
Mobility Profiling Using Markov Chains for Tree-Based Object
Tracking in Wireless Sensor Networks

Li-Hsing Yen Chia-Cheng Yang
Dept. Computer Science & Information Engineering

Chung Hua University
Hsinchu, Taiwan 300, R.O.C.

lhyen@chu.edu.tw

Abstract

Object tracking in wireless sensor networks is to
track moving objects by scattered sensors. These sen-
sors are typically organized into a tree to deliver re-
port messages upon detecting object’s move. Existing
tree construction algorithms all require a mobility pro-
file that is obtained based on historical statistics. In this
paper, we propose an analytic estimate of such mobility
profile based on Markov-chain model. This estimate re-
places otherwise experimental process that collects sta-
tistical data. Simulation results confirm the effective-
ness of the proposed approach.

1 Introduction

Rapid progress in wireless communications and
micro-sensing MEMS technology has enabled the de-
ployment of wireless sensor networks. A wireless sen-
sor network (WSN) consists of a large number of sen-
sor nodes deployed in a region of interest. Each sensor
node is capable of collecting, storing, and processing
environmental information, and communicating with
other sensors.

Object tracking is an application of WSNs where
the presence of particular objects (animals, vehicles,
etc.) can be detected by nearby sensors. When such
event occurs, the location status of the object is re-
ported back to a remote node called sink. Specifically,
a sensor sends a join message to the sink node when it
detects the target object entering into its observation
area. Similarly, a leave message is sent to the sink node
when the target is observed out of some sensor’s obser-
vation. These messages constantly update the target’s
location information stored in the sink node, where end
users can then track the target.

The report of location status would consume a con-
siderable amount of energy if report messages are trans-
mitted directly to the sink node. As a remedy, sensor
nodes are organized into a tree [1, 9] rooted at the sink
node. A direct transmission from some sensor to the
sink node is then replaced by a series of short-range
communications, each corresponds to a hop along the
unique path form the sensor to the sink node. This
technique saves power as radio signal attenuates non-
linearly with distance [3].

The notion of in-node processing further reduces
power consumption. The basic idea is not to always
propagate report messages all the way to the sink node.
Instead, a report message is delivered hop by hop to
some sensor node where the current message propa-
gation path joins the previous. Consider the primary
scenario where an object moves from one sensor’s ob-
servation area into another. This event causes two mes-
sages to be transmitted, one leave and the other join.
It is uncertain which one will arrive at the sink node
first. In fact, the nearest common ancestor of these
two sensors terminates the remaining delivery of the
update report that arrives secondly. Such a message-
pruning technique conserves energy as fewer hops are
conducted. The negative effect is that the up-to-date
location status may not be available at the sink node,
so end users need to issue a query message to retrieve
the latest status. The query message is propagated
from the sink node to the sensor where the last report
was received and stored.

To quantify the benefits of different tree-structuring
methods with the effects of in-node processing, we may
estimate the delivery cost of an update report to be
the number of hops such a delivery takes. Kung et
al. [5] have proposed a greedy tree-structuring algo-
rithm DAB, which works in a bottom-up fashion. Their
work, however, assumes that all tracking sensors are



the leaves of the tree. Non-leaf nodes have the ability
of relaying update reports but not detecting targets.
Lin et al. [7] remove such a limitation. They observed
that two neighboring sensors with high object crossing
rates should be assigned as parent and child, respec-
tively.

All existing tree-structuring algorithms require a
mobility profile as an input that describes object cross-
ing rate between every pair of neighboring sensors.
Such a profile can be obtained based on historical
statistics. However, historical data for an unexplored
region may not be available. In this paper, we present
a mathematical model that generates a mobility pro-
file by the theory of stochastic process. This modeling
is useful especially when the mobility pattern of target
objects is unknown. We have conducted computer sim-
ulations, where two commonly-adopted mobility mod-
els, Random Waypoint [4, 2] and Gauss-Markov [6],
were used to drive the movement of a target object.
The results confirm the effectiveness of the proposed
model. Another contribution of this paper is the pro-
posal of a simple tree-construction algorithm. With
the use of the analytic mobility profile, this algorithm
can perform better than previous work in the amount
of report messages.

The remainder of this paper is organized as follows.
The next section states the problem and Section 3 de-
tails our analytic work. Experimental results are pre-
sented in Sec. 4. The last section concludes this paper.

2 Problem Statement and Related
Work

We assume a WSN consisting of N sensors placed in
a closed region. The location of every sensor need not
be engineered or predetermined but should be known
after sensor deployment. A sensor can detect and re-
port an object that is within some range from it. To
avoid redundant reports, we assume that only the sen-
sor the is closest to the target object is in charge of
the reporting. We also assume that the whole deploy-
ment region is fully covered, so the duty area of every
sensor can be obtained by drawing a Voronoi diagram
on the deployment region (See Fig. 1). The Delaunay
triangulation associated with the Voronoi diagram is
a graph G(V,E) where V is the set of all sensors and
edge e(i, j) ∈ E for all i, j ∈ V if i and j share a com-
mon border in the Voronoi diagram. The graph can
be used to represent a mobility profile by labeling each
edge e(i, j) with a weight wi,j that represents the ob-
ject crossing rate between sensors i and j. Fig. 2(a)
shows an example.

The mobility profile has been required by existing

Figure 1. (a) Some sensor deployment and (b)
the corresponding Voronoi diagram.

tree construction algorithms. In DAB [5], every sensor
i has a weight wi that is defined by wi = maxj{wi,j},
and sensors are considered adding into a tree in a de-
creasing order of their weights. In DAT [7], edges in
the mobility profile are considered adding into a tree in
a decreasing order of their weights. These algorithms
do not work if associated weights are absent.

Conventionally, the values of wi,j ’s are obtained by
simulating an object moving around the deployment
field. The mobility pattern of the object thus has a
significant impact on the resulting weights. How long
the object should move to yield an archetypal statistic
is another issue. Given a deployment of a set of sensors,
our mission is to estimate object crossing rates without
actually simulating object movements. This shall be
done in the next section.

Both DAB and DAT are heuristic approaches,
though it was reported that DAT performs better than
DAB [7]. DAT derives a tree from a given graph that
represents a mobility profile. The resultant tree pos-
sesses the property of “deviation-free”—the path from
every node to the sink along the tree must be one of
those in the graph that have the minimum hop count.
The authors claimed that the superiority of DAT over
DAB comes from the deviation-free property. However,
we have observed that this property may not be a plus
when weight distribution is non-uniform. For exam-
ple, for the mobility profile shown in Fig. 2(a), DAT
will derive a deviation-free tree as shown in Fig. 2(b).
This tree is not good enough considering the fact that
the highest object crossing rate lies between C and A,
which should be connected in the tree to minimize re-
port message transmissions. Fig. 3 shows a better tree
that can be derived from the same mobility profile.
This tree cannot be generated by DAT since it is not
deviation-free: the minimum hop count from B to the
sink is 2 in the graph while the actual hop count in the
tree is 3.



 
Sink 

B 

A C 

2 3 

45 

6 4 

Sink 

B 

A C 

2 3 

6 

(a) (b) 

Figure 2. (a) A mobility profile. (b) The tree
derived from (a) by DAT.

 
Sink 

B 

A C 

3 

45 

6 

Figure 3. A better tree derived from Fig. 2(a).

As an alternative, we propose a tree construction al-
gorithm called Maximum Spanning Tree (MST), which
derives a spanning tree from a given graph that has the
maximum total weight. In fact, MST derives the tree
shown in Fig. 3 given the same mobility profile. MST
performs better than DAT when edge weights vary sig-
nificantly. The general performance of MST depends
on the mobility pattern of objects. We shall explore
this issue by simulations in Sec. 4.

3 Proposed Estimate

The basic idea behind our approach is to model ob-
ject movements as a stochastic process X(t). Suppose,
without loss of generality, that all sensors are numbered
from 1 to N . When an object is observed by sensor i
at time t, we say that the object is in state i at time
t, denoted by X(t) = i. To simplify the model, we as-
sume that time values are all discrete and advance to
the next value only when state changes.

For any integer n ≥ 0 and i ∈ {1, . . . , N}, let pn
i =

Pr[X(n) = i] be the probability that the process is
in state i at time n and define p(n) to be the n-th
state vector given by p(n) = 〈pn

1 , pn
2 , · · · , pn

N 〉. Since
we have no prior knowledge of object’s appearance, it is

reasonable to assume that the probability of the target
object being in state i initially is proportional to the
size of sensor i’s duty area. That is,

p0
i =

Ai∑
N Aj

,

where Ai is the size of sensor i’s duty area.
To resolve our problem, state transition probabilities

for this process must be obtained. Let M(m,n) be the
transition probability matrix for times m and n, where
m < n. Specifically,

M(m,n) =




pm,n
1,1 pm,n

1,2 · · · pm,n
1,N

pm,n
2,1 pm,n

2,2 · · · pm,n
2,N

...
... · · · ...

pm,n
N,1 pm,n

N,2 · · · pm,n
N,N


 ,

where
pm,n

i,j = Pr[X(n) = j|X(m) = i].

By definition, we have p(n) = p(m) × M(m,n).
If this process satisfies the Markov property, i.e., the

conditional probability that X(n) = j given X(m) = i,
X(m + 1) = im+1, . . ., X(n − 1) = in−1 depends only
on the most recent observation X(n − 1) = in−1, not
on other history, then the state transition probabilities
can be easily decomposed by applying the Chapman-
Kolmogorov Equation

pm,n
i,j =

N∑
k=1

(
pm,r

i,k × pr,n
k,j

)

for any time m < r < n. Unfortunately, the Markov
property may not hold in some mobility models. Mobil-
ity model like Random Waypoint [4, 2] tends to main-
tain the current moving direction when a object crosses
a border of sensor’s duty areas. Therefore, if an object
has changed states from i to j, the object is more likely
to enter the duty area pointed to by the straight line
connecting i to j than to any other. Fig. 4 shows an
example.

Nevertheless, we model the object movement pro-
cess as a Markov chain (which possesses the Markov
property). Consequently, we have

p(n) = p(0)× [M(0, 1)×M(1, 2)× · · · ×M(n− 1, n)].
(1)

We assume that sensor nodes never move after de-
ployment and operate long enough to accomplish their
tracking mission. This assumption makes the chain a
stationary process, which implies M(0, 1) = M(1, 2) =
· · · = M(n − 1, n). Eq. (1) therefore becomes

p(n) = p(0) × Mn, (2)



Figure 4. An object has moved from F ’s duty
area to D’s. The object is more likely to enter
B’s duty area than to either C’s, E’s, or F ’s.

where M = M(0, 1) is a one-step transition probability
matrix. Specifically,

M =




p1,1 p1,2 · · · p1,N

p2,1 p2,2 · · · p2,N

...
... · · · ...

pN,1 pN,2 · · · pN,N


 ,

where pi,j = Pr[X(t + 1) = j|X(t) = i] for any t ≥
0. The values of pi,j ’s can be computed as follows.
Any sensor shares common borders with its neighbors,
one for each. Suppose sensor i has k neighbors with
common border lengths l1, l2, . . . , lk, respectively. The
probability that an object moves to the duty area of
the j-th neighbor (1 ≤ j ≤ k), given the fact that it
is current under sensor i’s surveillance, is lj/(l1 + l2 +
· · · + lk).

It is not difficult to see that Mn converges as n →
∞. First, the Markov chain is irreducible as an ob-
ject starting at any state has a non-zero probability
to eventually visit any other state. Second, the pro-
cess is recurrent since the number of times any state is
entered is infinite if n → ∞. It is positive recurrent be-
cause the expected return time (i.e., the time between
any two consecutive visits to the same state) is finite.
Third, the process is aperiodic since the return time
is not fixed for any state. It follows from these prop-
erties [8] that the Markov chain has a limiting state
probability π = 〈π1, π2, . . . , πN 〉 = limn→∞ p(n) =
p(0) × limn→∞ Mn. It also follows that

lim
n→∞Mn =




π
π
...
π


 .

With the contents of M and π, the weight associated

Table 1. All possible mobility-profile/tree-
construction combinations.

Tree construction
Mobility profile DAT MST
Statistical DAT(S) [7] MST(S)
Analytical DAT(A) MST(A)

with each edge (i, j) in the mobility profile can be cal-
culated as

wi,j = (πi × pi,j + πj × pj,i).

4 Simulation Results

We conducted simulations to compare the difference
between using statistical and analytical mobility pro-
files. The deployment field was a 100 × 100m2 area.
The number of deployed sensors was varied from 10 to
500. Both DAT and MST were tested in the simula-
tions.

Two mobility models were used to drive object’s
movements, Random Waypoint and Gauss-Markov.
In Random Waypoint model, an object is randomly
placed initially. It then randomly selects a destination
location to move with a randomly determined speed.
The object waits a random paused time when it arrives
at the destination and then moves to another location
following the same random distributions. In Gauss-
Markov model, a randomly placed object determines
its moving speed and direction randomly. After a fixed
period of time (5 sec. in our setting), the object alters
the speed and direction according to Gaussian distri-
butions with the current values of speed and direction
as their respective means. To preclude extreme val-
ues, any randomly generated value outside the range
[µ − 2σ, µ + 2σ] was discarded and regenerated, where
µ and σ are mean and standard deviation of the dis-
tribution, respectively. In our setting, the standard
deviations of speed and direction are 2.5 m/sec. and
20 degrees, respectively. We further limit the speed
value to the range between 1 and 50 m/sec.

In all experiments, a mobility profile was first gener-
ated by running an object around the deployment field
according to Random Waypoint or Gauss-Markov mo-
bility model. The object took 150,000 moves in each
run to ensure that the resultant mobility profile is sta-
tistically significant. In case of using historical statis-
tics, the mobility profile was then used to construct a
data delivery tree. In case of using the analytic es-
timate, the data delivery tree is constructed by using
estimated weights. Both DAT and MST were used for



tree constructions, resulting in four possible combina-
tions of resultant trees as listed in Table 1. The cost
of a resultant tree was measured by counting the num-
ber of message transmissions that took place when re-
running the object according to the statistical mobility
profile. Figs. 5 and 6 show the obtained results.

0 100 200 300 400 500
0

2

4

6

8

10

12
x 10

6

Number of nodes

C
os

t

 

 
DAT(S)
MST(S)
DAT(A)
MST(A)

Figure 5. Tree costs with object’s movements
driven by Random Waypoint model. All val-
ues are averaged over 100 runs.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Number of nodes

C
os

t

 

 

DAT(S)
MST(S)
DAT(A)
MST(A)

Figure 6. Tree costs with object’s movements
driven by Gauss-Markov model. All values
are averaged over 100 runs.

In both mobility models, DAT using an analytic mo-
bility profile, DAT(A), performs nearly the same as
that using a statistical mobility profile, DAT(S). MST
performs even better with the analytic estimate than
with historical data. This confirms the effectiveness of
the proposed estimate.

When Random Waypoint model was used to simu-
late object’s movements, MST has lower cost than DAT
has regardless of which type of mobility profiles was
used. When object’s movements were driven by Gauss-
Markov model, the results are twofold. MST with an-
alytic mobility profile (MST(A)) still has lower cost
than DATs. However, MST with statistical mobility
profile (MST(S)) has the highest cost among all. This
can be explained as the depths of trees increase with
the number of nodes. The increasing rate is low for
DATs and high for MSTs. In particular, MST(S) under
Gauss-Markov model has the highest increasing rate.
Meanwhile, the maximum weights in mobility profiles
tend to decrease with the number of nodes, devaluing
the design talent of MST. Consequently, MST(S) per-
forms the worst with a large number of nodes in Gauss-
Markov model. The depth increasing rate for MST(A)
is lower than that for MST(S). Therefore, MST(A) still
performs better than both DAT(S) and DAT(A).

5 Conclusions

We have analyzed object crossing rates between any
two sensors deployed in a closed region. The ana-
lytical results serve as a mobility profile that is es-
sential to tree-construction algorithms, which derive
a data-propagation tree from the mobility profile. A
good data-propagation tree can save power on mes-
sage transmissions, prolonging network lifetime. We
have conducted simulations to examine the perfor-
mance with our analytic work. The results show that
an analytical estimate can replace the otherwise his-
torical statistics without any performance degradation.
We also have presented another tree-construction al-
gorithm, MST. Experimental results have shown that
MST using the proposed analytic mobility profile out-
performs previous work.

Acknowledgement

This work has been jointly supported by the Na-
tional Science Council, Taiwan, under contract NSC-
94-2213-E-216-001 and by Chung Hua University under
grant CHU-94-TR-02.

References

[1] V. Annamalai, S. K. S. Gupta, and L. Schwiebert. On
tree-based convergecasting in wireless sensor networks.
In Proc. IEEE WCNC, pages 1942–1947, Mar. 2003.

[2] C. Bettstetter. Smooth is better than sharp: A random
mobility model for simulation of wireless networks. In
Proc. 4th ACM Int’l Workshop on Modeling, Analysis,



and Simulation of Wireless and Mobile Systems, pages
19–27, Rome, Italy, July 2001.

[3] W. R. Heinzelman, A. Chandrakasan, and H. Balakrish-
nan. Energy-efficient communication protocol for wire-
less microsensor networks. In Proc. 33rd Annual Hawaii
Int’l Conf. on System Sciences, pages 1–10, Jan. 2000.

[4] D. B. Johnson and D. A. Maltz. Dynamic source rout-
ing in ad hoc wireless networks. In T. Imieliński and
H. F. Korth, editors, Mobile Computing, pages 153–181.
Kluwer Academic Publishers, 1996.

[5] H. T. Kung and D. Vlah. Efficient location tracking
using sensor networks. In Proc. IEEE WCNC, pages
1954–1961, Mar. 2003.

[6] B. Liang and Z. J. Haas. Predictive distance-based
mobility management for multidimensional PCS net-
works. IEEE/ACM Trans. on Networking, 11:718–732,
Oct. 2003.

[7] C.-Y. Lin, W.-C. Peng, and Y.-C. Tseng. Efficient in-
network moving object tracking in wireless sensor net-
works. IEEE Trans. on Mobile Computing, to appear.

[8] S. M. Ross. Stochastic Processes. John Wiley & Sons,
New York, 2nd edition, 1996.

[9] S. Upadhyayula, V. Annamalai, and S. K. S. Gupta.
A low-latency and energy-efficient algorithm for con-
vergecast in wireless sensor networks. In Proc. IEEE
GLOBECOM, pages 3525–3530, San Fransisco, Dec.
2003.


