extension to the LiDAR-
Camera auto-calibration task on the nuScenes and KITTI datasets.
The methods are compared with mis-calibration ranges R1 (±10◦,
±0.25m). Notably, the CalibDepth method was retrained on the
nuScenes dataset by us.

both rotation error and translation error reached their lowest val-
ues.

E.3. LiDAR-Camera Calibration
To showcase the adaptability of our approach, we extended it
to LiDAR-camera calibration. We trained our method on the
nuScenes dataset using the same train-test split as reported in the
main paper and on the KITTI dataset with 24,000 training samples
and 6,000 test samples. These experiments were conducted with-
out the Noise-Resistant Matcher, which is specific to radar data.

As shown in Tab. 3, we compare our method with pre-
vious approaches, including CalibNet[11], CalibRCNN[33],
CalibDNN[48], CalNet[32], and CalibDepth[49]. The results
demonstrate that our method outperforms them, confirming its
scalability and robustness.

E.4. Effects on Downstream tasks
To validate the impact of our method on 3D object detection, we
initialized random incorrect extrinsic parameters, corrected the pa-
rameters for each image in the scenes test set, and evaluated the
pre-trained CRN [16] 3D object detection model. The mAP per-
formance decreased by only 0.27% compared to using ground-
truth calibration, indicating a negligible difference.

E.5. Qualitative Results
Fig. 2 shows additional calibration results, including the results
for each iteration. It can be observed that even with a large initial
error, our method effectively reduces the error progressively with
each iteration. In Fig. 3, we present additional attention maps us-
ing heatmaps in the FV, with the projected radar points marked in
white to indicate critical regions.
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Petrović, and Jonathan Kelly. A continuous-time ap-

proach for 3d radar-to-camera extrinsic calibration. In 2021
IEEE International Conference on Robotics and Automation
(ICRA), pages 13164–13170. IEEE, 2021. 3

[40] Emmett Wise, Qilong Cheng, and Jonathan Kelly. Spa-
tiotemporal calibration of 3-d millimetre-wavelength radar-
camera pairs. IEEE Transactions on Robotics, 2023. 3

[41] Shan Wu, Amnir Hadachi, Damien Vivet, and Yadu Prab-
hakar. Netcalib: A novel approach for lidar-camera auto-
calibration based on deep learning. In 2020 25th Inter-
national Conference on Pattern Recognition (ICPR), pages
6648–6655. IEEE, 2021. 1, 2

[42] Shan Wu, Amnir Hadachi, Damien Vivet, and Yadu Prab-
hakar. This is the way: Sensors auto-calibration approach
based on deep learning for self-driving cars. IEEE Sensors
Journal, 21(24):27779–27788, 2021. 1, 7

[43] Xiaopei Wu, Liang Peng, Honghui Yang, Liang Xie, Chenxi
Huang, Chengqi Deng, Haifeng Liu, and Deng Cai. Sparse
fuse dense: Towards high quality 3d detection with depth
completion. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5418–5427,
2022. 1

[44] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical
evaluation of rectified activations in convolutional network.
arXiv preprint arXiv:1505.00853, 2015. 5

[45] Bin Yang, Runsheng Guo, Ming Liang, Sergio Casas, and
Raquel Urtasun. Radarnet: Exploiting radar for robust per-
ception of dynamic objects. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XVIII 16, pages 496–512.
Springer, 2020. 1

[46] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi
Feng, and Hengshuang Zhao. Depth anything: Unleashing
the power of large-scale unlabeled data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10371–10381, 2024. 4

[47] Chongjian Yuan, Xiyuan Liu, Xiaoping Hong, and Fu Zhang.
Pixel-level extrinsic self calibration of high resolution lidar
and camera in targetless environments. IEEE Robotics and
Automation Letters, 6(4):7517–7524, 2021. 1, 2, 3

[48] Ganning Zhao, Jiesi Hu, Suya You, and C-C Jay Kuo.
Calibdnn: multimodal sensor calibration for perception us-
ing deep neural networks. In Signal Processing, Sen-
sor/Information Fusion, and Target Recognition XXX, pages
324–335. SPIE, 2021. 2, 4, 3

[49] Jiangtong Zhu, Jianru Xue, and Pu Zhang. Calibdepth: Uni-
fying depth map representation for iterative lidar-camera on-
line calibration. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 726–733. IEEE,
2023. 2, 6, 7, 3

[50] Zhuangwei Zhuang, Rong Li, Kui Jia, Qicheng Wang, Yuan-
qing Li, and Mingkui Tan. Perception-aware multi-sensor
fusion for 3d lidar semantic segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 16280–16290, 2021. 1


