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Abstract—A vehicular-fog (VF) system as an emerging plat-
form consists of electric vehicles with computing resources that
are mostly under-utilized. This paper considers a two-tier feder-
ated Edge and Vehicular-Fog (EVF) system, where edge systems
may partially offload user traffic to nearby VFs for potential cost
reduction. Offloading configuration is to determine the ratios and
targets of offloading traffic for maximal cost reduction, which is
formulated as a mixed integer programming problem in this
paper. We first present a decentralized offloading configuration
protocol (DOCP) for an individual edge system to set up its own
offloading configuration. We then propose a matching protocol
among multiple edge systems to resolve resource contention
when they simultaneously request resources from the same VF.
Simulation results show that the proposed approach can leverage
the heterogeneity of cost and capacity between edge systems and
VFs. The proposed protocol outperforms greedy approaches by
at most 40% and is comparable to a centralized off-line approach
that is based on Particle Swarm Optimization.

Index Terms—MEC, vehicular-fog, offloading, matching, net-
work optimization

I. INTRODUCTION

Computation offloading is to shift computation tasks from
one platform to another. In the paradigm of cloud computing,
resource-constrained battery-powered mobile devices may of-
fload computation-intensive tasks to a cloud data center to
speedup the computation, save battery energy, and circumvent
limitations on computation capability and resource capacity of
the devices [1]. However, cloud service provider may charge
mobile devices for the cloud resource usage. Offloading itself
may also incur communication overheads such as extra delay
and energy consumption, which could be the primary concerns
when offloading traffic goes through wireless channels.

Edge computing, or more specifically, multi-access edge
computing (MEC), provides cloud service at the edge of
wireless networks [2]. Compared with cloud computing, MEC
significantly reduces the communication latencies between
servers and end devices [3]. However, MEC server generally
has less resource than cloud data center so a single MEC
system may not have adequate capacity to serve all service
requests. This calls for offloading among MEC servers (i.e.,

horizontal offloading) and between MEC servers and cloud
data centers (i.e., vertical offloading).

In vertical offloading, MEC servers offload tasks to cloud
only when necessary since task execution in cloud generally
causes higher end-to-end latency. It is an optimization prob-
lem how to select offloading tasks to minimize overall cost
while meeting latency constraint with limited MEC resource
capacities.

Recent progress in electric automobile and information
communication technology (ICT) enables Internet of Vehicles
(IoV) [4]. In IoV, vehicles serve not only for transportation
but also as a part of communication and computation infras-
tructure. Vehicular-fog computing (VFC) [5] is an emerging
technology which further turns vehicles into fog nodes that
act as small-scale cloud platforms for vehicles themselves and
other connected devices as well. VFC is suitable for applica-
tions such as autonomous driving and navigation. However,
when a vehicle is parked, the platform goes off which can be
otherwise exploited by other cloud platforms. In this paper,
a vehicular fog (VF) consists of a road side unit (RSU) and
all vehicles associated with it (as VF nodes). RSU acting as
VF manager aggregates and dispatches the resources of idle
vehicles.
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Fig. 1: Two-tier federated EVF architecture

We consider the federation of MECs with VFs to form a
two-tier edge and vehicular-fog (EVF) architecture (Fig. 1).
Most studies on computation offloading in an MEC-vehicle
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coexisting scenario considered offloading computing tasks
from vehicles to MEC servers [6], [7] for energy saving or
better computation power. In fact, EVF also enables vertical
offloading from MEC systems to VFs. Vehicles have been used
for offloading to minimize system response time in traffic
management system [8]. The main idea in our study is to
aggregate otherwise-idle resources on vehicles to share the
workload of dedicated edge servers, for which the potential
benefit is twofold. On one hand, the offloading alleviates
resource demand in MEC and thus reduces operating expense
(OPEX) of MEC systems. On the other hand, the offloading
offers vehicle owners extra payoffs by a better utilization
of their idle resources. The key point is to leverage the
heterogeneity of cost and capacity between edge systems and
VFs for an MEC-to-VF computation offloading to be cost-
effective. However, this potential has been little studied. To
the best knowledge of the authors, the preliminary version of
this paper [9] was the only work on offloading from edge to
VFs. However, that work considered only one edge system. In
this paper, we extend [9] to consider offloading from multiple
edges to VFs.

When an MEC system takes user requests from outside,
it has to decide an offloading configuration, the dispatch of
user requests to execution platforms including its own MEC
servers and selected VFs. The objective is to minimize overall
cost subject to the latency constraint associated with user
requests and also the processing capacities of the MEC and
VFs. As VFs are heterogeneous in terms of cost and capacity,
an optimal offloading configuration involves traffic offloaded
to multiple VFs, each with a distinct amount of workload. With
queuing model for the capacity and workload calculation, we
formulate the optimization as a mixed integer programming
problem. However, we do not intend to pursue an optimal
solution to the problem because the problem is NP-hard and
a globally-optimal solution is hardly attainable as independent
MEC service providers may not have the incentive to conform
to the optimal result. Instead, we propose a decentralized
offloading configuration protocol (DOCP) for individual MEC
system to collect capacity and cost information from each VF,
based on which the system then determines its own offloading
configuration.

DOCP works well in a single-MEC EVF environment.
When multiple MEC systems execute DOCP concurrently
to minimize their respect costs, however, their optimal con-
figurations may be in conflict with one another. This calls
for a conflict-resolution mechanism. We model a conflict-free
set of configurations as a many-to-many matching between
MEC systems and VFs, and propose a decentralized conflict-
resolution protocol on top of DOCP which is patterned after
the deferred acceptance (DA) matching algorithm [10], [11].
Our approach effectively decomposes the goal of overall cost
minimization into local payoff-pursuing subgoals. To this end,
we designate a payoff-related preference function for each
MEC system and each VF that specifies its preference over
potential matching partners. As every participant pursues its
own goal, the overall cost can be generally reduced.

We conducted extensive simulations to study the perfor-
mance of the proposed approach. The results confirm that the

proposed approach can effectively reduce overall cost by lever-
aging the heterogeneity of cost and capacity between MEC
systems and VFs. When compared with other alternatives, the
proposed matching outperforms greedy approaches that prefer
offloading to a VF that has either the most number of vehicles
or the lowest vehicle cost. The performance of the proposed
matching protocol is also comparable to that of Particle Swarm
Optimization algorithm.

In short, the main contributions of this work are summarized
as follows.
• The problem of minimizing overall cost of computation

offloading from multiple MEC systems to multiple VFs
in an EVF system has been formulated.

• A decentralized offloading configuration protocol named
DOCP has been devised for low-cost offloading configu-
ration in individual MEC system.

• A matching protocol on top of DOCP has been proposed
for multiple MEC systems to resolve conflicts among
their offloading configurations.

• The conflict-resolution matching protocol serves as a
group negotiation mechanism for offloading requesters
and providers such that no requester can be better off
by dropping its matching outcome (a property named
individual rationality).

The remainder of this paper is organized as follows. The
next section reviews related work and presents the compu-
tation and communication models of EVF system. Sec. III
formulates the cost minimization problem. In Sec. IV, we
present the details of DOCP for individual MEC system to
perform offloading configuration. The matching protocol for
multiple MEC systems to contend VF resources is detailed
in Sec. V. Sec. VI presents performance evaluation of the
proposed approach and comparisons with other alternatives.
Finally, Sec. VII concludes this paper.

II. BACKGROUND

A. Related Work
Computation offloading is a user-centric use case in cloud

computing. Some early studies have been devoted to user’s
decisions on computation offloading [12], [13]. For mobile
devices in MEC, user’s decision variables may also include
computation speed [14], [15], channel or bandwidth access
[16], [17], transmission power [12] and the ratio of offloading
traffic [14]. Other issues of computation offloading are the
allocation of computation resource [18] and the scheduling of
user’s computation [19]. Recently, researchers have attempted
joint optimizations of offloading decisions and resource allo-
cations [20], [21].

Like mobile devices, fog nodes also have limited com-
putation capability and resource. Some researchers proposed
offloading computation tasks from fog nodes to central cloud
to reduce task execution time and energy consumption of fog
nodes [22]. Huang et al. [23] presented a dynamic offloading
algorithm based on Lyapunov optimization to save energy for
mobile devices while meeting the execution time constraint
of mobile applications. In [24], Liu et al., modeled a multi-
objective optimization problem to minimize energy consump-
tion, execution delay, and payment cost. They proposed an
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approach that finds the optimal offloading probability and
transmit power for each mobile device.

The idea of utilizing storage resource of parking cars is
not new [25]. Hou et al. [5] firstly proposed utilizing parked
and moving vehicles as fog nodes. Wang et al. [8] considered
offloading the workload of a real-time traffic management in
an Internet of Vehicle (IoV) system. To this end, a city is
partitioned into several regions. In each region, a cloudlet is
set up, and nearby parked and moving vehicles are used as
potentially fog nodes which help the offloading. In [26], time-
sensitive and computation-intensive application running on a
mobile device is offloaded to nearby smart vehicles. Before a
vehicle executing the offloading becomes unavailable due to
mobility, the vehicle needs to hand over the job to another
vehicle or return it to the mobile device. The problem is to
find out the right time and the right target for the handover
to minimize energy consumption while meeting the delay
constraint of the application.

Zhou et al. [6] considered a vehicular workload offloading
scenario, where multiple vehicles are under the coverage of
a single RSU. The computation workload of each vehicle is
either processed locally or offloaded to the edge server co-
located with the RSU. The offloading decisions usually give
vehicle users higher quality of experience but also incur pay-
ments. For the edge computing service providers, offloading
brings in revenue but also electricity cost. Zhang et al. [27]
also considered offloading from multiple vehicles to multiple
Vehicular Edge Computing (VEC) servers that are co-located
with RSUs. They modeled it as a Stackelberg game and
proposed a distributed algorithm to maximize the utilities of
both the vehicles and the VEC servers

Lin et al. [9] proposed the first work on offloading from
edge to VFs. They assumed the same system model as this
paper but considered only one edge system with multiple
VFs. In this paper, we extend [9] to consider offloading from
multiple edges to multiple VFs.

Table I summarizes recent offloading studies in vehicular
environment. These studies differ in the direction of offloading
and the number of entities involved.

B. System Model

There are two types of VFs in VFC. In a static VF, vehicles
are parked for hours or even days in a large parking lot (like
those located on airports or train stations). Though vehicles
may still dynamically join or leave a VF, the frequency is not
high so the capacity of a VF does not change dramatically.
Static VF can thus be exploited to host computation-intensive
tasks such as Blockchain-based applications. In a dynamic VF,
vehicles temporarily participate in a VF when they stop by
some locations (e.g., highway rest areas). Because of dynamic-
changing capacity, a dynamic VF may only host lightweight
tasks that are easy to instantiate and terminate. The number
of dynamic VFs can be high enough in some areas such that,
if these VFs are exploited carefully and wisely, we can attain
considerable resources from dynamic VFs.

We consider offloading configuration from multiple MEC
systems to multiple VFs as shown in Fig. 2. In this two-tier

EVF hierarchy, computation workload fed by outside users
into an MEC system can be partially severed by the servers of
the MEC system and partially offloaded to VFs. Meanwhile, a
VF can serve offloading requests from multiple MEC systems.

We assume a set of MEC systems E = {ei}|E|i=1. User
requests coming into MEC system ei form a Poisson process
Ri with mean arrival rate λin

i . The workload comes with
latency constraint Lmax

i . For each MEC system, there is a
traffic splitter which splits user’s traffic among the MEC and
VF systems based on a configured workload splitting ratio.

Each MEC system ei ∈ E has m̂i homogeneous MEC
servers. Among them, mi ≤ m̂i servers will be allocated
to process user’s workload. A single MEC server in ei is
modeled as an M/M/1 queueing system with service rate µi.
Consequently, an allocation of c MEC servers as a whole to
serve workload in a first-come, first-serve manner renders an
M/M/c queue (as in [6]).

We assume a set of VFs F = {fj}|F |j=1, each corresponding
to an on-street or off-street parking lot. The dynamics of
vehicles entering a parking lot have been modeled as an
M/M/C [28], [29] or M/M/∞ queue [30]. We assume that
vehicles join VF fj following a Poisson process with rate aj .
The dwell times of vehicles in fj are assumed i.i.d. exponential
random variables with mean 1/dj . We take the M/M/∞ model
so the number of vehicles in fj is a Poisson distribution with
mean aj/dj . To utilize a vehicle residing in a VF, we should
also consider its residual energy and power consumption rate.
Let pres

j,k and prate
j,k be the amounts of residual energy and power

consumption rate (both in percentage), respectively, of vehicle
k in VF fj . If the vehicle is exploitable only when the residual
energy is not less than pth

j,k percentage, then the maximal usage
time of the vehicle is

tj,k = (pres
j,k − pth

j,k)/prate
j,k . (1)

Note that we assume a non-linear energy consumption model.
Whether a vehicle k in VF fj with maximal usage time tj,k
should be used to share workload offloaded from MEC system
ei is application dependent. Some application only needs to
process short stateless transactions, for which small tj,k should
be enough. However, some other application may demand
large tj,k to avoid overhead associated with stateful workload
migration. Let Di be the minimal service time demanded by
the workload from ei. We use Vj to denote the set of vehicles
in VF fj that are almost surely available with tj,k ≥ Di. Only
vehicles in Vj could be considered for processing offloaded
requests to maintain a certain level of service quality.

When multiple MEC systems offload requests to a common
VF, all requests from the same MEC are collectively processed
by an exclusively allocated set of vehicles. Let vki,j be an
variable indicating where a vehicle k ∈ Vj is allocated to serve
workload offloaded from ei. Define V ij = {k ∈ Vj | vki,j = 1}.
We have

⋃
i V

i
j ⊆ Vj and V ij ∩ V i

′

j = ∅ for any two MEC
systems ei and ei′ .

Similar to MEC system, each vehicle in a VF is also
modeled as an M/M/1 queue with uniform service rate µv.
Therefore, a bundle of c vehicles in the same VF allocated to
process requests offloaded from the same MEC system can be
modeled as an M/M/c queue.
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TABLE I: Recent Offloading Studies in Vehicular Environment

Offloading From Offloading To Our Classification
Ref. [8] Cloud Cloudlets & VFs Cloud to Edge/VF
Ref. [26] Mobile Device Multiple Vehicles Mobile to Vehicle
Ref. [27] Vehicles VEC Servers Vehicle to Edge
Ref. [6] Vehicles Single Edge (RSU) Vehicle to Edge
Ref. [7] Vehicles Multiple Edges Vehicle to Edge
Ref. [9] Single Edge Multiple VFs Edge to VF
This work Multiple Edges Multiple VFs Edge to VF
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Fig. 2: Offloading in Multi-MEC EVF System

Different offloading configurations incur different costs. We
assume that all MEC servers in the same MEC system ei have
identical computation cost ci. So the total computation cost of
ei when it activates mi out of m̂i MEC servers is mici. On
the other hand, we assume that vehicles have heterogeneous
allocation costs. We use ckj to denote the cost of allocating
vehicle k ∈ Vj .

Let λij be the rate of the requests offloaded from ei to fj .
The mean rate of requests locally processed by ei is

λe
i = λin

i −
|F |∑
j=1

λij . (2)

In steady state, λe
i should be less than miµi, where mi is the

number of allocated MEC servers in ei. When the condition
is met, the computation latency of requests served by ei is a
function of mi defined as

lei(mi) =
C(mi, λ

e
i/µi)

miµi − λe
i

+
1

µi
, (3)

where C(c, λ/µ) is Erlang’s C formula [31] defined as

C(c, λ/µ) =
1

1 + (1− ρ)
(

c!
(cρ)c

)∑c−1
k=0

(cρ)k

k!

, (4)

where λ is the arrival traffic rate, µ is the service rate and
ρ = λ/(cµ).

Let nij = |V ij | be the number of vehicles in V ij and lfj,i(n
i
j)

be the computation latency associated with these nij vehicles.
Similar to the case of MEC, we have

lfj,i(n
i
j) =

C(nij , λ
i
j/µv)

nij · µv − λij
+

1

µv
. (5)

We assume that every MEC system has a dedicated channel
to each VF system. The communication delay in each channel
consists of queuing delay, transmission time, and propagation
delay. The queuing delay plus transmission time is modeled as
an M/M/1 queue with mean service rate µef. The propagation
delay is equal to di,j , the distance between ei and fj , divided
by signal speed s. Formally,

lef
i,j =

1

µef − λij
+
di,j
s
, (6)

with λij < µef. This implies that the offloaded traffic cannot
exceed channel capacity.

After processing requests from ei, fj needs to send results
back to ei. The return traffic is supposed to be a portion of
the request traffic. Let εi be the ratio of the return traffic rate
(from fj to ei) to λij . Let µfe be mean service rate of the
channel from a VF to an MEC. The communication delay of
the return traffic, lfej,i, can be estimated by

lfej,i =
1

µfe − λij · εi
+
di,j
s
, (7)

with λij · εi < µfe.
Table II summarizes key notations that will be used in our

problem formulation.

III. PROBLEM FORMULATION

Offloading configuration is to decide the number of allo-
cated MEC servers in each MEC system, the set of allocated
vehicles in each VF for each MEC system, and the offloading
ratio from the MEC system to each VF to minimize overall
cost while meeting the end-to-end latency constraint of each
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TABLE II: Summary of Key Notations

(a) System Parameters/User Requirements (Input)

E Set of MEC systems. E = {e1, e2, . . . }
m̂i Total number of MEC servers in ei
µi Mean service rate of a single MEC server

in ei
ci Cost of allocating an MEC server in ei
F Set of VFs. F = {f1, f2, . . . }
Vj Set of allocable vehicles in fj
µv Mean service rate of a vehicle
ckj Cost of allocating vehicle k in Vj

tj,k Maximal usage time of vehicle k in Vj

lef
i,j Communication latency from ei to fj
lfej,i Communication latency from fj to ei
Di Minimal service time demanded by ei
Lmax

i Latency constraint of user request at ei
λin
i User request arrival rate at ei

(b) Decision Variables (Output)

mi Total number of servers in ei serving λe
i

λi
j Traffic offloaded from ei to fj

vki,j Variable indicating whether k ∈ V i
j .

(c) Auxiliary Variables/Functions

V i
j Set of vehicles in Vj allocated for λi

j

lei(m) Computation latency of m servers in ei
processing λe

i = λin
i −

∑
j λ

i
j

lfj,i(n) Computation latency of n vehicles in fj
processing λi

j

user request. Formally, the objective of offloading configura-
tion is

min
{mi}i,{vki,j}ki,j ,{λi

j}ij

|E|∑
i=1

mici +

|F |∑
j=1

∑
k∈Vj

vki,jc
k
j

 . (8)

The objective is subject to the following constraints.

λin
i −

|F |∑
j=1

λij < mi · µi, ∀i (9)

λij < |V ij |µv, ∀i, j (10)

0 ≤ mi ≤ m̂i, ∀i (11)

0 ≤
|E|∑
i=1

∑
k∈Vj

vki,j ≤ |Vj |, ∀j (12)

lei(mi) ≤ Lmax
i , ∀i,mi > 0 (13)

lef
i,j + lfj,i(|V ij |) + lfej,i ≤ Lmax

i , ∀i, j, λij > 0 (14)

vki,j = 1→ tj,k ≥ Di, ∀i, j, k (15)

vki,j ∈ {0, 1}, ∀i, j, k (16)

Eqs. (9) and (10) ensure that the requests toward ei that
are locally served by ei and offloaded to fj should have
arrival rates lower than the allocated service rates of ei and
fj , respectively. Eq. (11) implies that the number of allocated
servers cannot exceed the number of available servers in ei.
Eq. (12) ensures that the total number of vehicles in fj that
are allocated to serve offloaded requests does not exceed
the number of allocable vehicles. Eq. (13) indicates that the
latency of requests toward ei when being locally served by mi

MEC servers, lei(mi), should not be higher than the associated
latency constraint Lmax

i . For same requests offloaded to and
severed by VF fj , the total latency, including communication
and computation delays, should not be higher than Lmax

i as
well, as indicated by (14). Eq. (15) demands that only vehicles
with usage time not less than the minimal service duration
could be allocated. Eq. (16) limits vki,j to be an indicator
variable.

The cost minimization problem defined above is a mixed
integer programming problem, which can be proven NP-hard
[32]. Therefore, pursuing an optimal solution to the problem
is computationally expensive. Furthermore, MEC systems are
not under the control of a single personnel or authority. In fact,
we assume independent MEC service providers who make
decisions merely for their own business interests. Therefore, a
globally-optimal solution is hardly attainable as MEC service
providers may have no incentive to conform to the optimal
result. We thus propose a decentralized approach for indepen-
dent MEC systems.

IV. DECENTRALIZED OFFLOADING CONFIGURATION
PROTOCOL (DOCP)

This section presents the decentralized offloading configu-
ration protocol (DOCP) for each MEC system ei to determine
its offloading configuration and request vehicles from corre-
sponding VF managers. For each individual MEC system ei,
its local goal is

min
mi,{λi

j}j ,{vki,j}kj
citotal = mi · ci +

|F |∑
j=1

∑
k∈Vj

vki,jc
k
j (17)

subject to the same set of constraints (9) to (16). DOCP also
serves as a basis for the conflict-resolution protocol presented
in the next section.

A. The Protocol

The general behavior of DOCP is as follows. Before an
MEC system determines its offloading configuration, it in-
quires about the workload processing capacity and the as-
sociated cost of each federated VF. After an MEC system
determines its offloading configuration, it requests a certain
number of vehicles from corresponding VF manager. If the
manager grants the request, the manager dispatches subsequent
traffic from the MEC to the set of vehicles allocated for the
MEC.

When workload λin
i with latency constraint Lmax

i and min-
imal service time Di arrives at MEC ei, the proposed EVF
greedy approach presented in Algorithm 1 attempts to allocate
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Algorithm 1 EVF alloci(F, λin
i , L

max
i , Di)

Require: Set of VFs F ; Workload λin
i ; Maximum latency Lmax;

Minimal service time Di

1: S ← ∅; U ← {0} ∪ {j|fj ∈ F}
2: Λ← λin

i ; citotal ← 0; V ← ∅
3: repeat
4: if 0 ∈ U then
5: (λ0, c0)← edge alloci(Λ, L

max
i )

6: end if
7: for all 1 ≤ j ≤ |F |, j ∈ U do
8: (λj , V

i
j , cj)← vfog allocj(Λ, L

max
i , Di)

9: end for
10: u← arg maxj∈U{λj/cj}
11: if λu ≤ Λ then
12: if u = 0 then
13: S ← S ∪ {ei}
14: else
15: S ← S ∪ {fu}
16: V ← V ∪ V i

u

17: end if
18: citotal ← citotal + cu
19: Λ← Λ− λu

20: end if
21: U ← U \ {u}
22: until Λ = 0 or U = ∅
23: (λe

i, c
e
i)← edge alloci(λi, L

max
i )

24: if λe
i ≥ λin

i and ce
i ≤ citotal then

25: return ({ei},∅, ce
i)

26: else
27: return (S,V, citotal)
28: end if

λin
i to MEC ei and/or several VFs to minimize overall cost. The

algorithm first resets the solution set S and initializes candidate
set U to contain MEC ei and all VFs. The processing load to
be allocated, Λ, is set to λin

i initially. For each element j ∈ U
that has not been included to S, the algorithm calculates its
service capacity λj and associated cost cj . This is done by call-
ing either edge alloci(Λ, L

max
i ) or vfog allocj(Λ, L

max
i , Di),

depending on whether j is ei or a VF. Among all candidates
in U , the algorithm then selects u ∈ U that has the highest
service capacity per unit cost, includes u into S, and deducts
its capacity λu from Λ. The selection process repeats if neither
Λ nor U is empty. After the selection process completes, the
algorithm then compares the result with that of zero offloading,
i.e., λij = 0 for all j. Zero offloading will be chosen if it is
feasible and has lower total cost.

Let λe
i = λin

i −
∑
j λ

i
j be the rate of requests locally

processed by ei. Zero offloading is feasible if lei(mi) ≤ Lmaxi

for some mi ≤ m̂i with λe
i = λin

i . As the MEC is modeled
as an M/M/c queue, we can easily calculate lei(mi) given λe

i

and mi. Fig. 3 shows the relationship between the latency
(mean waiting time) and the number of servers in M/M/c.
Given workload λ and latency constraint Lmax, Algorithm 2
attempts allocating a minimal number of servers in ei for
zero offloading, and calculates the associated cost. If zero
offloading is not feasible, Algorithm 2 figures out the maximal
workload (request arrival rate) that ei can process while still
meeting the latency constraint. This can be done using the
Bisection method [33] as shown in Algorithm 3.

Algorithm 4 details the allocation of vehicles in a VF fj
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Fig. 3: Latency vs. the number of allocated servers

Algorithm 2 edge alloci(λ, Lmax)

Require: Number of MEC servers: m̂i; Workload λ; Latency con-
straint Lmax

1: mi ← 0; L′ ←∞
2: while mi < m̂i and L′ > Lmax do
3: mi ← mi + 1
4: L′ ← lei(mi)
5: end while
6: if L′ ≤ Lmax then
7: λmax ← λ
8: else
9: λmax ← max capacityi(λ,L

max,mi)
10: end if
11: return (λmax,mici)

for processing workload λ with latency constraint Lmax and
service duration D. The vehicle allocation is more complicated
than edge server allocation in ei due to heterogeneous vehicle
cost and usage time in VF. Rather than just determining the
number of allocated vehicles, the algorithm needs to determine
whether to allocate each individual vehicle k ∈ Vj with
allocation cost ckj and usage time tj,k so as to meet the
associated latency constraint Lmax yet minimize the vehicle
allocation cost. We construct V ij by a heuristic that considers
both costs and usage times of vehicles. Initially, V ij is set to
empty. All vehicles in Vj with usage time not less than D
are qualified for allocation. The algorithm allocates qualified
vehicles one by one in a non-decreasing order of either their
usage-time-to-cost (U/C) ratios or simply their usage times.
The allocation stops when the latency associated with V ij
is already less than Lmax or when no more vehicle can be
allocated. In the latter case, which means vehicles in V ij cannot
process λ to meet the latency constraint, we calculate the

Algorithm 3 max capacityi(λ, Lmax, n)

Require: Workload λ; Latency constraint Lmax; Number of
servers/vehicles n;

1: λL ← 0; λU ← λ
2: repeat
3: λM ← (λL + λU )/2
4: L′ ← lei(n) . L′ ← lef

i,j + lfj,i(n) + lfej,i in case of VF
5: if L′ ≤ Lmax then
6: λL ← λM

7: else
8: λU ← λM

9: end if
10: until λU − λL ≤ 2γλL

11: return (λL)
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maximal workload λmax that vehicles in V ij can collectively
process with latency equal to or less than Lmax. This value can
also be found using the bisection method.

Algorithm 4 vfog allocj(λ, Lmax, D)

Require: Set of allocable vehicles Vj ; Workload λ; Latency con-
straint Lmax; Minimal service time D

1: U ← {k ∈ Vj |tj,k ≥ D}; V i
j ← ∅; L′ ←∞

2: while U 6= ∅ and L′ > Lmax do
3: v ← maxk∈U{tj,k/ck} or v ← maxk∈U{tj,k}
4: U ← U \ {v}
5: V i

j ← V i
j ∪ {v}

6: L′ ← lef
i,j + lfj,i(|V i

j |) + lfej,i
7: end while
8: if L′ ≤ Lmax then
9: λmax ← λ

10: else
11: λmax ← max capacityj(λ,L

max, |V i
j |)

12: end if
13: return (λmax, V i

j ,
∑

k∈V i
j
ckj )

The time complexity of Algorithm 3 is O(log(λ)). Ac-
cordingly, the time complexities of Algorithms 2 and 4 are
O(mi+log(λin

i )) and O(|Vj | log(|Vj |)+log(λin
i )), respectively.

The main loop in Algorithm 1 comprises at most |F | iterations.
Line 5 in the loop will be executed at most once. For
Line 8, the time complexity will be O(|F |Vmax log(Vmax) +
|F | log(λin

i )) per iteration, where Vmax = maxj |Vj |. It
turns out that the time complexity of Algorithm 1 is
O(|F |2(Vmax log(Vmax) + log(λin

i )) +mi).

B. A Running Example

We present a simple running example of DOCP as follows.
We assume an MEC system ei and two VFs f1 and f2 with
system parameters shown in Table III.

TABLE III: System Parameters of the Running Example

System Service rate Cost Usage time
ei (m̂i = 1) µi = 200 ci = 200 ∞
f1 (n1 = 2) µv = 5 (c11, c

2
1) = (10, 20) ≥ 2

f2 (n2 = 3) µv = 5 (c12, c
2
2, c

3
2) = (5, 20, 50) ≥ 1

Suppose that λin
i = 20 requests per second (rps) and Lmax

i =
1 sec. Because lei(m̂i) = 1/(µi − λin

i ) = 0.0056 does not
exceed Lmax

i , zero offloading is feasible with cost ci = 200.
For VF f1, since all vehicles in V1 have a usage time larger
than Lmax

i , they can be exploited with aggregated service rate
2µv = 10 rps. With this service rate, the total latency L′ >
Lmax
i if f1 alone is to process λin

i . So Algorithm 4 calculates
λmax = max capacity1(20, 1, 2) = 8.9 which is the maximal
workload f1 can process without latency exceeding Lmax

i . The
cost associated with this allocation is

∑
k c

k
1 = 30. Similarly,

λmax = 13.9 with cost 75 for f2. Algorithm 1 then chooses
among ei, f1, and f2 a system with the highest capacity–to-
cost ratio. As shown in Table IVa, f1 will be chosen firstly to
process a portion of λin

i , leaving a workload λ = 20− 8.9 =
11.1 to ei and f2. In the second round, f2 will be chosen
due to its higher capacity–to-cost ratio. The allocation of all

TABLE IV: Algorithm Execution

(a) λin
i = 20

Round 1 2

λj/cj
ei 20/200 = 0.10 11.1/200 = 0.06
f1 8.9/30 = 0.30 N/A
f2 13.9/75 = 0.19 11.1/75 = 0.15

Selection f1 f2
Cost (Subtotal) $30 $105

(b) λin
i = 200

Round 1 2

λj/cj
ei 199/200 = 0.96 N/A
f1 8.9/30 = 0.30 6/30 = 0.20
f2 13.9/75 = 0.19 6/25 = 0.24

Selection ei f2
Cost (Subtotal) $200 $225

vehicles in f2 leaves no more workload to process. The total
cost turns out to be 105.

If we increase λin
i to 205 rps, ei will has a higher

capacity–to-cost ratio than either f1 or f2. So ei with capacity
199 rps (after rounding) will be selected in the first round
(Table IVb), leaving workload 6 rps for process. Note that
f1 has a higher capacity–to-cost ratio than f2 in the first
round. However, f1’s superiority over f2 no longer holds in
the second round because both VFs allocate two vehicles for
processing the remaining workload but the cost associated with
f1 is higher than that with f2.

V. MATCHING PROTOCOL FOR MULTIPLE MEC SYSTEMS

We next present a matching protocol based on request-
response paradigm for multi-MEC multi-VF EVF architecture.
In a general framework of this protocol, each MEC system
independently selects a set of VFs to submit its offloading re-
quest. As a VF may receive offloading requests from multiple
MEC systems at a time, it tentatively grants a set of requests
while rejecting the others without coordination with other VFs.
An MEC system with requests rejected may submit requests
to other VFs subsequently. On the other hand, a VF may later
reject a request that was tentatively granted previously as long
as the VF can be better off by doing so. The negotiation
process ends when every MEC system has no request remained
to submit.

In the context of matching theory, the set of MEC systems
E and the set of VFs F are two groups of agents. A matching
relation maps an MEC system ei to a VF ej and reversely if
λij > 0. The matching relation is many-to-many [34] because
an MEC system can offload its workload to multiple VFs
while a VF can serve offloading requests from multiple MEC
systems.

In the proposed approach, each ei ∈ E decides the set of
VFs to submit requests based on a preference relation �ei
defined on all possible sets of VFs. For any two sets of VFs
S, T ⊆ F , relation S �ei T indicates ei prefers S to T .
Likewise, each fj ∈ F decides the set of requests to grant
based on a preference relation �fj defined on all possible
sets of MEC systems. For any two sets of MEC systems
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S, T ⊆ E, relation S �fj T means fj prefers S to T . For each
ei ∈ E and F ′ ⊆ F , we define C(F ′,�ei) to be ei’s most-
preferred subset of F ′ according to ei’s preference relation
�ei . Similarly, for each fj ∈ F and E′ ⊆ E, we define
C(E′,�fj ) to be fj’s most-preferred subset of E′ according
to fj’s preference relation �fj .

A. The Protocol

The matching protocol proceeds in rounds. In each round,
each MEC system ei independently uses Algorithm 1 to obtain
an offloading configuration which specifies the possible set of
vehicles (V ij ⊆ V) to be requested from each VF fj ∈ S.
If ei itself also processes user’s workload (i.e., ei ∈ S), its
capacity λei is first calculated and deducted from the whole
workload Λ. If there is any VF in the offloading configuration,
ei then selects the most-preferred subset of VFs in S (i.e.,
C(S \{ei},�ei)) to submit its resource request. If the request
to some fj is accepted, the amount of workload to be offloaded
to fj , λij , is calculated and deduced from Λ. Otherwise,
if ei receives a rejection that corresponds to a previously
accepted request, the amount of workload corresponding to
the request is added back to Λ. The process repeats until no
more offloading request is needed or possible. The detailed
procedure for each ei is shown in Algorithm 5.

Algorithm 5 Procedure for each ei ∈ E
1: Λ← λin

i

2: Ai ← ∅ . Set of VFs that accept ei’s requests
3: (S,V, citotal)← EVF alloci(F,Λ, Lmax

i , Di)
4: if ei ∈ S then
5: (λe

i, c
e
i)← edge alloci(Λ, L

max
i )

6: Λ← Λ− λe
i

7: end if
8: while V 6= ∅ do
9: Pi ← C(S \ {ei},�ei)

10: send req(|V i
j |,mvi,j) to each fj ∈ Pi

11: for all decision received from each fj do
12: if decision = ACCEPT then
13: Ai ← Ai ∪ {fj}
14: λi

j ← max capacityj(Λ, L
max
i , |V i

j |)
15: Λ← Λ− λi

j

16: else if decision = REJECT and fj ∈ Ai then
17: Ai ← Ai \ {fj}
18: Λ← Λ + λi

j

19: end if
20: end for
21: F ← F \ Pi

22: (S,V, citotal)← EVF alloci(F,Λ, Lmax
i , Di)

23: end while

A potential issue of this procedure is that the result may not
be individually rational for MEC systems. That is, with the
outcome, some MEC system can be better off by dropping
its matching with some VF. For example, suppose that ei
sends a request to each VF in C(S \{ei},�ei) = {f1, f2, f3}
but only f2 and f3 accept ei’s request. If {f2, f3} ⊆ C(S \
{ei, f1},�ei), then ei may send further requests to all VFs
in C(S \ {ei, f1},�ei) for the most-preferred result when
f1 is excluded from consideration. However, if {f2, f3} 6⊆
C(S \ {ei, f1},�ei), ei would have been more satisfied if
VF f2 or f3 (or both, depending on whether the VF is in

C(S \{ei, f1},�ei)) denied its request. This happens because
vehicles have heterogeneous allocation costs.

To ensure individual rationality, we define C(F,�ei) to be
ei’s most-preferred VF in F (a singleton). Formally,

C(F,�ei) = {fj ∈ F | {fj} �ei {f ′j},∀fj′ ∈ F}, (18)

where {fj} �ei {f ′j} if fj = f ′j or {fj} �ei {f ′j}.
For MEC system’s preference over set of VFs, we define

MEC ei’s preference value over each VF fj ∈ F to be
Pi(fj) = |V ij |, the number of vehicles to be allocated from
fj . Accordingly, we have the following definition for each
F ′ ⊆ F :

C(F ′,�ei) = {fj ∈ F ′ | |V ij | ≥ |V ij′ |,∀fj′ ∈ F ′}. (19)

We prove that all matching results are individually rational for
all MEC systems in the Appendix.

On the other hand, a VF grants all received offloading
requests as long as it has adequate resource. If the VF’s
resource is not enough for all the offloading requests, the VF
selectively grants some requests while denying the others. The
key to the selection rule here is to minimize overall cost as
much as possible. In the proposed approach, VF fj’s selection
is based on the reduction of each ei’s total cost when fj
serves ei. Let citotal(F ) be the total cost of ei returned by
EVF alloci(F, λin

i , L
max
i , Di) (cf. Algorithm 1) when ei and

all VFs in F participate in the offloading configuration. The
marginal value of fj with respect to ei is

mvi,j = citotal(F \ {fj})− citotal(F ). (20)

The notion of marginal value is based on Social Welfare
Maximization [35]. Note that fj’s marginal value with respect
to ei is calculated and informed by ei.

VFs receive requests in rounds. Let E(k) be the set of MEC
systems from which requests have been received by VF fj
in round k ≥ 1. Let A(k)

j be the set of all MEC systems
whose requests were accepted in some round k′ < k and are
not yet rejected by fj in the beginning of round k. The set
of MEC systems whose requests considered by fj in round
k is A(k)

j ∪ E(k). Theoretically, fj should select a subset of
this set E′ to grant requests so as to maximize

∑
ei∈E′ mi,j

(subject to fj’s resource constraint). Formally, given a set of
MEC systems E, let Ωj(E) be the set of all subsets of E with
aggregated demand not exceeding fj’s supply. By (20).

C(E,�fj ) = arg max
E′∈Ωj(E)

∑
ei∈E′

mvi,j (21)

It is not difficult to see that finding C(E,�fj ) is exactly
the 0/1 Knapsack problem, which is NP-complete. We take
a greedy approach by granting MEC system’s requests one by
one in a non-increasing order of their marginal values. After
determining Pj = C(A

(k)
j ∪ E(k),�fj ), any request by MEC

system in Pj \A(k)
j should be accepted while those by MEC

systems in E(k) \ Pj and A(k)
j \ Pj should be rejected. Refer

to Algorithm 6 for details.
The main loop of Algorithm 5 will be executed at most
|F | times, where Line 9 takes O(|F |) and Line 14 takes
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Algorithm 6 Procedure for each fj ∈ F
1: Aj ← ∅ . Set of MECs whose requests are accepted
2: for all round t ∈ {1, 2, · · · } do
3: E ← {ei ∈ E | req(ni

j ,mvi,j) is received in round t}
4: if E 6= ∅ then
5: Pj ← C(Aj ∪ E ,�fj )
6: if Pj �fj Aj then
7: send ACCEPT to each ei ∈ Pj \Aj

8: send REJECT to each ei ∈ E \ Pj

9: send REJECT to each ei ∈ Aj \ Pj

10: Aj ← Pj

11: else
12: send REJECT to each ei ∈ E \Aj

13: end if
14: end if
15: end for

O(log(λin
i )) time. Therefore, the time complexity of Algo-

rithm 5 is O(|F |3(Vmax log(Vmax) + log(λin
i )) + |F |mi). For

Algorithm 6, the maximal number of rounds is |F |. In each
round, Line 5 takes O(|E| log(|E|)) time. Therefore, the time
complexity of Algorithm 6 is O(|F ||E| log(|E|)).

B. Running Examples

We use two examples to illustrate the execution of the
proposed matching protocol. We assume two MEC systems
and three VFs with settings shown in Table V.

TABLE V: Parameters (Case 1)

(a) Settings of MEC Systems

MEC µi ci λin
i Lmax

i

e1 100 100 10 1
e2 200 200 20 1

(b) Settings of VFs

VF nj µv ckj
f1 2 5 8
f2 3 5 10
f3 5 5 9

TABLE VI: Execution of the matching protocol (Case 1)

Round MEC |V i
1 |, |V i

2 |, |V i
3 | Request Result

1st e1 2, 0, 1 req(2, 2) to f1 Accept
e2 2, 0, 3 req(3, 3) to f3 Accept

2nd e1 0, 0, 1 req(1, 1) to f3 Reject
e2 0, 0, 2 req(2, 2) to f3 Accept

3rd e1 0, 1, 0 req(1, 90) to f2 Accept
e2 N/A N/A N/A

Table VI shows the execution of the proposed matching
protocol. In the first round, e1 and e2 prefer and send requests
to f1 and f3, respectively. Both requests are granted as there
is no conflict between them. After the first round, both e1

and e2 have remaining workload. In the second round, they
both contend for the vehicles in f3. Because f3 has only
two vehicles left, it cannot grant both requests. Because
mv2,3 > mv1,3, f3 grants e2’s request and rejects e1’s. In
the third round, e1 is the only requester whose request gets
accepted due to adequate resource. Note that mv1,2 in the last

round is quite high. The reason is that without the resource
provided by f2, e1 would have to activate its own costly
servers to process the remaining workload.

TABLE VII: Parameters (Case 2)

(a) Settings of MEC Systems

MEC µi ci λin
i Lmax

i
e1 100 100 110 1
e2 200 200 2 1

(b) Settings of VFs

VF nj µv ckj
f1 2 5 8
f2 3 6 10
f3 5 8 12

We use the second example to show the impact of VF’s on
overall cost. We use the same setting as the previous example
except λin

i ’s and µv’s (Table VII). In the first round, e1 and
e2 both send requests to f1 which needs to reject one of
these requests because f1 does not have enough vehicles. If
f1’s decision is based on marginal values as in the proposed
approach, it will accept e1’s request while rejecting e2’s
as shown in Table VIII. The total cost is $32 with three
vehicles allocated. If, alternatively, the decision is based on the
number of vehicles requested, f1 will reject e1’s request while
accepting e2’s as shown in Table IX. The total cost becomes
$36 with four vehicles allocated. Taking marginal value as
preference is better than the alternative in this example.

TABLE VIII: Execution of the matching protocol (Case 2)

Round MEC |V i
1 |, |V i

2 |, |V i
3 | Request Result

1st e1 2, 1, 0 req(2, 0) to f1 Reject
e2 1, 0, 0 req(1, 2) to f1 Accept

2nd e1 0, 0, 2 req(2, 4) to f3 Accept
e2 N/A N/A N/A

TABLE IX: Execution of the matching protocol with alterna-
tive preference (Case 2)

Round MEC |V i
1 |, |V i

2 |, |V i
3 | Request Result

1st e1 2, 1, 0 req(2, 0) to f1 Accept
e2 1, 0, 0 req(1, 2) to f1 Reject

2nd e1 0, 1, 0 req(1,−) to f2 Accept
e2 0, 1, 0 req(1,−) to f2 Accept

VI. NUMERICAL RESULTS

We conducted simulations to evaluate the performance of
DOCP and the proposed matching protocol. All the simulation
programs were written in Python. We assumed a disk-shaped
coverage area with radius 100 km, where MEC systems and
VFs were randomly distributed. Every result is an average of
50 trials.

A. Performance of DOCP

We first considered an EVF system consisting of an MEC
system and 10 VFs. Other parameters are listed in Table Xa.

We varied mean user traffic rate λin
i to study how it relates to

total cost. Fig. 4a shows the results of the proposed approach.
We observe that when user traffic rate is low, say λin

i < 500
rps, the proposed approach prefers offloading user traffic to
VFs instead of processing it locally by MEC servers. The
reason is that when user traffic is far beyond the capacity
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TABLE X: Simulation parameters

(a) Single-MEC EVF System

Parameter Default Value
m̂i 5
nj [10, 100]
µi 200 rps
µv 5 rps
ci $200
ckj $[1,50]
µef 1250 rps
µfe 1250 rps
εi 0.01

(b) Multi-MEC EVF System

Parameter Default Value
m̂i [1, 10]
nj [20, 100]
µi [100, 200] rps
µv 5 rps
ci $[100, 200]
ckj $10
µef 1250 rps
µfe 1250 rps
εi 0.01

of a single MEC server, offloading the workload entirely to
VFs provides a more cost-effective solution. As user traffic
rate increases, exploiting MEC servers to take some workload
becomes more cost-effective than offloading the entire work-
load to VFs. The offloading configuration found by DOCP is
therefore a mixture of local computation and offloading. When
the user traffic rate increases to some point, all MEC servers
must be activated to handle user traffic first and then VFs
handle all the remaining workload. Consequently, the total cost
increases when λin

i > 1000 rps merely due to the contribution
of VFs.

We used another setting to observe the scenario more
clearly. We took the same configuration but replaced the five
servers in ei with a single big server. The service rate and cost
of the big server were both five times of the original server.
As shown in Fig. 4b, the result is identical to previous one
when λin

i < 500 or λin
i > 1000 rps. When λin

i is set to some
value in between, the total cost comes from a mixed use of the
MEC server as VFs. However, the total cost is slightly higher
than that of the previous setting. This is because the previous
setting provides finer granularity of computation resource than
this one.

We next varied the latency constraint Lmax
i and measured

total cost. Fig. 5a shows the result with λin
i = 100 rps. The

amount of resource needed to meet a tight latency constraint is
large, so MEC servers are more cost-effective than vehicles.
When we loosen the latency constraint to Lmax

i > 0.2 sec.,
VFs are instead exploited because vehicles become more cost-
effective than MEC servers. Doing so reduces the total cost
from $200 to around $40.

Fig. 5b shows a result with heavy user traffic (λin
i = 1500

rps). With this workload, MEC servers alone are not capable
to process all user traffic while meeting the latency constraint.
Additional vehicles are always needed for offloading. Partic-
ularly, all vehicles are used when Lmax

i < 0.3 sec. However,
the number of vehicles for offloading dramatically decreases
as the latency constraint is loosened. This explains the sharp
curve of the total cost.

B. Performance of Matching Protocol

We considered a scenario with five MEC systems and 20
VFs. Besides the parameters listed in Table Xb, we also
assumed vehicle arrival rate aj and departure rate dj for each
VF fj . The values of aj’s and dj’s were randomly determined
within the range [0, 20]. The service rate of each vehicle was 5

rps. All MEC servers in the same MEC systems had identical
service rate, though service rates in different MEC systems
were randomly determined.

We used normal distribution to set user traffic rate λin
i for

each ei ∈ E. We varied the mean of the distribution from 0 to
1000 rps, with the standard deviation set to one-fourth of the
mean. Fig. 6a shows the result of using the proposed matching
protocol. Reasonably, the total cost increases as the user traffic
increases. When the mean of λin

i does not exceed 40 rps, all
the workload is handled by VFs only. When the mean of λin

i

is greater than 40 rps, MEC servers are introduced to share
the workload so as to minimize overall cost. As the workload
increases to some point, the MEC servers alone are unable to
process all user traffic so unsatisfied workload are offloaded to
VFs. Starting from that point, the total cost is in proportional
to the cost of VFs (Fig. 6b).

We also used exponential distribution to generate user
traffic, but do not observe significant difference.

We next studied whether the granularity of MEC service rate
affects the total cost. This was done by varying the number
of servers in each MEC system and dividing the total service
rate of an MEC system equally to each server. Fig. 7 shows
how the total cost increases with increasing user traffic rate
when each MEC system has 1, 2, or 4 MEC servers. The result
indicates that finer granularity of MEC service rate generally
leads to lower total cost, which is consistent with our results
in single-MEC systems.

We investigated the impact of vehicle cost on the offloading
ratio and thus the total cost. The cost of each vehicle was
varied from $0 to $20. As Fig. 8 shows, when the cost of a
vehicle is not higher than $4, only vehicles are used so the
total cost is contributed by VFs only. When the vehicle cost
is higher than $4, MEC servers become more cost-effective
than vehicles and thus are used with priority. When all MEC
servers are used but VFs are still needed for offloading, the
total cost increases simply because the vehicle cost increases.

C. Comparisons With Other Approaches

As a comparison, we consider three alternatives to the
proposed matching algorithm. The first two, NumFirst and
CostFirst, are greedy and centralized heuristics. They first
determine the amount of user traffic to offload for each MEC
system using Algorithm 1 and then match MEC systems
with VFs in a greedy manner. Both approaches pick up an
MEC system with the most remaining workload. For the VF
matching with this MEC system, NumFirst finds a VF that
has the most number of vehicles while CostFirst finds a VF
that has the lowest cost. This matching process repeats until
no MEC system has remaining workload to be offloaded.

The third alternative is Particle Swarm Optimization (PSO)
algorithm. PSO as a meta-heuristic method was first intro-
duced in [36] and has been applied to solve complicated
and hard optimization problems in many applications. PSO
represents potential solutions to an optimization problem as
a swarm of particles or organisms that move like a flock of
birds. It iteratively modifies existing solutions by moving the
particles around the search-space with the new position of
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Fig. 4: Total cost related to mean user traffic rate (a) m̂i = 5, µi = 200 rps, ci = $200 (b) m̂i = 1, µi = 1000 rps, ci = $1000.
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Fig. 5: Cost vs. latency constraint (a) λin
i = 100 rps (b) λin

i = 1500 rps.
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Fig. 6: Total cost vs. mean user traffic rate (a) λin
i = 0 to 200 rps (b) λin

i = 0 to 1000 rps.

0 50 100 150 200

Mean user traffic rate (
i

in
)

0

500

1000

1500

2000

T
o

ta
l 
c
o

s
t 

($
)

1 MEC server

2 MEC servers

4 MEC servers

Fig. 7: Total costs with different numbers of MEC servers (m̂i)

each individual particle determined by the particle’s local best-
known position, the particle’s own moving velocity, and the

0 5 10 15 20

Cost of vehicle ($)

0

200

400

600

800

1000

1200

1400

1600

C
o
s
t 
($

)

Total

MEC

VF

Fig. 8: Total cost affected by the cost of each vehicle

global best-known position of all the particles. The solution-
seeking process essentially mimics flocking behavior of birds.
Generally speaking, the quality of solutions produced by PSO
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depends on the maximum number of iterations allowed to
move particles.

We first fixed vehicle cost and compared the proposed
matching protocol with NumFirst and CostFirst. Fig. 9 shows
the results. When user traffic rate is low, the proposed approach
outperforms both NumFirst and CostFirst. The performance
of NumFirst is similar to CostFirst when user traffic rate is
low but becomes better than CostFirst with high user traffic
rate. CostFirst does not perform well because vehicle costs are
homogeneous in this setting.

We next conducted experiments with vehicle costs randomly
determined as specified in Table Xb. The results are shown
in Fig. 10. The proposed approach again has the lowest
costs in all settings of user traffic rates. The superiority of
our approach is particularly significant (around 40% cost
reduction) with high user traffic rate. Here CostFirst performs
better than NumFirst, which can be justified as vehicle costs
are heterogeneous in these experiments.

Fig. 11 compares the costs of the proposed matching
with those of PSO with two different settings of maximum
iterations (maxiter). The proposed matching performs much
better than PSO with maxiter = 50 and slightly worse than
PSO with maxiter = 500, which is not a surprise. Despite
the results, we emphasize that PSO is a centralized off-line
approach not suitable to be used as a protocol executing in
a dynamic environment. The proposed matching is inherently
distributed and can serve as a practical solution in the proposed
EVF environment.

VII. CONCLUSIONS

We have proposed a two-tier EVF architecture for the real-
ization of computation offloading from MEC systems to VFs.
The optimal offloading problem which minimizes overall cost
has been modeled as a mixed integer programming problem.
As a decentralized approach, we have proposed DOCP for
each MEC system to independently decide its own offloading
configuration. We also have developed a matching protocol for
multiple MEC systems to contend VF nodes simultaneously.
The outcomes of the proposed matching protocol are always
individually rational for any MEC system.

Simulation results have demonstrated that DOCP and the
proposed matching protocol successfully help cost reduction
by leveraging the heterogeneity of cost and capacity between
MEC systems and VFs. The proposed matching protocol out-
performs greedy approaches that prefer offloading to a VF that
has either the most number of vehicles or the lowest vehicle
cost. The performance of the proposed matching protocol is
also comparable to that of PSO-based algorithm.

As a future work, we shall study the impact of vehicle
mobility on the efficiency of offloading. We also plan to study
the economic model when MEC systems have to bid for the
resources they need. An extension to the EVF architecture
that includes cloud systems as potential offloading targets also
deserves future study.
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Fig. 9: Total cost comparison with fixed vehicle cost (a) λin
i ∈ [0, 200] (b) λin

i ∈ [0, 600].
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Fig. 10: Total cost comparison with dynamic vehicle cost (a) λin
i ∈ [0, 200] (b) λin

i ∈ [0, 600].
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Fig. 11: Total cost comparison with PSO (a) λin
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APPENDIX A
INDIVIDUAL RATIONALITY FOR MEC SYSTEMS

To ensure the individual rationality of any matching out-
come for an MEC system ei, ei’s preferences must be substi-
tutable defined as follows.

Definition 1: An MEC system ei’s preference relation �ei
is substitutable if, for any fj ∈ F and any two sets of VFs,
F ′ and F ′′, with F ′′ ⊆ F ′ ⊆ F , we have

fj ∈ C(F ′ ∪ {fj},�ei)→ fj ∈ C(F ′′ ∪ {fj},�ei). (22)

Intuitively, ei’s preference is substitutable if whenever a VF
fj is in ei’s most-preferred set when VF set F ′ plus fj is
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considered, fj must also be in ei’s most-preferred set when
any smaller set F ′′ ⊆ F ′ plus fj is considered. The following
theorem shows that the preference of an MEC system is
substitutable.

Theorem 1: The preference of any MEC system is substi-
tutable.

Proof: For every ei ∈ E, let fj ∈ C(F ∪ {fj},�ei). By
(18), |V ij | ≥ |V ij′ | for all fj′ ∈ F ∪ {fj}. Therefore, |V ij | ≥
|V ij′ | for all fj′ ∈ F ′ ∪ {fj}, where F ′ ⊆ F . Consequently,
fj ∈ C(F ′ ∪ {fj},�ei) for every F ′ ⊆ F .

We now justify why all matching results are individually
rational for any MEC system. For each ei ∈ E, let F (k) denote
the set of VFs that are considered by ei as the potential targets
of its offloading requests in round k. We know that F (1) = F
for all ei ∈ E. For k ≥ 1, if ei ever submits a request in
round k + 1, some fj ∈ C(F (k),�ei) must have rejected
ei’request in round k and thus fj has been removed from ei’s
consideration in round k+1. Therefore, F (k+1) ⊂ F (k). Now,
if some fj ∈ C(F (k),�ei) accepts ei’s request, it must be in
fj ∈ C(F (k+1),�ei) because ei’s preference is substitutable.
We can prove that this holds for every k ≥ 1 by mathematical
induction. We conclude that ei definitely cannot be better off
by decontracting the matching with any fj that accepts ei’s
request. So all matching results are individually rational for
all MEC systems.


