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Abstract

This paper presents a groundbreaking approach - the first
online automatic geometric calibration method for radar
and camera systems. Given the significant data sparsity
and measurement uncertainty in radar height data, achiev-
ing automatic calibration during system operation has long
been a challenge. To address the sparsity issue, we pro-
pose a Dual-Perspective representation that gathers fea-
tures from both frontal and bird’s-eye views. The frontal
view contains rich but sensitive height information, whereas
the bird’s-eye view provides robust features against height
uncertainty. We thereby propose a novel Selective Fu-
sion Mechanism to identify and fuse reliable features from
both perspectives, reducing the effect of height uncertainty.
Moreover, for each view, we incorporate a Multi-Modal
Cross-Attention Mechanism to explicitly find location cor-
respondences through cross-modal matching. During the
training phase, we also design a Noise-Resistant Matcher
to provide better supervision and enhance the robustness
of the matching mechanism against sparsity and height un-
certainty. Our experimental results, tested on the nuScenes
dataset, demonstrate that our method significantly outper-
forms previous radar-camera auto-calibration methods, as
well as existing state-of-the-art LiDAR-camera calibration
techniques, establishing a new benchmark for future re-
search. The code is available at https://github.com/nycu-
acm/RC-AutoCalib

1. Introduction
Radars and cameras are increasingly favored in ad-
vanced driver-assistance systems (ADAS) due to their cost-
effectiveness and robust performance in diverse weather
conditions. A critical research area in these systems in-
volves data fusion and multi-modal calibration to ensure re-
liable functioning in real-world settings [16, 19, 37, 39, 44].
Conventional calibration techniques for 3D radar and cam-
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Figure 1. An overview of the proposed RC-AutoCalib method.
The approach takes input from radar-camera miscalibration, rep-
resenting it as feature pairs in Dual-perspective view. These fea-
ture representations are then enhanced through feature matching
block, from which reliable features are selected to predict the ro-
tation vector and translation.

eras primarily focus on offline methods, which often rely on
specialized calibration targets like checkerboards or corner
reflectors, and are generally limited to the radar measure-
ment plane [3, 4, 10–12, 29, 32]. These methods, while
effective, require substantial time and manual effort, and
they do not account for sensor displacements that can occur
under normal operating conditions. This limitation under-
scores the necessity for online auto-calibration, which can
dynamically adjust to changes over time.

Online auto-calibration methods eliminate the need for
calibration targets, focusing on matching natural features
collected by radar and camera sensors. While this approach
offers greater flexibility in real-world scenarios, exploration
in this area remains limited, with no established bench-
marks using publicly available datasets to date. Only the
approach by Schöller et al. [26] utilizes deep learning to
address the problem of online auto-calibration for radar and
camera. However, their focus remains exclusively on rota-
tional calibration, without addressing translational calibra-
tion.

In contrast, online auto-calibration methods for LiDAR
and camera [8, 9, 18, 20, 21, 25, 27, 31, 35, 36, 41–43] have
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(a) Elevation Ambiguity in Radar Point
Clouds [19].

(b) Noisy depth measure-
ments and lack of object
structures.

Figure 2. Challenges of 3D Millimeter-Wave Radar. (a) The green
dashed line represents the height plane the radar focuses on. Points
A, B, and C denote actual reflection positions, whereas Aradar,
Bradar, and Cradar are the positions recorded by the radar. DA,
DB, and DC represent the recorded and noisy radar depths. (b)
The top image shows a “LiDAR” depth map projected onto the
camera plane, while the bottom image displays a “radar” depth
map projected similarly. The red box highlights the issue where
depths of points on the same object should be similar, yet sig-
nificant variations are evident, indicating the presence of noise.
Moreover, the green box shows a structural comparison: the “Li-
DAR” point cloud distinctly outlines the object’s contour, while
the “radar” point cloud fails to convey structural information.

been extensively explored by researchers and have demon-
strated powerful capabilities. Most of these methods share a
common concept of using RGB images and mis-calibrated
LiDAR data as input, with the overall process divided into
feature extraction, feature matching, and parameter regres-
sion. Instead of directly extracting features from RGB im-
ages [20, 27, 31, 42], some methods have modified the rep-
resentation of RGB images. For instance, [18, 41] implicitly
extract features in the form of semantics and edges, while
[35, 43] transform RGB images into depth maps to achieve
a unified representation consistent with 3D data. Overall,
these methods project 3D data onto the frontal view to fuse
with the camera information for further processing. The
above-mentioned LiDAR-camera methods provide a ref-
erence and comparison for developing radar-camera auto-
calibration. However, we find that relying solely on a single
viewpoint for radar-camera auto-calibration makes achiev-
ing high accuracy challenging. As depicted in Fig. 2, the
frontal depth map often contains noisy point cloud data due
to uncertainty from the lack of radar height information.
Additionally, radar data is inherently sparse and lacks ob-
ject structures. When projecting radar point clouds onto the
frontal view to form the depth map, the projected points
tend to overlap and become even sparser. To mitigate these
challenges, we have introduced a Dual-Perspective repre-
sentation that leverages attention-based selection to extract
more reliable features.

Furthermore, feature matching between radar and cam-
era is a critical component for auto-calibration. Some meth-
ods [27, 35, 43] rely on concatenation followed by several

convolutional layers to facilitate feature matching, while
others [20] use cost volume to represent the correlation be-
tween the two sensors. However, traditional approaches de-
pend solely on implicit supervision from the final calibra-
tion loss to guide the matching process. This lack of ex-
plicit identification of matched local pairs between sensors
renders the calibration process indistinct. To address this,
we have developed a Noise-Resistant Matcher that provides
direct supervision for feature matching and correspondence
finding.

Accordingly, as illustrated in Fig. 1, we propose RC-
AutoCalib, an end-to-end network for automatic 3D radar
and camera calibration, addressing the challenges of sparse
and noisy radar data. To counteract these issues, we en-
hance a Dual-Perspective representation that integrates fea-
tures from both the frontal view and the bird’s eye view
(BEV). The frontal view is prone to noise due to missing
height information in radar point clouds, while the BEV
provides more stable features, unaffected by this limita-
tion. Our model includes a Selective Fusion Mechanism to
discern and utilize beneficial features from each perspec-
tive. Additionally, we incorporate a Multi-Modal Cross-
Attention Mechanism to focus on relevant areas in sparse
radar point clouds. To improve calibration accuracy, we
introduce Explicit Feature Matching Supervision with a
Noise-Resistant Matcher, which helps the model identify
and learn from correspondence points between radar and
camera, filtering out noise in the process. Our results on
the nuScenes dataset demonstrate significant improvements
over existing LiDAR-camera calibration methods, as well
as previous radar-camera auto-calibration approaches, set-
ting a new benchmark for future research. In summary, our
contributions are:

◦ We introduce RC-AutoCalib, an end-to-end network for
calibrating 3D radar and cameras, featuring a Dual-
Perspective representation that counters the height infor-
mation limitations of 3D radar data. This network in-
cludes a novel Selective Fusion Mechanism to optimally
integrate features from both the frontal view and BEV
perspectives.

◦ We develop a feature-matching module incorporating a
Multi-Modal Cross-Attention Mechanism to enhance the
utilization of radar point clouds. This module integrates
a Noise-Resistant Matcher to provide Explicit Feature
Matching Supervision. Thereby, RC-AutoCalib can ef-
fective filter out noise caused by height inaccuracies and
enable robust learning of radar-image correspondences
for calibration.

◦ Our approach demonstrates superior experimental results
on the nuScenes dataset compared to existing LiDAR-
camera calibration methods, establishing a new bench-
mark for future research.
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2. Related Works

2.1. Offline Calibration
Offline calibration methods primarily depend on specific
calibration targets and cannot address real-time errors.
These methods are tailored for fixed environments and ne-
cessitate substantial manual effort to achieve precision, ren-
dering them unsuitable for dynamic conditions and gener-
ally reserved for controlled settings. Early radar-camera
calibration techniques focused on merging radar signals
with camera data through homography projection that maps
points from the radar’s horizontal plane to the camera image
plane. Due to inherent noise in radar sensors, these early
methods often required specialized trihedral reflectors to es-
tablish accurate correspondences [10, 11, 29, 32]. However,
the radar’s limitation in accurately measuring the elevation
of distant targets indicated that reflectors had to be posi-
tioned precisely on the radar’s horizontal plane [29]. More
recent radar calibration algorithms aim to minimize “repro-
jection error” to better synchronize object detection across
both sensor fields of view, using techniques like estimating
radar-to-camera transformations via reprojection error [12],
or intersecting back-projected camera rays with 3D “arcs”
that conform to radar measurements to determine necessary
transformations [4]. Despite improvements, these methods
still rely on specific targets and manual input efforts.

2.2. Online Calibration
Online methods primarily extract features from natural
scenes for calibration, offering greater flexibility and adapt-
ability to various scenarios. The rapid development of deep
learning has demonstrated neural networks’ powerful fea-
ture extraction capabilities. However, due to the aforemen-
tioned challenges associated with radar, online calibration
methods for radar and cameras are less prevalent. In this
paper, we focus on developing an end-to-end architecture
for the online auto-calibration of radar and cameras, lever-
aging robust benchmarks established by LiDAR and camera
calibration methods.
LiDAR and Camera. Li et al. [15] categorized targetless
calibration methods into information theory-based, feature-
based, ego-motion-based, and learning-based approaches.
Pandey et al. [22] used mutual information between point
cloud intensities and image grayscale values. Taylor and Ni-
eto [30] utilized sensor ego-motion on moving vehicles to
estimate extrinsic parameters. Levinson and Thrun [13] as
well as Yuan et al. [41] optimized depth-discontinuous and
depth-continuous edge features, respectively. Regnet [25]
and CalibNet [8] employed deep learning to match features
and regress calibration parameters. CalibRCNN [27] com-
bined CNN with LSTM [24] and added pose constraints for
accuracy. LCCNet [20] used cost volume for feature cor-
relation. Despite achieving positive results, these methods

do not explicitly learn the correspondence between point
clouds and images. In contrast, in this paper, we introduce
Explicit Feature Matching Supervision to guide the model
in learning the correspondence relationship between point
clouds and images more effectively.
Radar and Camera. Perši’c et al. [23] proposed an on-
line calibration method based on detecting and tracking
moving objects, focusing on rotational calibration. Schöller
et al. [26] used deep learning to learn rotational calibra-
tion matrices but did not address translational calibration.
Additionally, their methods utilize stationary traffic radars
fixed on highway positions, differing from ours that employ
vehicle-mounted 3D radars moving with the car. Wisec et
al. [33] developed a targetless calibration method for 3D
radar and cameras, using radar velocity information and
motion-based camera pose measurements, solved with non-
linear optimization. Later, the same research team extended
their work [33] to include radar ego-velocity estimates and
unscaled camera pose measurements in [34] for a more
complete spatiotemporal calibration. However, these meth-
ods overly rely on radar speed measurements, making them
less robust to noise. Additionally, they do not leverage the
power of deep learning and fail to explicitly establish the
correspondence between radar and images.

3. Methods
The overall pipeline of the RC-AutoCalib method, depicted
in Fig. 3, begins with RGB images and radar point clouds as
inputs. These inputs pass through the Data Transform mod-
ule, yielding the frontal view estimated depth map, frontal
view miscalibrated radar depth map, pseudo-BEV image,
and miscalibrated radar BEV. Subsequent processing oc-
curs in the Feature Extraction module, where features are
extracted. These features are then analyzed in the Feature
Matching module to enhance understanding of the corre-
lation between feature pairs. This module incorporates a
Multi-Modal Cross-Attention Mechanism, Explicit Feature
Matching Supervision, and a Noise-Resistant Matcher. Fol-
lowing this, the Selective Fusion Mechanism aggregates the
features, and the system performs parameter regression to
predict rotation and translation vectors necessary for auto-
calibration. Detailed descriptions are provided below.

3.1. Data Transform module
To address issues of uncertainty caused by elevation am-
biguity and the sparsity of radar data, we propose a Dual-
Perspective feature representation. This approach projects
two types of 3D data (i.e., the image plus its depth map
and the radar point clouds) onto two different perspectives:
bird’s-eye view (BEV) and frontal view (FV). The BEV
provides a domain where radar data is less impacted by
uncertain height and offers more information about the ge-
ometry of the scene. Simultaneously, the FV retains rich
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Figure 3. Our system flow for iterative online auto-calibration starts with the input image, point cloud, and initial calibration parameters
Tinit, which first pass through the Data Transform module (Sec. 3.1). Here, we obtain the estimated image depth map and miscalibrated
radar depth map from the frontal view (FV) perspective, along with the pseudo-BEV image and miscalibrated BEV radar projection. These
outputs are then processed in the Feature Extraction module (Sec. 3.2), where features from both FV and BEV perspectives undergo Feature
Matching (Sec. 3.3) between the image and radar data. Subsequently, after Feature Matching and Fusion (Sec. 3.4), the Regression Head
(Sec. 3.5) generates the rotation and translation vectors that form the transformation matrix, T̂ i

pred, to refine calibration. Finally, T̂ i
pred is

fed back to Tinit to update the calibration parameters for the next i-th iteration.

semantic information, preserving important contextual de-
tails.
Radar data. Given a random initialized or roughly-
estimated extrinsic transformation Tinit [8, 20, 31, 42], con-
sisting of a rotation matrix Rinit and a translation vector
tinit, we transform a 3D radar point Pr = (Xr, Yr, Zr)
from the radar coordinate to P c

r = (Xc
r , Y

c
r , Z

c
r) in the

camera coordinate using Eq. (1). The projection formula in
Eq. (2) is then used to generate mis-calibrated FV and BEV
information maps. For the FV map, the recorded pixel value
is computed as IFV

R (uf , vf ) = Zc
r ; as for the BEV map, the

recorded value is determined as IBEV
R (ub, vb) = ycr, with

ycr being Y c
r plus an offset of the camera height (i.e., the

distance above the ground) to eliminate negative values. In
Eq. (2), (uf , vf ) and (ub, vb) are the coordinates of a radar
point Pr projected onto FV and BEV planes using projec-
tion matrices K and K ′ correspondingly. Here, K is the
original camera intrinsic matrix. The intrinsic parameters
are manually pre-defined for K ′ based on the map resolu-
tion and map center.

P c
r = Tinit

[
Pr

1

]
=

[
Rinit tinit
0 1

] [
Pr

1

]
, (1)

uf

vf
1

 = K

Xc
r/Z

c
r

Y c
r /Z

c
r

1

 , and

ub

vb
1

 = K ′

Xc
r

Zc
r

1

 . (2)

Camera data. For the camera data, the FV information
map IFV

I (ud, vd) is derived using the Metric Depth Esti-
mation module, which predicts the depth image from the
input image. This module employs two sequential meth-
ods: DepthAnything[40] for relative depth prediction and
ZoeDepth[1] for refining it into metric depth, resulting in
IFV
I (ud, vd). From the depth image, we convert each pixel

into a pseudo point cloud Pp = (Xp, Yp, Zp) based on
Eq. (3), which are then transformed/projected using ma-
trix K ′ to form the pseudo-BEV image IBEV

I similar to
the radar case IBEV

R .

[
Xp Yp Zp

]⊤
= K−1 · IFV

I (ud, vd) ·
[
ud vd 1

]⊤
.

(3)

3.2. Feature Extraction

After transforming point clouds and images into two unified
representations—FV depth maps (IFV

R , IFV
I ∈ RH×W )

and BEV maps (IBEV
I , IBEV

R ∈ RH′×W ′
)—we use

ResNet [5] and convolutional layers to extract features from
these maps. Additionally, to enhance the FV semantic
content, context features are extracted from the original
image using ResNet18 and are integrated with the fea-
tures from IFV

I . The resulting feature sets, representing
different perspectives for radar and camera, are denoted
as FFV

R , FFV
I ∈ RH/8×W/8×C and FBEV

R , FBEV
I ∈
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(a) Cross attention and Explicit Feature Matching Supervision (b) 3D bbox B illustration

Figure 4. Illustration of the proposed Feature Matching module.

RH′/8×W ′/8×C . We detail the network architecture in the
supplementary.

3.3. Feature Matching
To estimate the 6-DoF (degrees of freedom) extrinsic trans-
formation between radar and camera sensors, our model
first focuses on identifying corresponding feature pairs from
each sensor’s perspective. As illustrated in Fig. 3, we con-
duct feature matching across two different perspectives. For
each perspective, we implement similar matching modules
that include a Multi-Modal Cross-Attention Mechanism and
an Explicit Feature Matching Supervision. Additionally, in
the FV case, we incorporate a Noise-Resistant Matcher.
Multi-Modal Cross-Attention Mechanism. Consider-
ing both perspectives, the projected point cloud data from
radar is sparse with mostly zero values, while camera data
is dense with rich depth information and geometric features.
We propose a Multi-Modal Cross-Attention (MCA) Mech-
anism that enables the model to focus on non-zero feature
regions and identify correlations between camera and radar
features. As described in Equation Eq. (4), the inputs to the
MCA are FI and FR, and the outputs are OI←R and OR←I .
These outputs are used to compute the updated features F̂I

and F̂R as shown in Eq. (5).

(OI←R, OR←I) = (Θ(FI ,mI←R),Θ(FR,mR←I))

= MCA(FI , FR)
(4)

F̂I = FI +OI←R, F̂R = FR +OR←I , (5)

To obtain OI←R and OR←I in Eq. (4), we first compute
the attended features mI←R and mR←I between the radar
and image inside MCA. Inspired by [6, 17], we use Eq. (6)
to compute attended features mI←R and mR←I , which rely
on the cross-attention score aIR computed by Eq. (7).

mR←I = Softmax(a⊤IR) VI ,mI←R = Softmax(aIR) VR,
(6)

aIR = K⊤I KR, (7)

where V∗ and K∗ are the value and key, respectively, ex-
tracted from the feature F∗ through linear projections. Note

that, we reshape F∗ to (m × c) dimension before projec-
tion and ∗ ∈ {I,R}. After obtaining these attention maps
mI←R and mR←I , we apply the cross-modal feature re-
finement function Θ to calculate the OI←R and OR←I by
Eq. (4) given FI and FR. The details of Θ can be found in
the supplementary material.

After obtaining F̂I and F̂R, as shown in Fig. 4a, a Resid-
ual Conv Block is used to aggregate them into correspond-
ing Fview for each perspective branch using Eq. (8), with
view ∈ {BEV,FV }.

Fview = Φ(conv(concat(F̂I , F̂R))

+ conv(conv(concat(F̂I , F̂R)))),
(8)

where the first term of Φ consists of the concatenated fea-
tures of F̂I and F̂R after passing through one convolutional
layer, while the second term involves passing through two
convolutional layers. These terms are then added together
to form our Residual Conv Block. Here, ”conv” denotes
a block that includes convolutional layers followed by the
leakyReLU [38] activation function. The block Φ sequen-
tially applies the leakyReLU activation function, flattens the
features, and utilizes a multi-layer perceptron (MLP).
Explicit Feature Matching Supervision. Previously,
feature matching was implicitly supervised solely by the
final calibration loss to understand overall errors without
specifically identifying matched pairs. We find this im-
plicit supervision insufficient and propose directly super-
vising feature matching using true matching pairs generated
from the correct calibration matrix. In other words, we add
matching prediction and auxiliary loss during training to en-
hance the understanding of local feature matching pairs be-
tween F̂I and F̂R.

Motivated by [17], an extra branch is designed to per-
form the task of Local Feature Matching during the training
phase as shown in Fig. 4a. Assuming each reshaped fea-
ture f̂∗ ∈ Rm×c from F̂∗ includes m (i.e., H/8 × W/8)
keypoints, with each keypoint having a feature descriptor
of dimension c. The assignment matrix P∈[0, 1]m×m is es-
timated based on Eq. (9).
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Figure 5. Details of the Selective Fusion Mechanism

P = σ⊤I σR Softmax(S⊤)⊤ Softmax(S), (9)

where S ∈ Rm×m, calculated by equation Eq. (10), is the
similarity score matrix between the features extracted from
two sensors after the Multi-Modal Cross-Attention step.
Meanwhile, σ∗∈ [0, 1]1×m is the matchable score of feature
points, estimated by equation Eq. (11), where ∗ ∈ {I,R}.
A point with a high value of σ means it is more likely to
have a corresponding point on another map.

S = Linear(f̂I)⊤Linear(f̂R), (10)

σ∗ = Sigmoid(Linear(f̂∗)). (11)

In the training phase, we use the estimated assignment ma-
trix P and the matching loss defined in Eq. (16) to directly
supervise the cross-sensor matching.
Noise-Resistant Matcher. For the FV case, when prepar-
ing the ground truth matches matrix M to supervise the
assignment matrix P , we recognize that the radar training
data contains many unreliable data points due to elevation
ambiguity. Additionally, radar signals reflected by objects
far from the radar plane can lead to unreliable data points.
Therefore, we propose using LiDAR data to identify and
remove these unreliable data points from the list of true fea-
ture matching pairs M. First, we transform the LiDAR and
radar point clouds into a unified camera coordinate system.
For each radar 3D point P c

r = (Xc
r , Y

c
r , Z

c
r) ∈ R3, a neigh-

bor region is created using a 3D bounding box B. If the
number of LiDAR point clouds P c

l = (Xc
l , Y

c
l , Z

c
l ) ∈ R3

within this box B exceeds a threshold τ , the radar point
cloud P c

r is considered reliable.
The 3D bounding box B is adaptively designed for each

radar point. Denote ϕ, θ, and R respectively represent the
elevation angle, azimuth angle, and point length relative to
a 3D radar point. (∆x, ∆z) are the noises caused by ele-
vation ambiguity as defined in the method [28] and ∆s is
the error between the two sensors. As shown in Fig. 4b, the
box height hB is calculated by Eq. (12) given ∆s, ϕ, R, and
a predefined parameter δ, which represents the allowable
height error from a 3D point to the radar plane.

hB = 2(∆y+∆s) = 2(δ+∆s), and cosϕ =
√
1− (δ/R)2.

(12)

The width wB and depth dB of B, are then calculated by
Eqs. (13) and (14). The center of a 3D bounding box B
of a radar point P c

r (X
c
r , Y

c
r , Z

c
r) is determined as: (Xc

r −
∆x/2, Y c

r , Z
c
r −∆z/2).

wB = ∆x+ 2∆s = R sin θ(1− cosϕ) + 2∆s, (13)

dB = ∆z + 2∆s = R cos θ(1− cosϕ) + 2∆s. (14)

Due to limited space, we provide additional information
and details in the supplementary material.

3.4. Selective Fusion Mechanism
After the Feature Matching step, we can extract the features
FBEV and FFV in the corresponding perspective branch.
To enhance calibration accuracy by leveraging the distinc-
tive contributions of each perspective, we propose a Dual-
Perspective View Selective Fusion Mechanism that com-
bines these features influenced by SKNet [14]. As illus-
trated in Fig. 5, we first calculate the compact feature z from
the sum of the two feature vectors using Eq. (15). Subse-
quently, a channel-wise attention mechanism adaptively se-
lects diverse elements in the corresponding input features,
guided by the compact feature descriptor z. The obtained
results are then added together to create the final feature
Fselect.

z = Ffc(FBEV + FFV ), (15)

where Ffc denotes the use of a fully connected layer, Batch-
Norm [7], and the leakyReLU activation function.

3.5. Regression Head
To estimate the rotation and translation parameters and form
the updated transformation matrix Tpred, we leverage the
sequence generative decoder from CalibDepth [43]. Specif-
ically, this method employs LSTM [24], where the output
is defined as a sequence of actions of length N in an au-
toregressive manner to address the inherent inaccuracies in
the one-shot regression approach. After determining Tpred

at the current iteration, we update Tinit = Tinit · T i
pred, as

illustrated in Fig. 3.

3.6. Loss Function
Our model operates under two supervised tasks. The pri-
mary task focuses on auto-calibration, while an auxiliary
task centers on local feature matching, which clarifies the
correspondence between feature pairs. Consequently, we
employ two corresponding loss functions: the matching loss
and calibration loss.
Explicit Correspondences Matching. With ground truth
match matrix M∈{0, 1}N×m×m and the predicted match-
ing P∈[0, 1]N×m×m and σI , σR ∈ [0, 1]N×m, the match-
ing loss function is designed to minimize the log-likelihood
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of the predicted matches as in Eq. (16). Since our calibra-
tion includes N iterations, the matching loss term aggre-
gates the loss from all iterations.

LM = −
N∑
n

(
λ

ΣM
Ln
pos +

1− λ

ΣNI + ΣNR
Ln
neg

)
, (16)

Lpos =
∑
i,j

log(P ij)Mi,j , (17)

Lneg =
∑
i

log(1−σi
I)N i

I +
∑
j

log(1−σj
R)N

j
R, (18)

where λ is the balancing coefficient between positive and
negative instances. NR and NI are ground truth for “No
Matchable” scores for pixels in the radar and camera maps
respectively. The true matches matrix M between camera
and radar maps is dynamically computed based on the true
translation Tgt between the two sensors and the current, yet
imperfect, updated translation Tinit. NR and NI are de-
rived from M by Eq. (19).

N i
I = 1−

∑
j

Mij , N j
R = 1−

∑
i

Mij . (19)

The final matching loss function is then computed
as the sum of losses from two perspectives defined as
Lmatching = LMbev

+ LMfv
.

Calibration Loss. To both ensure that the calibration re-
sults at each iteration step are asymptotic to the ground truth
and avoid divergence between different iteration steps, we
use the calibration loss Lcalib proposed in [43]. By con-
trolling the weight parameter β, the final total loss con-
sists of the two losses mentioned above, defined as Ltotal =
Lcalib + βLmatching.

4. Experimental Results

4.1. Dataset and Evaluation Metrics

Dataset Preparation. We utilize a subset of images from
the nuScenes dataset [2] for our training and testing pro-
cesses. This subset comprises 12,610 samples for training,
1,628 samples for validation, and 1,623 samples for testing.
The training and testing depth range spans from 0 to 200
meters, with input and output resolutions set at 400 × 192
pixels.
Evaluation Metrics. To facilitate comparison with pre-
vious work, we convert the output rotation vector to Euler
angles. Then, we calculate the absolute error between the
predicted values and the ground truth in all dimensions of
angles and translation vectors. For all tables, the best and
the second-best results are highlighted in bold and under-
lined, respectively.

Range Methods Rotation(◦) Translation(cm)
Mean Roll Pitch Yaw Mean X Y Z

R1

LCCNet-1 1.603 0.123 3.130 1.556 16.531 22.992 17.648 8.954
NetCalib2 1.205 0.387 2.289 0.941 12.297 12.532 12.076 12.284
CalibDepth 0.807 0.390 0.345 1.686 12.608 12.860 12.250 12.715

Coarse [26] 2.035 0.581 1.519 4.004 - - - -
Fine [26] 1.692 0.442 0.939 3.695 - - - -

Ours 0.427 0.130 0.198 0.953 9.498 12.563 3.295 12.635

R2

LCCNet-3 2.156 1.526 2.364 2.579 89.672 71.660 89.605 107.751
LCCNet-5 1.898 0.919 2.314 2.461 88.302 74.216 85.239 105.450
NetCalib2 2.778 1.465 4.688 2.180 71.037 76.001 57.204 79.906
CalibDepth 1.686 1.149 0.808 3.102 55.380 77.146 12.918 76.078

Coarse [26] 4.388 1.866 3.251 8.048 - - - -
Fine [26] 3.334 1.368 1.937 6.696 - - - -

Ours 0.852 0.3597 0.4423 1.7544 47.537 74.777 5.415 62.420

Table 1. Comparison with LiDAR-Camera-Based and Radar-
Camera-Based Auto-Calibration Methods on the nuScenes
dataset. The methods are compared with two mis-calibration
ranges, R1 (±10,±0.25m) and R2 (±20,±1.5m).

FV BEV SF MCA EMS NR Rotation(◦) Translation(cm)
Mean Roll Pitch Yaw Mean X Y Z

✓ 0.657 0.235 0.301 1.436 12.602 12.858 12.247 12.700
✓ 0.689 0.295 0.381 1.392 12.605 12.870 12.285 12.660

✓ ✓ 0.575 0.209 0.284 1.232 12.315 12.863 11.416 12.667
✓ ✓ ✓ 0.529 0.175 0.237 1.176 11.842 12.882 9.976 12.670
✓ ✓ ✓ ✓ 0.502 0.175 0.235 1.097 12.574 12.883 12.150 12.688
✓ ✓ ✓ ✓ ✓ 0.463 0.140 0.206 1.042 9.627 12.563 3.682 12.636
✓ ✓ ✓ ✓ ✓ ✓ 0.427 0.130 0.198 0.953 9.498 12.563 3.295 12.635

Table 2. Module Impact Ablation (FV: Front View, BEV: Bird’s
Eye View, SF: Selective Fusion, MCA: Multi-Modal Cross-
Attention Mechanism, EMS: Explicit Feature Matching Supervi-
sion, NR: Noise-Resistant Matcher)

4.2. Main results
We compared it against the method by Schöller et al. [26].
Although this method dates back to 2019 and may not in-
corporate recent advancements, we have also compared it
with state-of-the-art LiDAR-camera-based auto-calibration
methods, including LCCNet [20], CalibDepth [43], and
NetCalib2 [36]. To ensure a fair comparison, we trained and
tested all these methods using the same set of parameters
and radar-image dataset. As shown in Sec. 4.2, our focus
lies on testing two mis-calibration ranges: [10°, 0.25m] and
[20°, 1.5m], representing small and large error ranges. For
“LCCNet-number”, the “number” corresponds to the num-
ber of iteration steps. The achieved results demonstrate that
our method exhibits significantly superior average errors in
both rotation and translation compared to other methods
across both mis-calibration ranges.

4.3. Ablation Studies
Impact of each Module. Sec. 4.3 shows the impact of
each module on experimental outcomes. Using both FV and
BEV perspectives together reduced the mean absolute error
in rotation by 12.5%. The Selective Fusion mechanism fur-
ther reduced this error by 16.5% by allowing the model to
choose suitable features from each perspective. The multi-
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Fusion Method
Rotation(◦) Translation(cm)

Mean Roll Pitch Yaw Mean X Y Z
Add Fusion 0.642 0.217 0.371 1.338 12.547 12.832 12.096 12.714

Concat Fusion 0.575 0.209 0.284 1.232 12.315 12.863 11.416 12.667
Selective Fusion 0.529 0.175 0.237 1.176 11.842 12.882 9.976 12.669

Table 3. Comparison of Dual-Perspective Fusion Methods with
Basic Methods

β
Rotation(◦) Translation(cm)

Mean Roll Pitch Yaw Mean X Y Z

0.1 0.470 0.150 0.215 1.044 10.304 12.587 5.684 12.640
0.3 0.471 0.160 0.224 1.029 10.377 12.555 5.940 12.637
0.5 0.446 0.164 0.214 0.960 12.112 12.549 11.151 12.637

Table 4. Ablation Study on Weight Impacts in Explicit Feature
Matching Loss

modal cross-attention mechanism also effectively reduced
rotation error by 5%, demonstrating its capability to ad-
dress the challenges of sparse radar depth maps. How-
ever, the mean absolute error in translation did not improve
clearly based on the above modules due to the sparse and
noisy radar point clouds. Next, introducing Explicit Fea-
ture Matching Supervision decreased the translation error
by 23.4%, highlighting the benefit of explicit matching la-
bels in learning correspondences. Finally, the incorporation
of the Noise-Resistant Matcher further filtered out highly
inaccurate noise points in the FV perspective and aided in
translational calibration. As a result, the mean absolute er-
ror in rotation decreased by 7.8%
Dual-Perspective Fusion Methods. Additionally, we
compare our Selective Fusion Mechanism with commonly
used methods such as add fusion and concatenation fusion.
In Sec. 4.3, the results demonstrate a significant improve-
ment of the proposed method over the conventional fusion
methods.
Weight of Explicit Feature Matching Loss. In Sec. 4.3,
we test three β values: 0.1, 0.3, and 0.5, excluding the
noise-resistant matcher module in our method. β = 0.5
achieved the lowest rotation error but the highest transla-
tion error. β = 0.1 provided the best translation accuracy
with negligible rotation error. Thus, β = 0.1 was selected as
the optimal balanced coefficient.

4.4. Qualitative Results
Our method provides accurate calibration results across var-
ious initial mis-calibration conditions and scenes. Fig. 6a
visualizes these results, showing precise calibration even
with significant initial errors and sparse radar points. To
highlight the effectiveness of our explicit matching super-
vision, we compute the cross-attention maps II←R, IR←I

between radar and image features, as visualized in Fig. 6b.
The detailed formulas for computing these attention maps
are provided in the supplementary material. We represent
the attention maps using heatmaps and denote the projected

Sample 1

Sample 2

(a) Examples of calibration results
by projecting radar points onto the
frontal-view image. Top-left: in-
put RGB image. Top-right: ini-
tial mis-calibrated radar point cloud
projection. Bottom-left: network-
predicted projection. Bottom-right:
ground truth projection.

Sample 1

Sample 2

(b) Examples of cross-attention
maps highlighting the important
regions the model focuses on.
Top: image-attentive radar impor-
tance regions. Bottom: radar-
attentive image importance regions.
Left/Right: Results with and with-
out explicit matching supervision.
The projected 3D points are used to
highlight the critical regions. With
explicit matching supervision, our
model can better identify these crit-
ical regions.

Figure 6. Results visualization in the front view.

radar points with white color to indicate critical regions.
Without explicit matching supervision, we observe that due
to many zero-value relationships, the image-attentive radar
exhibits weaker and less focused attention, while the radar-
attentive image focuses on non-critical region, such as the
ground. After incorporating explicit matching supervision,
the image-attentive radar’s attention becomes more concen-
trated on the non-zero regions, specifically the areas of radar
point cloud projection. Meanwhile, the radar-attentive im-
age effectively focuses on crucial regions, such as radar pro-
jection locations and vehicle contours, rather than being re-
stricted to non-critical region.

5. Conclusion

In this work, we present RC-AutoCalib, an end-to-end net-
work for 3D radar and camera calibration. By incorporat-
ing dual perspectives, we address the elevation ambiguity
in 3D radar. Our Selective Fusion Mechanism integrates
useful features from both FV and BEV perspectives. We
also developed a Feature Matching module with a Multi-
Modal Cross-Attention Mechanism to enhance radar point
cloud utilization and a Noise-Resistant Matcher to filter out
height-inaccurate noise. Our method achieves a calibra-
tion error of 0.427° in rotation and 9.498 cm in translation
on the nuScenes dataset, demonstrating competitive per-
formance with these SOTA auto-calibration methods using
dense point clouds and establishing a benchmark for future
research in 3D radar and camera calibration.
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