
Network Programming:
Ch.2 Transport Layer: TCP and UDP

Li-Hsing Yen

NYCU

Ver. 1.0.1

1

Transport Layer: TCP and UDP

• Overview of TCP/IP protocols

• Comparing TCP and UDP

• TCP connection: establishment, data transfer, and termination

• Allocation of port numbers

• Size matters: MTU, datagram, MSS, buffer

• Standard Internet services and applications

• Debugging techniques and tools

2Some materials in these slides are taken from Prof. Ying-Dar Lin with his permission of usage

3

IGMP ICMP TCP UDP ICMPv6

Overview of TCP/IP Protocols

tcpdump mrouted ping traceroute applications

datalinkBPF/DLPI

ARP/RARP IPv4 IPv6

BSD Packet Filter

Data Link Provider Interface

Comparing TCP and UDP

TCP UDP

Binding between

client and server

Yes (connection-

oriented)

No (connection-

less)

Data Byte-stream Record

Reliability Yes (ack, time-

out, retx)

No

Sequencing Yes No

Flow control Yes (window-

based)

No

Full-duplex Yes Yes

4

TCP Segment Header

5

0 4 10 16 31 bit

Source Port Destination Port

Window size

Data (optional)

TCP
header
length

R
S
T

S
Y
N

F
I
N

U
R
G

A
C
K

P
S
H

Sequence number

Acknowledgement number

Options (0 or more 32-bit word)

Checksum Urgent pointer

5 words =

20 bytes

1 word = 4 bytes = 32 bits

Some TCP Header Fields

• Sequence number (32 bits)

• actually the byte number

• Acknowledgement number

• specifies the next byte expected

• Flags

6

URG

ACK

PSH

RST

SYN

FIN

1 if the Urgent pointer is
in use

the Acknowledgement
number is valid

This segment requests
PUSH

To reset a connection

To denote connection
request and accepted

To release a connection
(in one direction)

SYN=1, ACK=0

SYN=1, ACK=1

More TCP Header Fields

• Window size (16 bits)

• tells how many bytes may be sent starting at the byte acknowledged

(receiver’s window size)

• Urgent pointer (16 bits)

• indicate a byte offset from the current sequence number at which urgent data

are to be found

• urgent data: when an interactive user hits the DEL or CTRL-C key, the sending

application puts some control information in data stream

7

TCP Options

• MSS Option: maximum segment size

• Window scale: (new)

• The maximum window size that either TCP can advertise to the other is

65535

• This option shifts the advertised window by 0-14 bits (resulting in a

maximum of 1GB)

• Timestamp: (new)

• Prevent possible data corruption

8

9

TCP Connection: Establishment

Three-way handshake

client server

socket
connect (blocks)

(active open) SYN_SENT

ESTABLISHED
connect returns

socket, bind, listen
LISTEN (passive open)
accept (blocks)

ESTABLISHED
accept returns
read (blocks)

SYN j

SYN k, ack j+1

ack k+1

SYN_RCVD

state

10

TCP Connection: Data Transfer

client server

write
read (blocks)

read returns

write
read (blocks)

(server processes request)

read returns

request

reply
ack of request

ack of reply

TCP Connection Release

11

FIN(SEQ=y)

ACK=y+1

FIN(SEQ=x)

Host A Host B

ACK=x+1

data

Data flow from B

to A is terminated.

Terminate the data

flow from A to B

Data can still be

transmitted from

B to A.

B knows it

Data flow from B

to A is terminated.

A knows it

12

TCP Connection: Termination

Four-way handshake

client server

ack n+1

FIN m

ack m+1

FIN n

close
(active close) FIN_WAIT_1 CLOSE_WAIT (passive close)

read returns 0

close
LAST_ACK

CLOSED

FIN_WAIT_2

TIME_WAIT

CLOSED

1~4 mins

13

TCP State Transition Diagram

CLOSED

LISTEN

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

SYN_SENTSYN_RCVD

appl:passive open

send:<nothing>

recv:SYN,send:SYN,ACK

recv:RST recv:SYN

send:SYN,ACK

(simultaneous open)
recv:ACK

send:<nothing>

recv:SYN,ACK

send:ACK

appl:active open

send:SYN

appl:close

or timeout

(data transfer state) recv:FIN

send:ACK
appl:close

send:FIN

recv:FIN

send:ACK

recv:ACK

send:<nothing>

recv:FIN

send:ACK

recv:FIN,ACK

send:ACK
recv:ACK

send:<nothing>

2MSL timeout

recv:ACK

send:<nothing>

appl:close

send:FIN

(simultaneous close)

active
close

passive

close

normal transitions
for server

normal transitions
for client

TIME_WAIT State

• Two reasons

• To implement TCP’s full-duplex connection termination
reliably

• The final ACK might need to be retransmitted

• To allow old duplicate segments to expire in the network

• Otherwise old duplicates will be misinterpreted as belonging to a

new incarnation (having the same IP/port pair as the terminated one)

14

Illustrating the First Reason

15

client server

ack n+1

FIN m

ack m+1

FIN n

close
LAST_ACK

FIN_WAIT_2

TIME_WAIT

CLOSED

1~4 mins

ack n+1

Allows for
retransmitting
the last ack FIN n

retransmit

16

Allocation of Port Numbers

IANA

(Internet Assigned

Numbers Authority)

BSD

Solaris

1 1023 1024 49151 49152 65535

IANA

well-known ports

IANA

registered ports

IANA

dynamic or private ports

BSD

reserved ports

BSD

ephemeral ports

BSD

nonprivileged servers

1 1023 1024 50000 50001 65535

rrsevport

513-1023 32768 65535

Solaris

ephemeral ports

Socket Pair

• 4-tuple that defines the two endpoints of a connection

• The local IP address, local TCP port, foreign IP address, and foreign

TCP port

• Uniquely identifies every TCP connection on the Internet

17

A Concurrent Server

18

(*:21, *:*) listening socket

server

206.62.226.35
206.62.226.66

multihomed

Local IP

Local port

Foreign IP

Foreign port

Connect Request from Client to Sever

19

(*:21, *:*)

server

206.62.226.35
206.62.226.66

(198.69.10.2:1500,
206.62.226.35:21)

client

198.69.10.2

connection request to

206.62.226.35, port 21

server
(child)

fork

(206.62.226.35:21,
198.69.10.2:1500)

listening
socket

connected
socket

20

(*:21, *:*)

server

206.62.226.35
206.62.226.66

(198.69.10.2:1500,
206.62.226.35:21)

client1

198.69.10.2

server
(child1)

(206.62.226.35:21,
198.69.10.2:1500)

listening
socket

connected
socket(198.69.10.2:1501,

206.62.226.35:21)

client2

server
(child2)

(206.62.226.35:21,
198.69.10.2:1501)

connected
socket

fork

TCP must look at all four

elements in the socket pair to

determine which endpoint

receives an arriving segment

Buffer Sizes and Limitations

• Link MTU (maximum transmission unit): Ethernet MTU: 1500
bytes, PPP MTU: configurable

• Path MTU: the smallest link MTU in the path, can be
discovered by IPv4 DF (don’t fragment) bit

21

MTU=1500

MTU=3500

MTU=7000
MTU=296

Path MTU = ?

Fragmentations

• Cut datagrams into fragments

• Performed when size of datagrams > link MTU

• Fragments are reassembled only at the final destination

• IPv4 DF bit tells routers not to fragment this datagram

• May get ICMP “destination unreachable, fragmentation needed but DF

bit set” error message

22

TCP Fragmentation

• A segment will be fragmented when it passes through a transit
network with a smaller MTU

23

Lost

1st

2nd

Problem with fragmentation

Maximum and Minimum

• Maximum IP datagram: 65535 (IPv4), 65575 (IPv6) (IPv6 has
32-bit jumbo payload option)

• minimum IP reassembly buffer size: that we are guaranteed any
implement must support

• TCP MSS (maximum segment size): actual value of reassembly
buffer size, often the link MTU minus IP and TCP headers, to
avoid fragmentation

24

25

TCP Output and UDP Output

application

TCP

IP

output queue

application

UDP

IP

output queue

application buffer

socket send buffer
(SO_SNDBUF)

MSS-sized TCP
segment

MTU-sized packet

application buffer

UDP datagram

MTU-sized packet

write sendto

no buffering
but SO_SNDBUF
exists

user process

kernel

datalinkdatalink

TCP Output

• The write blocks if no room in the socket send buffer

• The kernel will not return from the write until the final byte in

the application buffer has been copied into the socket send
buffer

• Successful return from a write only tells us that we can reuse
our application buffer

• TCP (kernel) keeps a copy of our data until it is acknowledged
by the peer

26

TCP Output Illustrated

27

kernel kernelAPP
write

APP

read

資料放入
receiving

buffer

資料搬入
socket

send buffer

資料搬入
app buffer

資料從
socket send
buffer移除

returns搬完
return

returns

搬完
return

write

app buffer

reuse app buffer

app buffer

UDP Outputs

• UDP socket has a send buffer size but no real buffer

• If application’s datagram > send buffer size, an error message

is returned

• UDP need not keep a copy of our data

• A successful return from a write to a UDP socket tells us the
datagram has been added to the data link output queue

• An error message will be generated if there is no room in the
data link output queue

28

No blocking

Standard Internet Services and Applications

• Standard services provided by inetd daemon:
echo/port7/RFC862, discard/port9/RFC863,

daytime/port13/RFC867, chargen/port19/RFC864,
time/port37/RFC868

• tested by “telnet machine service”, service mapped by
/etc/services

• Common application types: diagnostic, routing protocol,
datagram, virtual circuit, etc.

29

30

Protocol Usage of Various Common Applications

Application IP ICMP UDP TCP

Ping x

Traceroute x x

OSPF x

RIP x

BGP x

BOOTP x

DHCP x

NTP x

TFTP x

SNMP x

SMTP x

Telnet x

FTP x

HTTP x

NNTP x

DNS x x

NFS x x

RPC x x

Debugging Techniques and Tools

• System call tracing: truss (in SVR4), ktrace & kdump (in BSD) (Note

that socket is a system call in BSD, while putmsg and getmsg are the

actual system calls in SVR4)

• sock developed by W.R. Stevens: used to generate special case

conditions, as stdin/stdout client, stdin/stdout server, source client,

sink server

• tcpdump: dump packets matching some criteria

• netstat: status of interfaces, multicast groups, per-protocol statistics,

routing table, etc.

• lsof (list open files): which process has a socket open on a specified

IP address or port

31

