
Probabilistic Analysis of Causal Message Ordering

Li-Hsing Yen
Department of Computer Science and Information Engineering

Chung Hua University
Hsinchu, Taiwan 30067, R.O.C.

lhyen@chu.edu.tw

Abstract

Causal message ordering (CMO) demands that mes-
sages directed to the same destinations must be delivered
in an order consistent with their potential causality. In
this paper, we present a modular decomposition of CMO,
and evaluate the probability of breaking CMO by assuming
two probabilistic models on message delays: exponential
distribution and uniform distribution. These models repre-
sent the contexts where message delays are unpredictable
and, respectively, unbounded and bounded. Our analysis
result helps understanding the necessity of CMO schemes,
and suggests a probabilistic approach to CMO: deferred-
sending. The effect of deferred-sending is analyzed.

1. Introduction

The nondeterministic nature of distributed systems,i.e.,
asynchronous process execution speeds and unpredictable
communication delays, is the major factor that complicates
the design, verification, and analysis of distributed systems.
Causal message ordering, henceforth referred to as CMO, is
an ordering imposed on message deliveries to reduce system
nondeterminism while retaining concurrency. In systems
preserving CMO, messages directed to the same destina-
tion are delivered in an order consistent with their potential
causality. The causality under consideration is determined
by thehappens-before relationship [13] but is restricted to
message sending and receiving events. Specifically, if a
message-sending event happens before the sending of an-
other message, the former message is considered to have the
potential for affecting the latter in a causal way, and there-
fore must be received before the latter, if they are destined
for the same process, to retain their cause-effect relation-
ship. CMO is considered important to reliable distributed
systems [11, 7, 9]. It can also be used to simplify the design
of distributed algorithms [1, 4]. Many implementations and
extensions of CMO have been done in distributed shared

memory system [3], multimedia systems [6, 2], and mobile
computing systems [5, 16, 19].

In this paper, we present a modular decomposition of
CMO, and analyze the probability of breaking CMO. The
analysis is based on two probabilistic models on communi-
cation delays: exponential and uniform distributions. These
two distributions respectively represent the contexts where
communication delays are unbounded and bounded. The re-
sult suggests a simple approach to reducing the probability
of CMO breakdown: deferred-sending.

Rest of this paper is organized as follows. Section 2
presents the definition of CMO and a modular decompo-
sition of it. Section 3 analyzes the probability of break-
ing CMO in ordinary contexts and Section 4 derives the ex-
pected delay with deferred-delivery approaches. In Section
5, we present our probabilistic approach to CMO and eval-
uate its performance. Section 6 concludes this paper.

2. A modular decomposition of CMO

2.1. System model and definition

An asynchronous distributed system is a collection of
processes that communicate asynchronously by means of
message-passing. No shared memory or global clock is
available. The message latency is arbitrary.

An event is an atomic operation that changes the state
of a process. Three types of events are considered in dis-
tributed systems:internal events, sendings of messages, and
receipts of messages [15]. Thehappens-before relation (de-
noted by “!”) on the set of events is the smallest transitive
relation satisfying the following conditions [13]: (1) if eventa and eventb occur in the same process and ifa comes right
beforeb thena ! b; (2) if a is the sending of messagem
andb is the receipt ofm, thena! b.

Let sent(m) andrecv(m) be the events that correspond to
the sending and receipt of messagem, respectively. CMO
is obeyed if, for any two messagesm andm0 that have the



same destination,sent(m) ! sent(m0) impliesrecv(m) !
recv(m0).

A message is said to bereceived by a site when it arrives
at that site. A message is said to bedelivered by a site when
it is formally accepted and disposed of by the associated
application running at that site. A distributed computing
system, in which CMO does not hold with respect to send-
ing and receiving events, can employ a scheme to enforce
CMO with respect to sending and delivering events. That is,
let deliv(m) represent the event of delivering messagem, a
CMO scheme can ensure thatsent(m) ! sent(m0) always
impliesdeliv(m)! deliv(m0).
2.2.CMO(k)

The general CMO can be decomposed according to the
number of messages involved in the causal event chain be-
tween two message sending events. Acausal event chain is
a sequence of eventsfe1; e2; : : : ; erg, wherer � 2, such
that e1 ! e2; e2 ! e3; � � � ; er�1 ! er. Let �(a; b)
denote the set of all possible causal event chains start-
ing at eventa and ending with eventb. A causal mes-
sage chain contained in�(a; b) is a sequence of messagesfm1;m2; : : : ;mlg such that the sequence of eventsfa,
sent(m1), recv(m1), sent(m2), recv(m2), : : :, sent(ml),
recv(ml), bg is in �(a; b). This message chain is said to
have lengthl.
Definition 1 A messagem0 transitively depends on another
messagem with degree k if sent(m) ! sent(m0) and the
maximal length of any causal message chain contained in�(sent(m); sent(m0)) is k.

If sent(m) ! sent(m0) but there is no causal message
chain contained in�(sent(m); sent(m0)), we say thatm0
transitively depends onm with degree zero. This happens
whenm andm0 are sent by the same process.

Definition 2 Causal message ordering of degree k, denoted
by CMO(k), is preserved ifdeliv(m) ! deliv(m0) holds
for any two messagesm andm0 such thatm0 transitively
depends onm with degreek.

Note thatCMO(0) is essentially the FIFO ordering. As an
example ofCMO(1), consider the scenario shown in Fig-
ure 1. Messagem3 transitively depends onm1 with degree1. Therefore, ifm3 arrives atP2 beforem1, CMO(1) is not
preserved.

3. Probabilistic analysis of CMO in ordinary
contexts

CMO is not necessarily preserved in ordinary contexts.
In this section, we evaluate the probability of CMO break-
down in contexts where no CMO scheme is employed.
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Figure 1. A scenario illustrating CMO(1)
The obtained result can help understanding the necessity of
CMO schemes.

Let us start with the case ofCMO(1). Consider Fig-
ure 1 again. LetXi (i = 1; 2; 3) denotemi’s message
delay. It can be seen thatX1 > X2 + X3 is a necessary
condition form3 to arrive atP2 beforem1. It follows thatPr[X1 > X2 + X3] is a upper bound of the probability
that CMO(1) is not preserved. Extending this argument,
we can see thatPr[X1 > X2 + X3 + � � � + Xk+2], for
some integerk � 0, represents the maximal probability that
CMO(k) is violated. LetY = X2 +X3 + � � �+Xk+2 andZ = X1 � Y . In the following, we will obtain the distribu-
tion of Z by assuming two typical random distributions onXi: exponential distribution and uniform distribution. The
former represents the case of unbound message delay while
the later represents the case of bounded message delay.
Exponential distribution : Xi’s are independent, identi-
cally distributed random variables with probability density
functionf(x) = �e��x over the range[0;1). It is known
[10] thatY is a(k + 1)-Erlang distributed random variable
with probability density functiong(y) = �k+1k! yke��y
Therefore,Pr[Z > z] = Pr[X1 > Y + z]= Z 1y=0 Z 1x1=y+z f(x1)g(y)dx1dy= Z 1y=0 e��(y+z) � �k+1k! yke��ydy= 12k+1 � e��z
The upper bound of the probability thatCMO(k) does not
hold is thereforePr[Z > 0] = 1=2k+1. We also have the
probability distribution function ofZ, F (z) = Pr[Z �z] = 1�Pr[Z > z] = 1�1=2k+1�e��z, and the probability
density function ofZ, f(z) = ddzF (z) = �=2k+1 � e��z.
Figure 2 dipictsf(z) with � = 1=8 for k = 1 to 4.
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Figure 2. Probability density function for Z
with � = 1=8

Uniform distribution : Xi’s are independent, identically
distributed random variables with probability density func-
tion f(x) = 1b�a over the range[a; b]. In the follow-
ing, we derivePr[Z > 0] but not the probability density
function of Z due to space limitation. Extending the re-
sult to derive the latter is straightforward. We know thatPr[Z > 0] = Pr[X1 > Y ] = Pr[X1 > Y jY >b] + Pr[X1 > Y jY � b]: WhenY > b, it is impossible
thatX1 > Y . Also, whenb � (k + 1)a, it is impossible
thatY � b. It follows thatPr[Z > 0] = Pr[X1 > Y ] = Pr[X1 > Y jY � b]= � C if b > (k + 1)a0 otherwise

whereC is the value of the integral taken over the region
determined by(k + 1)a � Y � b. Fork = 1, we haveC = Z b�ax3=aZ b�x3x2=aZ bx1=x2+x3f(x1) f(x2) f(x3) dx1 dx2 dx3= (b� 2a)36(b� a)3
Sinceb�2ab�a � 1 for all positive settings ofa andb such thatb > 2a, the upper bound ofPr[Z > 0] is 16 (this happens
whenb� a).

Applying the same analysis technique, we can derive the
probabilities of breakingCMO(k) for all k � 2. Table 1
lists the derived result. We can see that ask increases, the
probability of breakingCMO(k) decreases.

4. Analyzing the deferred-delivery approach

Conventional CMO protocols take either piggybacking
or deferred-delivery approaches. In the piggybacking ap-
proach [7], a message carries a history of all the messages
that causally precede it. Thus when a messagem is deliv-
ered to a processP , copies of all messages addressed toP
that precedem also arrive withm or have arrived earlier.
This scheme is straightforward and resilient to process fail-
ures. However, it requires a complex mechanism to prevent
unbounded growth of the information added to messages.
In deferred-delivery approaches [18, 8, 17], a received mes-
sagem will be delivered to processP only if all messages
that causally precededm and were destined forP have al-
ready been delivered. Otherwise, messagem is not deliv-
ered immediately but is buffered until the condition stated
above is satisfied.

The probability density functions derived in the previ-
ous section can be used to compute the expected delay
imposed on a received message with deferred-delivery ap-
proaches. In case of exponentially distributed communica-
tion delays, when a received message should be deferred to
respect CMO, the expected delay isE(Z) = Z 1z=0 zf(z)dz= Z 1z=0 �z2k+1 e��zdz= 1�2k+1
which indicates that if the delivery of a received message
should be deferred, the expected delay time is proportional
to the mean of communication delays (i.e.,1=�) times1=2k+1. The case of uniformly distributed communication
delays is analogous but more tedious, and is therefore omit-
ted here.

5. The deferred-sending approach to CMO

Deferred-delivery CMO approaches assume finite com-
munication delays, since otherwise they will fail to meet
“liveness” requirement. Consider Figure 1. Ifm1 is delayed
infinitely, P2 will defer the deliveries ofm3 and all subse-
quent messages fromP3, effectively breaking the commu-
nication channel fromP3 to P2. Moreover, the delivery of
any subsequently message fromP1 to P2 will also be de-
ferred infinitely.

The assumption of finite communication delays implies
that deferred-delivery CMO approaches are only applicable
to synchronous systems [14], where fixed upper bound on
communication delays exists and, timers and time-out val-
ues can be used to detect the existence of lost or delayed



Table 1. Values of Pr[Z > 0] and probability density functions for k = 0 to 3Pr[Z > 0] Probability density function

CMO(0) 12 �(z�b+a)(b�a)2 , z � b� a
CMO(1) ( (b�2a)36(b�a)3 if b � 2a0 otherwise

(z�b+2a)22(b�a)3 , z � b� 2a
CMO(2) ( (b�3a)424(b�a)4 if b � 3a0 otherwise

�(z�b+3a)36(b�a)4 , z � b� 3a
CMO(3) ( (b�4a)5120(b�a)5 if b � 4a0 otherwise

(z�b+4a)424(b�a)5 , z � b� 4a
messages. In asynchronous systems where no such fixed
upper bound exists, deferred-delivery approaches may fail.

We suggest a simple strategy that is applicable to both
synchronous and asynchronous systems. It can be incorpo-
rated with any deferred-delivery CMO approaches, as well
as be used as a stand-alone method under some condition.
The basic idea is simple: defer sending a message to reduce
the probability of breaking CMO. Several implementations
are possible. We may hold sending a message

A) until d units of time elapses,

B) if any message has been sent in the previousd units of
time,

C) if any message has been delivered in the previousd
units of time, or

D) if any message has been sent or delivered in the previ-
ousd units of time.

Let us choose implementation C hereafter. Consider the
scenario in Figure 1 again. The probability of breaking
CMO(1) now becomesPr[X1 > X2 + X3 + d]. Intu-
itively, Pr[X1 > X2 + X3 + d] < Pr[X1 > X2 + X3].
In general, the probability of breakingCMO(k) will be less
thanPr[X1 > X2 +X3 + � � �+Xk+2 + kd].

To evaluate the effect of our approach in asynchronous
systems, we apply the same exponential distribution model.
We havePr[X1 > Y + kd] = Z 1y=0Z 1x1=y+kd f(x1)g(y)dx1dy= Z 1y=0e��(y+kd) � �k+1k! yke��ydy= 12k+1 e�k�d

Note that1=� is the mean ofXi. The result indicates that
if we hold a message to be sent for an amount of time equal
to the mean of message delay, the probability of breaking

CMO(1) will be less than1=4e ' 0:1. If the holding time
is increased to four times the mean message delay, the prob-
ability drops to less than1=4e4 ' 0:005.

The effect of deferred-sending in synchronous systems
can be evaluated by applying the same uniform distribution
model.Pr[X1 > Y + kd] = Pr[X1 > Y + kdjY + kd � b]
SinceY +kd � (k+1)a+kd, if (k+1)a+kd > b, we havePr[Y + kd � b] = 0 and thusPr[X1 > Y + kd] = 0. It
follows that ifd > (b� (k+1)a)=k, CMO(k) is preserved.
It is not difficult to extend the result to a more general rule:

Theorem 1 In context where the upper and lower bounds
of communication delay are, respectively,a andb, CMO(k)
will be preserved ifd > (b � (k + 1)a)=k, for all k �1. (The communication delay is not necessarily a uniform
distribution)

In case when(k+1)a+kd � b,Pr[X1 > Y +kd] can be
computed in the same way as we computeC in the previous
section. For example, whenk = 1, we havePr[X1 >X2+X3+d] = Pr[X1 > X2+X3+djX2+X3+d � b],
which is equal toZ b�d�ax3=a Z b�d�x3x2=a Z bx1=x2+x3+df(x1)f(x2)f(x3)dx1dx2dx3
The value of Pr[X1 > X2 + X3 + d] is thus(b� d� 2a)3=6(b� a)3. The probabilities of breaking
CMO(k) for all k � 2 can be derived by the same analy-
sis technique. Table 2 shows some results. Compared with
Table 1, it can be seen that except forCMO(0), the proba-
bilities of breaking CMO are reduced.

6. Conclusions

For exponential and uniform distributions of communi-
cation delays, we have computed the probability of violat-
ing CMO without any control and with deferred-sending



Table 2. Probability result with our approach

Exponential Uniform

CMO(0) 12 12
CMO(1) 14e��d ( (b�d�2a)36(b�a)3 if b � 2a+ d0 otherwise

CMO(2) 18e�2�d ( (b�2d�3a)424(b�a)4 if b � 3a+ 2d0 otherwise

CMO(3) 116e�3�d ( (b�3d�4a)4120(b�a)4 if b � 4a+ 3d0 otherwise

control. In asynchronous systems where no fixed upper
bound on message delays exists, conventional CMO ap-
proaches may fail to meet “liveness” requirement, while
deferred-sending may break CMO. In synchronous sys-
tems where fixed upper bound on message delays exists,
deferred-sending can totally preserve CMO (Theorem 1), if
the bounds of communication delay are known.

It has been proven [12] thatO(n2) message overhead
is required for any deferred-delivery approaches to enforce
CMO(k), wherek � 2 andn is the total number of pro-
cesses in a system. Such an overhead can be costly whenn
is large. Moreover, in many applications the number of pro-
cesses participating in the computation may change from
time to time. Conventional algorithms [18, 8, 17] seldom, if
ever, deal with such dynamic participation.

Unlike conventional approaches, the deferred-sending
method needs neither costly control information nor piggy-
backed messages in every message for CMO. This makes
the method a bandwidth-efficient approach. Furthermore,
since no information pertaining to the number of participat-
ing processes should be maintained, it is also resilient to
dynamic process participation. On the other hand, the cost
is that message delays are increased, and that CMO may not
be preserved under some condition.

It seems that the optimal solution relies on integrating
these two approaches. It is well known thatCMO(0) (FIFO-
order communications) can be easily achieved with the help
ofO(1) message sequence numbers. ForCMO(1), anO(n)
deferred-delivery CMO approach has been proposed [12].
If deferred-sending is merely used to cope withCMO(k)
for k � 2, the cost incurred by deferred-sending can be
reduced whileO(n) message overhead can be retained.
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