Game Theory and Its Applications

Syllabus Li-Hsing Yen Dept. of Computer Science, NYCU

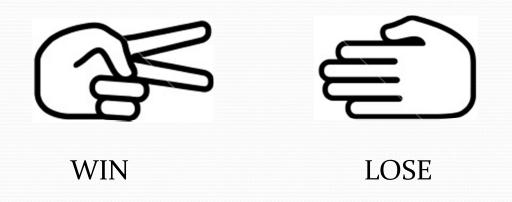
What is Game Theory?

- the study of mathematical models of strategic interaction between rational decision-makers.
- Which are in the field of game theory?

chess playing? bidding? trade war? buying a lottery? solving a puzzle? bargaining? playing Sudoku? forming an alliance?

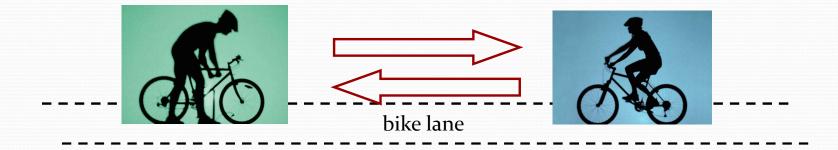
What's the difference?

- Whether your choice is good or not depends on other people's choice(s).
 - and vice versa


Interdependence

So What?

- 'I can select a best choice considering all other people's possible choices.'--- a belief
- Sometimes you have no knowledge of other people's choices.
- Sometimes there are just too many possible choices to consider
- Sometimes everyone's best choice (despite thoughtful) is not the best as a whole


You certainly know ...

• The best outcome for one may not be the best for the other

And sometimes

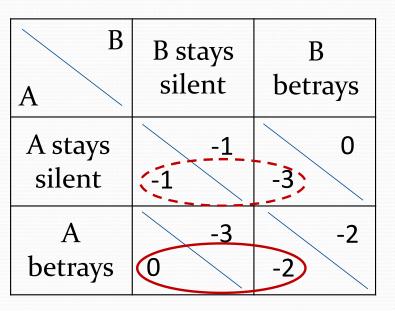
• we can reach a 'win-win' outcome

• But can we reach an outcome that dissatisfies everyone?

Let's take a look at a classic example

Prisoner's Dilemma

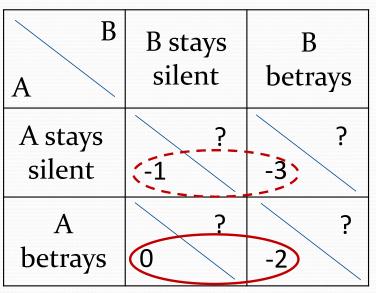
- Two gangsters (A and B) are arrested and imprisoned
- They are interrogated separately with no means of communicating with the other


B	B stays	B
A	silent	betrays
A stays	-1	-3
silent	-1	0
A	-3	-2
betrays	0	-2

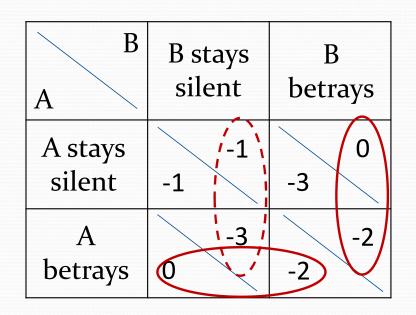
https://en.wikipedia.org/wiki/Prisoner%27s_dilemma

If you were Prisoner A ...

• What would be your choice? Remember you don't know B's choice (but you may know B's payoffs because the matrix is likely symmetric)

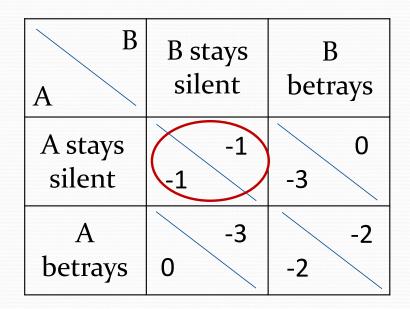


Even if you don't know your partner's payoff...


• What would be your choice?

If you consider Prisoner B ...

- What would be B's best choice?
- What will be your best response?
- Will B change her choice knowing your best response?
- Is there any better result?


Why should I learn this?

- Traditionally, computer scientists play the role of a god, controlling and manipulating everything
- "Objects" (devices, resources, processes) do not have their own interests

The Game from a Computer Scientist's View

- You play the role of a god (omniscience)
- You figure out that 'stays silent' is the best choice for both prisoners
- You instruct each prisoner to take that strategy
- That's it
- If prisoners have free will and are self-interested, they may not follow your instruction

Game-Theoretic Approach

- design rules for game players (software agents)
- Players act in their own self-interest, as an indirect way to achieve society's economic goals (i.e., your system goal)
- For scenarios like
 - Task allocations among a fleet of robots, UAVs, or autonomous cars
 - Resource sharing among users, operators, or tenants
 - Clustering, grouping, or federation of a bunch of resource/task producers or consumers
 - Matching resource buyers with sellers or vice versa

Course Goals

- Game theory as an analytic model
 - to model your problem (but you solve it by another means)
- Game theory for mechanism design
 - to solve your problem in a decentralized and autonomous way
 - yields an outcome that is accepted by everyone
- Learning some well-known mechanism designs
- Solving games

So this course is not to ...

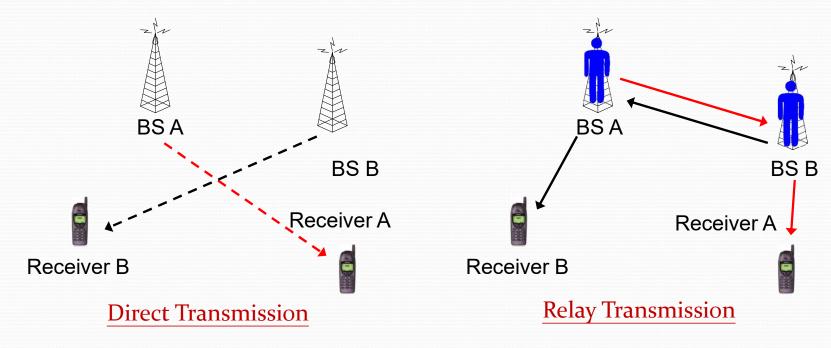
- study how to design a fancy computer game
 - You should courses like "3D Game Programming" (by Prof. Sai-Keung Wong)
- (in most of the time) study how to design a computer program to win a game (e.g., Go and Chess)
 - You should take "Theory of Computer Games" (by Prof. I-Chen Wu)

Compared with other Game Theory courses

- This course offers a broader coverage
 - It covers non-cooperative game, coalition game, matching, auction and related examples in CS/commun./networks
 - Many other courses cover only the first two topics
- This course does not cover applications of Game theory to economics, politics, and biography
- This course minimizes the use of math. formulas
 - focus on concepts rather than math.

Criticisms of Game Theory

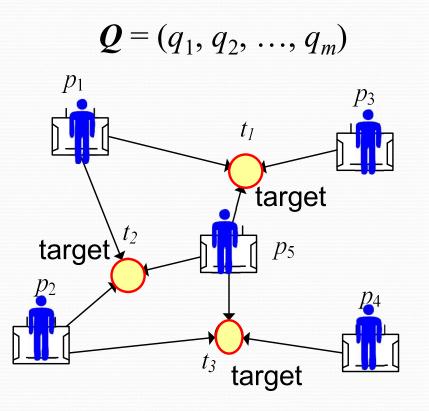
- They say: people are **not** always rational or self-interested
 - people may show mercy or tend to cooperate
 - Particularly in making economic or political decisions
- Not a problem at all in our case: we consider software agents, not human beings


Course Goal One: Help Us Analyze

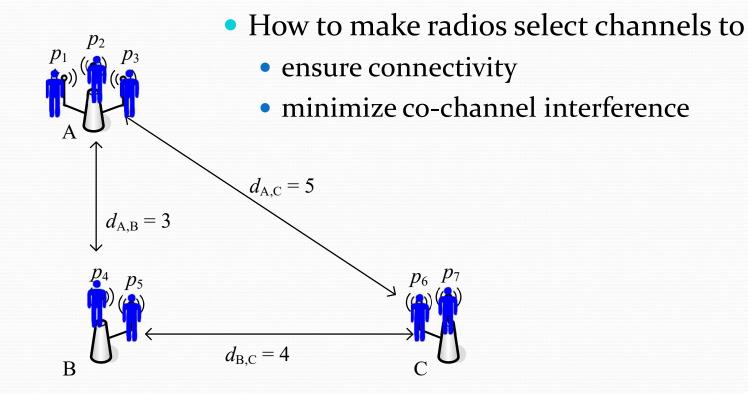
- Game theory as an analytic model
 - To predict what will happen next
 - To see if the interactions among players can lead to a stable outcome (accepted by every player)
 - To see whether we can make an improvement (if any)
 - primary concerns of Economists

Example: Wireless Relay System

- Will a BS relay signal for the other?
- Can we motivate cooperation?


Course Goal Two: Help Us Design

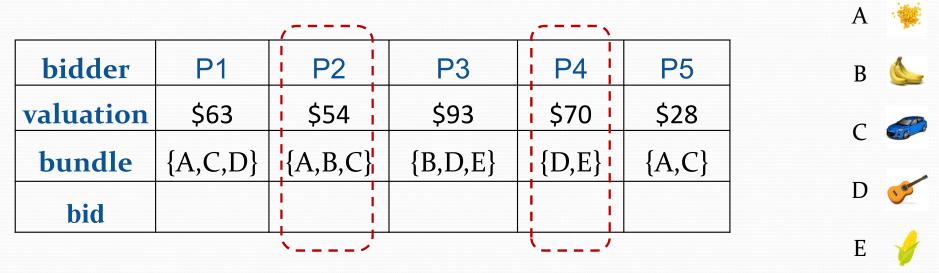
- Game theory for mechanism design
 - To achieve a system goal via incentive-compatible rules
 - Design game rules for selfish yet rational players
 - yet achieve system goal
 - Decentralized, autonomous, adaptive, self-stabilizing, self-optimizing
 - main focus of computer scientist



Example: Sensor Coverage

- *n* sensors are densely deployed to monitor *m* targets
- Target *j* must be covered by *q*_{*j*} sensors
- How to motivate sensors (game players) to meet coverage requirement while turning off sensors as many as possible?

Example: Channel Selection


Course Goal Three: Help Us Know

- Learn some well-known mechanism designs
 - Auction
 - Matching
- with system goals
 - Pareto optimality
 - stability
 - social welfare

Example: Combinatorial Auctions

- How to select the set of winning bidders to maximize social welfare?
- How to enforce truthful bidding (bid indicates valuation)?

Example: Matching

How to match females with males so that

- no pair wants to deviate from the result?
- no pair can be better off without hurting any others?

Male	Preference	m_1 m_2 m_3
$egin{array}{c} m_1\ m_2\ m_3\ m_4 \end{array}$	$ \begin{array}{l} f_1 \succ f_2 \succ f_3 \succ m_1 \\ f_1 \succ f_2 \succ f_3 \succ m_2 \\ f_2 \succ f_1 \succ m_3 \succ f_3 \\ f_2 \succ f_3 \succ f_1 \succ m_4 \end{array} $	
Fema	le Preference	
$\begin{array}{c}f_1\\f_2\\f_3\end{array}$	$m_4 \succ m_1 \succ m_2 \succ m_3 \succ f_2$ $m_2 \succ m_1 \succ m_3 \succ m_4 \succ f_2$ $m_3 \succ m_1 \succ m_2 \succ m_4 \succ f_3$	f_1 f_2

 m_4

 f_3

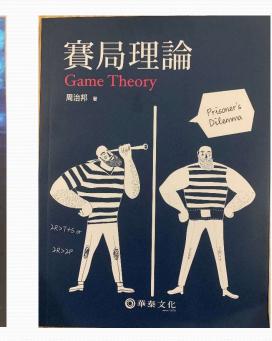
Example: Coalition Game

- What coalitions will be formed?
- How to distribute profits to coalition members to make the coalition stable?

		{P ₁ }	{P ₂ }	{P ₃ }	{P ₁ , P ₂ }	$\{P_1, P_3\}$	{P ₂ , P ₃ }	$\{P_1, P_2, P_3\}$
-	profit	2	6	12	9	15	21	24

- Suppose $(x_1, x_2, x_3) = (5, 6, 13)$
- Can $\{P_1, P_2\}$ block (x_1, x_2, x_3) ?
- Can $\{P_2, P_3\}$ block (x_1, x_2, x_3) ?
- What are the results if $(x_1, x_2, x_3) = (3, 7, 14)$?

Course Goal Four: Help Us Solve


- Compute strategies for players to stabilize or improve the game
 - perhaps without full knowledge of the game
- Reinforcement learning may help
- Challenge: multiple agents with diverse goals

Text Book: None

• Reference books (in Chinese)

從學生選校,相親配對,拍賣顯標 了解最新的實用經濟學

Schedule (tentative)

week	contents	week	contents	
1	Introduction and non-cooperative games	9	Matching Theory (1/2)	
2	Non-cooperative games (cont.)	10	Matching Theory (2/2)	
3	Some Useful Non-Cooperative Games	11	Auctions	
4	Game Designs for Network Problems (1/2)	12	Coalition Game (1/2)	
5	Game Designs for Network Problems (2/2)	13	Coalition Game (2/2)	
6	Game Designs for Graph Problems	14	Report & presentation (1)	
7	Learning for non-cooperative games	15	Report & presentation (2)	
8	Review and Mid-term Exam.	16	Final Exam.	

Scoring Policy

- (60+%) Quizzes + Assignments
 - 5 quizzes (only four highest scores count; 10% each)
 - 2 program assignments (10% each)
- (20%) Mid-term exam.
- (20%) Final exam.

Teaching Assistants (TAs)

Name	E-mail	Phone	TA Time/Place
Yung-Lun Yang	ylyang.cs11@nycu.edu.tw	ext.	15:30~17:00 Mon.
(Mr.)		56674	@ES703B
Pin-Chun	cpc17422@gmail.com	ext.	13:30-~15:00 Wed.
Chen (Mr.)		56674	@ES703B

ES: Microelectronics and Information Systems Research Center (電子與資訊研究中心)

Course Materials

- All lectures will be recorded and put online
- Slides are placed in E3 Learning Management System: https://e3.nycu.edu.tw/
- Because all announcements are sent via E3, please confirm your e-mail address setting in E3 is correct
- Instructor's e-mail: <u>lhyen@nycu.edu.tw</u>