Game Theory and Its Applications

Syllabus Li-Hsing Yen Dept. of Computer Science, NYCU

What is Game Theory?

- the study of mathematical models of strategic interaction between rational decision-makers.
- Which are in the field of game theory?

```
chess playing? bidding? trade war? buying a lottery? solving a puzzle? bargaining? playing Sudoku? forming an alliance?
```

What's the difference?

- Whether your choice is good or not depends on other people's choice(s).
 - and vice versa

What are the issues anyway?

- 'I can select a best choice considering all other people's possible choices.'--- a belief
- Sometimes you have no knowledge of other people's choices.
- Sometimes there are just too many possible choices to be considered
- Sometimes everyone's best choice (despite thoughtful) is not the best as a whole

Why should a CS major learn this?

- Traditionally, computer scientists play the role of God, controlling and manipulating everything
- "Objects" do not have their own interests

Game-Theoretic Approach

- design rules for game players (software agents)
- Players act in their own self-interest, as an indirect way to achieve society's economic goals
- For scenarios like
 - Task allocations among a fleet of robots, UAVs, or autonomous cars
 - Resource sharing among users, operators, or tenants
 - Clustering, grouping, or federation of a bunch of resource/task producers or consumers
 - Matching resource buyers with sellers or vice versa

Course Goals

- Game theory as an analytic model
- Game theory for mechanism design
- Learning some well-known mechanism designs
- Applications to CS or network problems

So this course is not to ...

- study how to design a computer game
- (in most of the time) study how to design a computer program to win a game (e.g., Go and Chess)
 - You should take "Theory of Computer Games" (by Prof. I-Chen Wu)

Compared with other Game Theory courses

- This course offers a broader coverage
 - It covers non-cooperative game, coalition game, matching, auction and related examples in CS/commun./networks
 - Many other courses cover only the former two topics
- This course does not cover application of Game theory to economics, politics, and biography
- This course minimizes the use of math. formulas
 - focus on concepts rather than math.

Let's take a look at some examples

Prisoner's Dilemma

- Two gangsters (A and B) are arrested and imprisoned
- Each prisoner is in solitary confinement with no means of communicating with the other

B A	B stays silent	B betrays
A stays silent	-1 -1	9 0
A betrays	0 -3	-2

If you were Prisoner A ...

• What would be your choice?

B A	B stays silent	B betrays	
A stays silent	(-1	0	
A betrays	0 -3	-2	

If you were Prisoner B ...

- What would be your choice?
- What will be the result of the game?
- Is there any better result?

B A	B stays silent	B betrays	
A stays silent	-1	-3	
A betrays	0	-2	

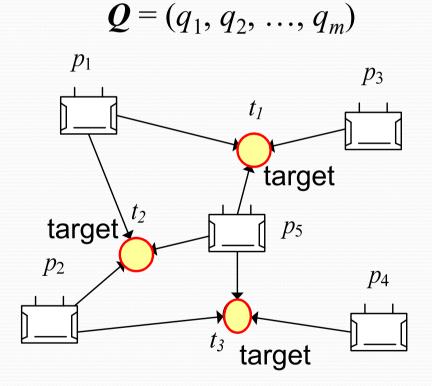
• How can you get an improved result?

Course Goal One

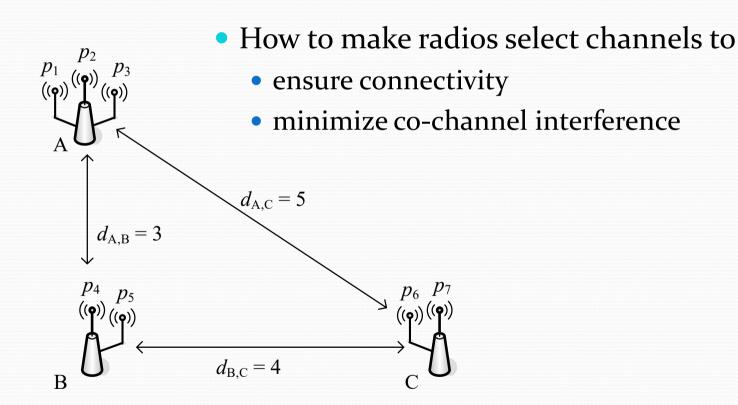
- Game theory as an analytic model
 - To predict what will happen
 - To figure out what went wrong
 - To see how to make an improvement (if any)
 - primary concerns of Economists

Example: Wireless Relay System

- Will a BS relay signal for the other?
- How to motivate cooperation?


Course Goal Two

- Game theory for mechanism design
 - Design game rules for selfish yet rational players
 - yet achieve system goal
 - 'reverse game theory'
 - main focus of computer scientist



Example: Sensor Coverage

- n sensors are densely deployed to monitor m targets
- Target j must be covered by q_j sensors
- How to motivate sensors to meet coverage requirement while turning off sensors as many as possible?

Example: Channel Selection

Course Goal Three

- Learn some well-known mechanism designs
 - Auction
 - Matching
- with system goals
 - Pareto optimality
 - stability
 - social welfare

Example: Combinatorial Auctions

- How to select the set of winning bids?
- How to enforce truthful bidding?
- What is the pricing rule?

	/\				
bidder	P1	P2	P3	P4	P5
bid	\$63	\$54	\$93	\$70	\$28
bundle	{A,C,D}	{A,B,C}	{B,D,E}	{D,E}	{A,C}
		()	·		

Example: Matching

- How to match females with males so that
 - no pair wants to deviate from the result?
 - no pair can be better off without hurting any others?

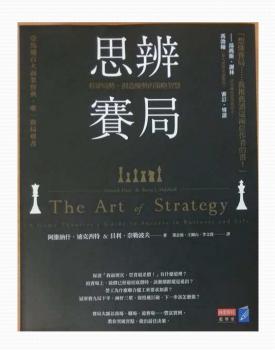
Male	Preference	m-	m_2	m_3	m_4
$m_1 \ m_2 \ m_3 \ m_4$	$f_1 \succ f_2 \succ f_3 \succ m_1$ $f_1 \succ f_2 \succ f_3 \succ m_2$ $f_2 \succ f_1 \succ m_3 \succ f_3$ $f_2 \succ f_3 \succ f_1 \succ m_4$				
Fema	le Preference			• \	•
$\begin{array}{c} f_1 \\ f_2 \\ f_3 \end{array}$	$m_4 \succ m_1 \succ m_2$ $m_2 \succ m_1 \succ m_3$ $m_3 \succ m_1 \succ m_2$	$\succ m_4 \succ f_2$	f_1	$f_{2'}$	f_3

Example: Coalition Game

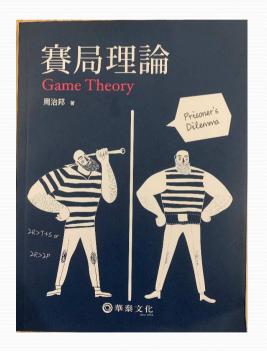
- What coalitions will be formed?
- How to distribute profits to coalition members to make the coalition stable?

	$\{P_1\}$	$\{P_2\}$	$\{P_3\}$	$\{P_1, P_2\}$	$\{P_1, P_3\}$	$\{P_2, P_3\}$	$\{P_1, P_2, P_3\}$
profit	2	6	12	9	15	21	24

- Suppose $(x_1, x_2, x_3) = (5, 6, 13)$
- Can $\{P_1, P_2\}$ block (x_1, x_2, x_3) ?
- Can $\{P_2, P_3\}$ block (x_1, x_2, x_3) ?
- What are the results if $(x_1, x_2, x_3) = (3, 7, 14)$?


Course Goal Four: Application

- Able to apply what you have learned to a specific problem in CS or networks
- Understand how game theory could help people solve a CS/network problem



Text Book: None

• Reference books (in Chinese)

Schedule (tentative)

week	contents	week	contents
1	Introduction and non-cooperative games	10	Matching: Resource allocations/computation offloading in IoT/D2D/edge
2	(mid-autumn festival)	11	Matching with (money) Report & presentation
3	Non-cooperative games: Channel selection, file sharing in P2P	12	cooperative game
4	Coordination game: MAC, power control, cognitive radio	13	federation of cloud and edge systems
5	Potential game and congestion game: routing, network/AP selection, self-stabilizing algorithm	14	Report & presentation
6	mixed-strategy: spectrum access	15	Report & presentation
7	Auctions: Robot task allocations	16	Report & presentation
8	Combinatorial auction: Resource allocation in cloud and edge	17	Report & presentation
9	Review and Mid-term Exam.	18	Final Exam.

Scoring Policy

- (30+%) Quizzes
 - 4 quizzes
- (40%) Mid-term exam.
- (30%) Final report

Course Materials

- Slides are placed in E3 Learning Management System: https://e3.nycu.edu.tw/my/
- Because all announcements are sent via E3, please confirm your e-mail address setting in E3 is correct
- Instructor's e-mail: lhyen@nycu.edu.tw
 someday)