Network Programming:
Ch. 26: Threads

Li-Hsing Yen
NYCU
Ver. 1.0.0

Threads

 Introduction

* Basic Thread Functions: Creation and Termination
*str cli Function Using Threads

« TCP Echo Server Using Threads
* Thread-Specific Data
* Web-Client and Simultaneous Connections

Problems With fork

» fork IS expensive
* Memory copy, descriptor duplication, etc.

* |[PC iIs required to pass information between
parent and child
« Passing info from parent to child before fork is easy

* Returning info from child to the parent is not

Multiple Processes vs. Threads

Thread Thread Thread
Process A Process B Process C A B C
PC | Regs PC | Regs PC | Regs PC PC PC
Stack Stack Stack Regs Regs Regs
Stack | | Stack | | Stack
Code Code Code
Code
Data Data Data
Data
OS oS OS
Resources Resources Resources OS Resources
~— —— — A Process

Multiple Processes
(Parent & Children)

Threads

* All threads within a process share the same global
memory, code, open files, user ID

» Each thread has its own
* Thread ID
 Set of registers (including PC and stack counter)
°*errno
 Signal mask
* priority

Address Spaces

* A single-thread process * A Process with Two Threads
0KB 0KB
Program Code Program Code
1KB 1KB
Heap Heap
2KB 2KB
(free)
(free)
A Stack (2)
(free)
15KB
15KB Stack (1)
Stack 16KB

16KB

Why Threads?

* Parallelism
* performance gain in multicore and multiprocessor system

* to avoid blocking program progress due to slow I/O
* overlap of I/O with other activities within a single program
* help in structuring clients and servers

* implementing a large application
* a way of modulation

Advantage 1: possibility to exploit parallelism

* Possible when executing the program on a multiprocessor or
multicore system

e each thread can be assigned to a different CPU or core

* shared data are stored in shared main memory

Advantage 2: Non-blocking

* A single-threaded process as a whole is blocked whenever a
blocking system call (e.g., I/O operation) is executed

* On the other hand, a multi-threaded process will not be
entirely blocked simply because one threaded is executing a
system call (e.g., waiting for user input)

Advantage 3: for implementing a large
application

e Two options for such an implementation

* As a collection of cooperating programs (each to be
executed by a separate process)

* As a program with multiple threads

Downside of Threads

* OS does not directly provide protections among
threads
* threads share an address space so it’s easier to share data
* needs additional intellectual efforts

* Compared with multiple processes

* processes are a more sound choice for logically separate
tasks

Thread Creation

« When a program is started, a single thread (called initial
thread or main thread) is created

« Additional threads are created by

#include <pthread.h> Return O if OK, positive Exxx value on error

int Pthread create (pthread _t *fid, const pthread_attr *attr,
void *(*func)(void *), void *arg);
fid: pointer to ID of the created thread
attr. pointer to the attribute of the thread; NULL to take the default

func: pointer to the function for the created thread to execute

arg: pointer to the data passed to func

12

pthread self Function

* A thread fetches the thread ID for itself

#include <pthread.h>
pthread t pthread slef (void);

Return: thread ID of calling thread

Process

Thread

getpid <===) pthread_self

13

Simple Thread Creation Codes

#include
#include
#include
#include
#include

<stdio.h>
<assert.h>
<pthread.h>
"common.h"

"common threads.h"

vold *mythread (void *arg) {

printf ("%$s\n", (char *) arg);

return NULL;

int main (int argc, char *argv([]) {

pthread t pl, p2;

int rc;

printf ("main: begin\n");

Pthread create(&pl, NULL, mythread, "A");
Pthread create(&p2, NULL, mythread, "B");
// join waits for the threads to finish
Pthread join(pl, NULL);

Pthread join(pZ2, NULL);

printf ("main: end\n");

return 0O;

14

What Really Happens

The new thread

vold *mythread(void *arg) {

printf ("%$s\n", (char *) arg);

The main thread return NULL;

main (int argc, char *argv([]) { }
pthread t pl, p2;
int rc;

printf ("main: begin\n");
Pthread create(&pl, NULL, mythread, "A");

= AN

main thr ntin .
J L The ain t) .ead continues What if we have more than one datum to pass?
without waiting

15

To Get The ID of the Created Tread

* Function func is called with a single pointer argument
arg

* If we need multiple arguments to the function, pack them into
a structure and pass the address

* function func returns a generic (void *) pointer

» function func terminates either explicitly (by calling
pthread exit) orimplicitly (letting the function return)

The Function to Be Executed

* Function func is called with a single pointer argument
arg

* If we need multiple arguments to the function, pack them into
a structure and pass the address

* function func returns a generic (void *) pointer

» function func terminates either explicitly (by calling
pthread exit) orimplicitly (letting the function return)

Thread: Joinable or Detached

* Athread is either joinable (by default) or detached

* When a joinable thread terminates, its thread ID and

exit status are retained until another thread calls
pthread join

* When a detached thread terminates, all its resources
are released (we cannot wait it)

* If one thread needs to know when another thread
terminates, it is best to leave the thread joinable

pthread detach Function

« Change the specified thread to detached

#include <pthread.h>
int pthread _detach (pthread_t tid);

Return O if ok, positive Exxx value on error

This function is commonly called by the thread that wants
to detach itself, as in

pthread_detach(pthread_self());

19

Joinable Thread

main thread

function for the created
thread to execute

pthread_create

) thread

pthread_join ¢

void * func(void *)

pthread_exit

/

or return

20

pthread join Function

* Wait for a given thread to terminate

Return O if OK, positive Exxx value on error

#include <pthread.h-
int pthread_join (pthread_t tid, void **status);
tid: thread ID

status: if non-null, the return value from the thread (which is a
void pointer) is stored in the location pointed to by status

Process Thread

fork <===) pthread_create
waitpid <===) pthread_join

21

pthread self Function

* A thread fetches the thread ID for itself

#include <pthread.h>
pthread_t pthread_slef (void);

Return: thread ID of calling thread

Process

Thread

getpid <===) pthread_self

22

pthread exit Function

* One way for a thread to terminate

#include <pthread.h>

void pthread exit (void *status);
Does not return to caller

If the thread is not detached, its thread ID and exit status are
retained for a latter pthread join by some other thread

Pointer status must not point to an object that is local to the
calling thread (the object no longer exists after pthread exit)

23

Getting Thread Exit Status

#include <stdio.h>

#include <stdlib.h>
#include <pthread.h>

void *child(void *arg) {
int *inputp = (int ¥*)
int *resultp =

int main() { * (resultp) = * (inputp)
pthread t t; pthread exit ((void *)
void *ret; }

arg;

malloc (sizeof (int)

+ 10;
resultp);

*

1)

int input = 5;

pthread create(&t, NULL, child, (void*) &input);
pthread join(t, é&ret);
int *resultp = (int *) ret;

printf (“%d\n”, *(resultp));

24

str_c |1 Function Using Threads

« #-Fig. 16.10% B processestix 4 :x 5 & B threadsix

client

One TCP connection
(full-duplex)

|

|
. copyto
stdin — il

server

I
|
: Ipthreadcreate
I
I

main
thread

main thread

void

str_cli(FILE *fp_arg, int sockfd_arg)

{
char recvline[MAXLINE];
pthread_t tid;

sockfd = sockfd_arg; /* copy arguments */

fp = fp_arg; ¥ i#thread &
/ 3, {7 erfunction

Pthread_create(&tid, NULL, copyto, NULL);

while (Readline(sockfd, recvline, MAXLINE) > 0)
Fputs(recvline, stdout);

26

copyto thread

void *
copyto(void *arg)

{
char sendline[MAXLINE];

while (Fgets(sendline, MAXLINE, fp) = NULL)
Writen(sockfd, sendline, strlen(sendline));

Shutdown(sockfd, SHUT_WR); /* EOF */

return(NULL);
/* return (i.e., thread terminates) */

These two threads do not communicate

Thread Terminations

*\When a process terminates, all threads in the
process are also terminated

*When str cli returns, the main function
terminates by calling exit

* So all threads are terminated
* Normally, copyto will have already terminated

* [f not, copyto will be terminated now

TCP Echo Server Using Threads

* One thread per client (instead of one child process per
client)
* Call pthread createinstead of fork

 Creating a new thread does not affect the reference counts
for open descriptors

— Main thread must not close the connected socket
— Created thread must close the connected socket

main thread

int main(int argc, char **argv)

{

int listenfd, connfd;
pthread_t tid;
socklen_t addrlen, len;

struct sockaddr *cliaddr;

cliaddr = Malloc(addrlen); cast connfd

to a void pointer
for (;;)A P
len = addrlen;
connfd = Accept(listenfd, cliaddr, &len);

Pthread_create(&tid, NULL, &doit, (void *) connfd);

¥ function for the
thread to run

30

doit thread

static void *

. . ﬁ,j/.r- ’ .1’ ,/T:_ .
doit(void *arg) connfdeiEa § Fvoid

pointeri# i& k = % argenig

{
Pthread_detach(pthread_self());
str_echo((int) arg); «——— Call str_echo;
Close((int) arg); Cast arg to int
return(NULL);

b

3
created thread must
close the connected
socket

31

Potential Problem in This Version

* casting an integer (connfd) to a void pointer may not
work on all systems

* How about passing the address of connfd? —

int main(int argc, char **argv)
{
int listenfd, connfd;
for (;;)A
len = addrlen;
connfd = Accept(listenfd, cliaddr, &len);
Pthread_create(&tid, NULL, &doit, &connfd);
by
) Not good

\/A\/

Problem Caused by Shared Variables

 threads in the same process share variables

accept returns
connfd « 5

-

on connfd =6

Both threads operate

o

pointer to connfd is

passed to another thread

pointer to connfd is passed
by pthread create

o

a new thread is created

1 |

Another connection is ready

<: accept returns; connfd <« 6

A Better Solution

* give each thread its own copy of connfd

{

int main(int argc, char **argv)

int listenfd, *iptr;

for (; ;)<
len = addrlen;
iptr = Malloc(sizeof(int));
*iptr = Accept(listenfd, cliaddr, &len);
Pthread_create(&tid, NULL, &doit, iptr);

34

Another Part of the Solution

* the storage for connfd is freed \

static void *
doit(void *arg)
{
int connfd;
connfd = *((int *) arg);
free(arg);
Pthread_detach(pthread_self());
str_echo(connfd);
Close(connfd);
return(NULL);

Nonre-entrant Functions

* Historically, malloc and free are nonre-entrant
functions

« calling either function from a thread while another thread is in
the middle of malloc/free is a disaster

» Because these two functions manipulate static data
structures

* These two functions (as well as many others; including
all ANSI C functions) must be thread-safe (re-entrant)

Re-entrant (Thread-Safe) Function

pthread_create(.., funi,..)

pthread_create(.., fun2,..)

pthread_create(.., fun3,..)

¥ & Bfunction® 4 - B
thread$y = p= » X 5 re-
entrant=n 1 48

loop

pthread_create(.., funi,..)

or :
pthread_create(.., fun3,..)

\

B £e2 v fun
¥ B functionst — 1 14
2+ ethreads} 7 pF » &
’F & _re-entrant

37

Sharing Data Among Threads

Communication Between Threads

* By sharing variables
* sockfd in the TCP Echo Client example is a shared variable

* Or by passing variables from one thread to another
e connfd in the TCP Echo Server example is a passing variable

* Thread switching can sometimes be done entirely in user
space (no context switching between user-level threads)

* Much faster

Static vs. Stack-Dynamic Data

#include <stdio.h>
static

int ./@ stack-dynamic
N
int funl (int(a,) float(b))

{
static int

int@, 3D -
static

} stack-dynamic

e Static data

e variables bound to memory cells
before execution begins and remains
bound to the same memory cell
throughout execution

* Stack-dynamic

* storage bindings are created for
variables when their declaration
statements are elaborated.

e cannot be history sensitive

40

Static Data in Sub-processes & Threads
Par_ent

W

be executed

function to
int

int n()
{

int
shar, d

static float @

Ve,

).lhread A

ch|Id /fork% child \

|n / 1

int fun(int d) int fun(int d)

{ {
static floa static floa @
int C; int C;

} }

int
:ztn(int d)

th read
-
int fun(int d)

{

N\

static floa |@
int C;

41

Static Data wsemepman

/ iy ¥4 8o

» Static data is a common problem when making a function

thread-safe

* For example, functions that keep state in a private buffer---multiple
threads cannot use the buffer to hold different things at the same time

int fun ()

{
static char buf[10]

static int a;

g

2 i v — m;‘zﬁ,’;:‘_

2
=
R g nﬁ;thread%ﬁ
FRLF 22U

read:rsd 7 ¢ %%2

2]

f
th

r~

R
=

42

Needs for Different Types of Data

* If data are to be shared among threads

e use static data
* need protection to avoid concurrent accesses (for data consistency)

* If data are specific to threads and history insensitive
* use stack-dynamic data

* If data are specific to threads and history sensitive

* Use heap-dynamic data (e.g., callingmalloc () and free ())
and the scheme provided by threads (covered later)

Race Condition Between Two Threads

elfa=>5
thread 1

thread 2

add b

mov eax, a

mov a, eax

mov eax, a
add b
mov a, eax

-

J

thread 1{

mov eax, a
add b
mov eax, a
add b

mov a, eax

thread 1 —pmov a, eax

} thread 2

function to be executed

int funl (int b)
{

static int a;

a=a + b;

mov eax, a
add b
mov a, eax

Data Inconsistency Errors

* Occur when multiple threads update a shared static variable
simultaneously

* Occur rarely

« Hard to duplicate

* The same code works on one system but not on another

* The hardware instruction might or might not be atomic (i.e., its
execution is uninterruptable)

Critical Section and Mutual Execution

* To avoid data inconsistency, we need critical session

* A critical section is a piece of code that accesses a shared
variable (or more generally, a shared resource)

* A critical section must not be concurrently executed by more
than one thread.

* Mutual exclusion

* A property guarantees that if one thread is executing within the
critical section, the others will be prevented from doing so.

How to achieve mutual execution?

* Powerful atomic instruction

mov eax, a
add 1 m=) |memory-add a, 1
mov a, eax

executes atomically

either not run at all or
run to completion

When we have to update a general structure

* e.g., a concurrent B-tree
* Atomic instructions are not enough

* We only need a few useful instructions to build a set of
synchronization primitives (such as locks and semaphores)

Covered later

Calling Non-reentrant Functions

Re-entrant Function: An Example

Thread 1

void *mythreadA (void *arg)

{

funl (2) ;

}

Thread 2

void *mythreadB (void *arg)

{

funl (1) ;

Thread 1

Thread 2

int funl (int b)

{

static int a;

a

}

= a + b;

entered

\

context

switch

context

switch

funl

standby

funl

standby

funl

| standby

v

/

reentered

50

Static Data in Re-entrant Function

elfa=>5

thread 1

thread 2

add b

mov eax, a

mov a, eax

mov eax, a
add b
mov a, eax

-

J

thread 1{

mov eax, a
add b
mov eax, a
add b

mov a, eax

thread 1 —mov a, eax

} thread 2

function to be executed

int funl (int b)
{

static int a;

a=a + b;

mov eax, a
add b
mov a, eax

Problem With Re-entrant Function

* manipulating static data structures in a re-entrant function could
be a disaster

 This happens when a thread calls the function while another
thread is in the middle of it

 The function writer could avoid the potential problem by
* Not using static data in a re-entrant function

* Let the re-entrant function use synchronization primitives to maintain
the consistency of static data

« What if the re-entrant function is a library function?

Consider An Example

Thread 1

Thread 2

void *mythreadA (void *argqg)

{

char *str;

void *mythreadB (void *arg)

{

int *vec;

str = malloc(sizeof (char) *200) ;

vec = malloc(sizeof (int)*100) ;

free(str) ;

free (vec) ;

}

}

53

Calling Non-reentrant Functions

* Historically, malloc and free are non-reentrant
functions

» Because these two functions manipulate static data
structures

« calling either function from a thread while another thread is in
the middle of malloc/free is a disaster

* These two functions (as well as many others; including
all ANSI C functions) must be thread-safe (re-entrant)

Writing Your Own Thread-Safe Function

e £ 2L £ % p - ffunctionie & Bthread®& 3 & p 3B~
=x Il
X
* Three possible ways
* Avoid any static variables (i.e., using only local variables):
not always viable (»cit ¥ it % £)
* The caller packs all the arguments (and stores static variable)
into a structure

» Use thread-specific data: nontrivial, works only on systems
with threads support

Providing Thread-Specific Data

* & i = thread-safessfunction 3§ % & #773 threads = * static data

a system array Kevy keeps

e track of the use of all
‘\a“\ ic d .
static data in static data in a process

a re-entrant ; mapping
function w‘ thread uses heap-
dynamic storage to

store its own data

Using Thread-Specific Data

o % £ = thread-safesrffunction F # % ¢ * static
data ; :zwfr? pthread key create {#1
- B A * dEKeyaindex (5]401)B~ 1 ¥ &

o vI v functionsrthread r'mallocP# 2z [H ¥y >
* 1 %73 H thread-specific data - #X {s v# #-
pthread setspecific#function® # cKey
sindexdt g I 2t 3o R

» function® "pthread getspecificP#
Keyeindex¥t & 3| e 7 F threadsdata

Name (Index) For Thread-Specific Data

* The kernel maintains one array of structures (Key structure)
for each process (= i process—)

—

flag ——, indicates whether

Key[0] 5 the element is in use
| destructor ptr| -~
Key[1] - flag
destructor ptr index of the first element not

in use will be returned on
calling pthread key create

/
/

Key[127] flag One element for each
destructor ptr| yariable

pthread key create Function

#include <pthread.h>

int pthread_key create (pthread_key t *keyptr,
void (*destructor) (void *value));

Return 0 if ok, positive Exxx value on error

« & Fkernelit—- B K * Key index k ¥ & thread-specific data
o 1B w Key index*t i *keyptr

* destructor points to a function which will be called when a
thread terminated

59

Storage and Mapping for Thread-Specific Data

e threadr* ¥ pthread key create #3[- B A& * dKey
index (»]4-1) » i* 5 static datasssname

e thread*=* r'malloc® (¥ heap-dynamic storage » * 14 i 15 static
data

e thread** r"pthread setspecific#-tstorage > a1/ 3| B~
H erKey index a

 reentrant function® rpthread getspecificP#Key
iIndex#t & 3| erthread-specific data

Pthread Structure for the Mapping

* maintained by OS; one for each thread in a process
thread O

Pthread{}

pkey[0]
pkey[1]

pkey[127]

other
thread
info

pointer

pointer

pointer

thread-specific
data storage

NULLA
NULL

NULL -

pkey[0]
pkey[1]

pkey[127]

thread n

other
thread
info

pointer

pointer

pointer

Pthread{}

NULL
NULL

NULL

61

Map Thread-Specific Data Pointer to malloced
Region

|

thread 0 ' Bk Key index=1
Pthread{} :
|

other 3 pthﬁ:ead_setspecific
thread :

info /'./' actual data
pkey[0] | pointer | NULL '
pkey[1]|pointer.

pkey[127] | pointer | NULL
system data structures

heap-dynamic storage
allocated by thread

User space

62

Different Threads Have Different Storages for

the Same Name (Index)

pkey[0]
pkey[1]

pkey[127]

thread O
Pthread{}

other actual

thread data

info

pointer | NULL pkey[0]
pointer —— pkey[1]
pointer | NVULL pkey[127]

thread n
Pthread{}
other || actual
thread data
info ‘
pointer | NULL
pointer |[——
pointer | NULL

63

One Name to Different Locations

7 iBthread & 3 {7 f¢ — function accessF - % #ic
P77 thread® * 4p IF cKey index k £ 71

thread O thread n
Pthread{} Pthread{}
other actual other || actual
thread data thread data
info info 1
pkey[0] | pointer | NULL pkey[0] | pointer | NULL
pkey[1]|pointer —— pkey[1]|pointer |——

Key indextple e F "3 =8 % I

64

Key index enB~{HE ¢ #

e function® = ® (% #)siriE = thread-safe& v ¢! - =
pthread key createi® 3|- Fra— key index

« % = Kkey indexix r - function® 7 [static dataiz *

* ¥t - staticdata > ¢ % - &3 {7 * function=thread 2 3j-tkey
index r® o F]& & tefed ¢ @ R7ehA % * index o

* & * pthread once ki = ¢ 7 i (¥t I — static data & 3-&-
= key index)

pthread once Function

#include <pthread.h>
int pthread_once (pthread_once_t *onceptr, void (*init) (void));

Return O if ok, positive Exxx value on error

Z % % 4] i % pthread_once_teh&#c » 4~ % &
PTHREAD_ONCE_INIT » #-H i=xt it 5 % -

‘g Bicikkernel X ¥ T te g £ FE S % - s e

[]
/ y -

« hr —- =tefed s kernel € 4 i7init 0 % 2 K4 fS "MW}”

g’ void init (void) {
.}

\\\?{r

ﬁ;:@ N o

EUI

pthread onceR ¥ ri—- x

4

pthread key create

* # v E & #efripthread oncedinit Sdcdytkdp e
pthread key create

THFAEF - K o B F FFien 50

{

}

ssize t readline(..)

4 & 5 PTHREAD_ONCE_INIT sglobal % #c

pthread once (&rl once, readline once);

{

}

void readline once (void) destructor

pthread key create(&rl key, readline dest);

N

global » 3 & » 7Key index

67

destructor Function

* 4% X Bthreads ¥+ % Bkey s Tkd(i¢ *
pthread_setspec1f1c) % tthread terminatesp > %
e¥ v gl kKey sdestructor

* & iedestructorshE 4 = 7k hpointer

w fedestructor & f 5 readline dest

volid readline dest(void *ptr)

{ Wi dE 4~ * malloc

free (ptr); —————””’———————— L:id 1-““ ﬁifg;;

}

% BRey 3 BT

#include <pthread.h>
void *pthread getspecific (pthread_key t key);

Return pointer to thread-specific data (possibly null)
int pthread_setspecific (pthread_key t key, const void *value);
Return: O if ok, possitive Exxx on error

* % - BSEBw 2 - RS EG ~ gt S void pointer

4

* void pointerdp i 2 13 B 4 A_E i *xthread-specific data
(type p 57)eris =

69

Key Data Access Example

#include “unpthread.h”

static pthread_key t r1_key;

static pthread _once tr1_once = PTHREAD ONCE_INIT;

ssize treadline(...

2 & - =tkey

pthread once(&r1_once, readline_once); /

if ((ptr = pthread_getspecific (r1_key)) == NULL) {
ptr = Malloc(...);

e v oL
pthread_setspecific (r1_key, ptr); E;ﬁgg{nt;

El
) & Z_pkey* pt keyspointer Anul

70

So Far We Know ...

Static data in a multi-thread process

yes

=

¢z * thread- % Fthread®
specific data g ¥ 13 B~ data
Hv 2\ 2 l

71

summary

* Threads provide parallelism, avoid blocking program progress due to
slow 1/0, and provide a way of modulation to implement a large
application

* Threads are more efficient than process but OS does not directly
provide protections among threads

* We have shown how to implements threads in TCP clients and servers

* Sharing data among threads may lead to inconsistent results, calling
for synchronization primitive to prevent simultaneous data
modifications

Lock Usage in POSIX

What is a lock (mutex)?

* A lock (mutex) is just a variable used for mutual exclusion

* must declare a lock variable of some kind (Lock t)

* Possible values and operations

lock ()

acquired/
locked/
held

available/
unlocked/
free

unlock ()

a lock declared by user

/

lock_t mu%ex;

lock (&mutex)
(critical session)
unlock (&mutex)

74

lock () Operation

* invoked by a thread trying to acquire
the lock

* if no other thread holds the lock (i.e., it
is free), the thread will acquire the lock
and enter the critical section

* this thread becomes the owner of the lock

e Otherwise (the lock is held by another
thread), the thread blocks waiting for
the lock becoming free

lock_t mutex;

lock (&mutex) <=m
(critical session)
unlock (&mutex)

unlock () Operation

* Once the owner of the lock calls unlock (),

the lock is now available (free) again lock t mutex;

* If no other threads are waiting for the same
lock (i.e., no other thread has called 1ock ()
on the same lock and is stuck therein), the
state of the lock is simply changed to free.

lock (&mutex)

(critical session)
unlock (&mutex) ¢=m

e Otherwise, one of the waiting threads will
(eventually) acquire the lock and enter the
critical section

76

Pthread Locks (in POSIX)

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;

Pthread mutex lock(&lock); // wrapper; exits on
fallure

a=a + 1; mutual exclusion

Pthread mutex unlock (&lock);

77

Mutexes: Mutual Exclusion

« A mutex is a variable of type
pthread mutex t
* We can lock (by pthread mutex lock)

or unlock (by pthread mutex unlock)
a mutex . |)

* If we try to lock a mutex that is already
locked by some other thread, we are
blocked until the mutex is unlocked

Using Mutexes

* We can use a mutex to protect a shared variable from being

updated simultaneously
thread A

lock mutex «— @
count++
unlock mutex

(thread A locks the mutex first)
register; = count

register, = register; +1
(context switch)

(thread B blocks in @)

thread B

lock mutex «—F—— @
count--
unlock mutex

(thread B locks the mutex first)
register, = count

register, = register, -1
(context switch)

(thread A blocks in @)

79

Mutex Example

#include “unpthread.h”
int count;
othread_mutex_t count_mutex = ﬁDTHREAD_MUTEX_INITIALIZERJ

/

void *do_it(void *vptr) static mutex variable
{ - TERX TR E
Pthread mutex lock(&count_mutex); ?

count = count + 1;
Pthread mutex_ unlock(&count_mutex); 1 |

Mutex Usage: separated reading from/writing
to a shared variable

a is a shared variable; lock mutex
b is stack-dynamic b = a,
cC = ...

b = a; b=>b+c;
cC=.. a=b:
b=b+¢ unlock mutex
a=>b;

:> lock mutex
b = a; b = a;
cC = .. C =
b=b-c; b=b-c;
a=>b; a=>b;

unlock mutex

81

Minimize The Scope of Lock

If the value of c does
not depends on a or b

lock mutex
b = a;

C = ..
b=b+ c;
a=>b;
unlock mutex
lock mutex
b=a;

C = ..
b=b-c;
a =D,

unlock mutex

>

C = ..
lock mutex
b=a;
b=b+ c;
a=>b;
unlock mutex
C = ..

lock mutex

b = a;
b=b-c;

a =b;

unlock mutex

82

Minimize the Scope of Lock

void List Insert(list t *L, int key) {
int List Insert(list t *L, int X // synchronization not needed

pthread mutex lock(&L->1lock); node t *new =tmalloc(sizeof(node t));l

node t *new = malloc(sizeof (ng if (new == NULL) {

assuming malloc()

if (new == NULL) { perror ("malloc") ; is thread-safe
perror ("malloc") ; return;
pthread mutex unlock (&L->1loq '}
return -1; // fail new->key = key;

}

new->key = key; // just lock critical section

new->next = L->head; pthread mutex lock(&L->1lock);

L->head = new; new->next = L->head;

pthread mutex unlock (&L->1lock) L->head = new;

return 0; // success pthread mutex unlock (&L->lock);

} }

83

Minimize the Number of Unlocks

int List Lookup(list t *L, int key)

pthread mutex lock(&L->1lock);

node t *curr L->head;
while (curr) {
if (curr->key == key) {

int List Lookup(list t *L, int key)

pthread mutex unlock (&L->1lock);

return 0; // success

}

curr = curr-—->next;

}

int rv = -1;
pthread mutex lock (&L->1lock);
node t *curr = L->head;
while (curr) {
if (curr->key == key) {
rv = 0;
break;
}
cCurr = curr—->next;

}

pthread mutex unlock (&L->1lock);

pthread mutex unlock (&L->1lock);

return -1; // failure

return rv;

{

84

Mutex Usage: Testing Shared Variable

* 7 iBthreads™ 1 # * mutex k % { - Bshared variablem % ¢ #
EA NP £k S

* 4r% 3 thread & 7|:#* shared variablesHiE :& (7 % e i £ 5 B4
£ F mutexi%FEH 7 L FE

(countehis fiplaE £ 7 >0%
do something#y & % %
% -

V
] lock mutex
if (count > 0) V::> if (count > 0)

// do something; // do something;
unlock mutex

countsie ¥ st wiplE>01
do something# % 5 0

85

Multiple Threads Working Together ...

lock mutex lock mutex lock mutex
count++ count-- if (count > 0)
unlock mutex | |[unlock mutex // do something;
unlock mutex
N— I
——

iz 7 - ipthread$p *lock mutex » 8% 12 ek & - thread &
unlock mutex= # ¥ threads¥t F — % #iccounti®:g &% g ed i®

U

serialization

Reading Shared Simple Variables

o yr¥% thread ¥ ¥ §_H ¢ P~ X shared simple variablesiz » B
* - T & * mutex

printf ("%d\n”,count)

AN

COUNtEn(E ¥ &y fudf Bois B)30 ik
%0 0L TEAT L AL

Mutex Usage: Calling Non-Reentrant

Functions

Thread 1

Thread 2

void *mythreadA (void *arg)

{

char *str;

void *mythreadB (void *arg)

{

int *vec;

Pthread mutex lock (&mutex);
str = malloc(sizeof (char) *200) ;
Pthread mutex unlock (&mutex);

Pthread mutex lock (&mutex);
vec = malloc (sizeof (char) *100) ;
Pthread mutex unlock (&mutex) ;

Pthread mutex lock(&mutex);
free(str) ;
Pthread mutex unlock (&mutex);

Pthread mutex lock (&mutex);
free (vec) ;
Pthread mutex unlock (&mutex) ;

88

Condition Variables

Polling (Busy Waiting)

« 4r% 7 thread & % 7| % Bshared variablesnid % 5 # T B pF 4 2 (7 (5 § &
i® > B & 3 53 B~(polling)® B
L1:

lock mutex
if (count > 0)
goto L2;
unlock mutex
goto L1
L2: // do something
unlock mutex

I:i) Busy waiting,
waste CPU time

condition variable¥ 1 & #x | :# erthread sleep % =
blocked % iz | irthread i v = 7 ¢ ;1% CPUpF ¥

90

Another need for condition variable

* Waits for the completion of another thread

volatile int done = O;

void *child(void *arg) {

}

printf ("child\n") ;

done = 1;

return NULL;

int main(int argc, char *argv[]) {
printf ("parent: begin\n") ;
pthread t c;
Pthread create(&c, NULL, child, NULL);
// create child
while (done == 0) | \y3stes CPU time
; // spin
printf ("parent: end\n");
return O;

91

Condition Variables

A condition variable is an explicit queue that

 threads can put themselves on when some state of execution (i.e.,
some condition) is not as desired (by waiting on the condition)

« some other thread can wake one (or more) of those waiting threads

* In POSIX, a condition variable is of type pthread cond t
* should be initialized with PTHREAD COND INITIALIER

 used with pthread cond wait (% #)and pthread cond signal
(%% fiE)

92

pthread cond wait

#include <pthread.h>

int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);
cond: pointer to a pthread cond t variable with 1initial

value PTHREAD COND INITIALIZER;
mutex: pointer to a pthread mutex t variable with initial

value PTHREAD MUTEX INITIALIZER;

* It puts the calling thread to sleep (blocked)
* It also releases the lock (mutex) when putting the caller to sleep

* waits for some other thread to signal it

93

Condition Variable Example: Wait

#include “unpthread.h”

int count = 0;

pthread _mutex_t count._ mutex = PTHREAD MUTEX INITIALIZER;
pthread cond t count_cond = PTHREAD COND INITIALIZER;

unlock count_mutex i&

Pthread_mutex_lock(&count_mutex); | 1 » blocked state % &
while (count == 0) ' count_condzsignal

Pthread cond_wait(&count_cond, &count_mutex);
// do something

Pthread_mutex_unlock(&count_mutex);

94

The Need for Mutex In Wait

Pthread_mutex_lock(&count_mutex);

If not protected by

count mutex, two

or more threads

may enter here +/ do something
Pthread _mutex_unlock(&count_mutex);

while (count == 0)
—
Pthread _cond_wait(&count_cond, &count_mutex);

If not protected by count mutex, a thread may detect that count
== 0 and then get interrupted. The value of count no longer ==
after the thread comes back but the thread goes to sleep anyway.

95

The Need for Atomic Unlock In Wait

pthread_cond_wait Pthread_mutex_lock(&count_mutex);
“unlock count_mutex”

B (7 > Plmutexit 48 G
vthread 2 { 37 —
countiz I signal s /I do something >

while (count == 0)
— Pthread cond wait(&count_cond, &count_mutex);

thread = block forever Pthread_mutex_unlock(&count_mutex);

“unlock count_mutex’#? “i& » sleep mode & & ¥} & 2_ signal”’ 3
atomic (unbreakable) » & Plerii H vthread™ st @ 2 41 » & = P42

96

pthread cond signal

#include <pthread.h>
int pthread cond signal (pthread cond t *cond);

* Awake a thread (by sending a signal to it) that is waiting on
condition variable *cond

* The awaken thread will be ready for running

97

Condition Variable Example: Signal
v thread® { countie {s ¢ vk 2w | cithread:E 4k &

Pthread_mutex_lock(&count_mutex);
count = 1;
Pthread cond_signal(&count_cond); ———

Pthread_mutex_unlock(&count_mutex);

@Osign

@recheck @t signal ¢ = pE* thread
C while (count == 0)

— Pthread cond_ wait(&count_cond, &count_mutex); «1

it threadsg Pthread _cond_ wait returnz_ + >
Pthread_cond_wait ¢ £ #tlock count_mutex

98

The Need for The Lock Before Returning From
Walit

Thread 1

C while (count == 0)
— Pthread_cond_wait(&count_cond, &count_mutex);

// do something

Thread 2
Pthread _mutex_lock(&count_mutex); It Thread 1 awa.kes but
N count mutex is not locked
SO L before returning from the wait,
Pthread cond_signal(&count_cond); Thread 2 may get in and set
Pthread_mutex_unlock(&count_mutex); count to 1.

99

The Need for the Variable Count

Thread 1
Pthread mutex_lock(&count_mutex);

I ————

Pthread _cond_wait(&count_cond, &count_mutex);

// do something
Pthread_mutex_unlock(&count_mutex);

Thread 2
Pthread_mutex_lock(&count_mutex); If Thread 2 calls signal ()
Pthread cond_signal(&count_cond); Thread 1 will be stuck in wait()

forever.
Pthread mutex_unlock(&count_mutex);

100

Awakening Multiple Threads

 pthread cond signal awakens one thread that is waiting on
the condition variable

* pthread cond broadcast will wake up all threads that are
blocked on the condition variable

* pthread cond timewait lets a thread place a limit (absolute
time) on how long it will block

101

Summary

* Creating threads is normally faster than creating new
processes (using fork)

* All threads In a process share global variables

* The sharing introduces synchronization problem, which
calls for mutexes and condition variables

* We show how to let a function thread-safe by using
thread-specific data

102

