
Minimizing Energy Expense for Chain-Based Data Gathering in
Wireless Sensor Networks∗

Li-Hsing Yen, Ming-Zhou Cai, Yang-Min Cheng, and Ping-Yuan Yang
Department of Computer Science and Information Engineering

Chung Hua University, Taiwan 300, R.O.C.
E-mail: lhyen@chu.edu.tw

Abstract

This paper aims tominimize energy expense for chain-
based data gathering schemes, which is essential to pro-
long operation lifetime of wireless sensor networks. We
propose the concept of virtual chain, where an edge may
correspond to a multi-hop data propagation path to con-
serve power. In contrast, an edge in previous work can
only be a costly direct communication link. Furthermore,
we propose a power-efficient leader scheduling scheme
which selects the node that has the maximum residual
power to be the leader of the chain. In contrast, nodes
in previous work play the role of leader by turns, which
results in non-uniform energy consumption among sen-
sors. Simulation results show that our strategies success-
fully conserve power.

1. Introduction

Rapid progress in wireless communications and
micro-sensing MEMS technology has enabled the de-
ployment of wireless sensor networks. A wireless sensor
network consists of a large number of sensor nodes de-
ployed in a region of interest. Each sensor node is
capable of collecting, storing, and processing environ-
mental information, and communicating with other
sensors.

Data gathering refers to the process of collecting
sensed data from every sensor to a distant base sta-
tion (BS), where end users can access the data [10].
Since sensor nodes are usually battery powered, power-
conserving techniques are essential to prolong opera-
tion lifetime of sensor network. One such technique is
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data fusion [8], which is the process of automatic com-
bining or aggregating sensed data. Another technique
is multi-hop transmission, which replaces the other-
wise direct transmission between every sensor and the
BS. Multi-path transmission consumes less energy than
corresponding direct transmission does since radio sig-
nal attenuation varies nonlinearly with distance [10].

To facilitate data fusion and multi-hop transmis-
sion, many existing data gathering approaches orga-
nize nodes into clusters [10, 9], a tree [1, 17], or a chain
[13, 7]. Cluster-based approaches are inherently dis-
tributed, but they may not effectively minimize power
dissipation [13]. Both tree-based and chain-based ap-
proaches have reported less energy consumption when
compared with their cluster-based counterparts. Tree-
based approaches allow simultaneous data transmis-
sions so the data collection latency is expected to be
low. However, simultaneous transmission requires so-
phisticated slot/code scheduling to prevent potential
transmission collisions [1, 17]. In a chain-based scheme,
nodes take turns in transmitting so simultaneous trans-
mission is impossible. The transmission is thus collision
free.

Once a chain has been formed, data are propagated
from both ends of the chain toward a designated sen-
sor node called leader. The leader then transmits the
aggregated data directly to the BS. Energy expense
in each round of data collection thus consists of two
parts. One is for inter-sensor communication that de-
pends on the structure of the chain. The other is for
leader-BS communication that mainly depends on the
in-between distance.

This paper aims to minimize energy expense for
chain-based data gathering schemes. Finding an
energy-optimal chain structure is similar to the trav-
eling salesperson problem on a complete graph and
thus NP-hard1, so existing chain-construction algo-

1 Not returning to the starting node (as a chain does) dose not



rithms [13, 7] take heuristic approaches. In these
methods, every edge of the chain corresponds to a di-
rect radio transmission between two nodes, which is
simple but not an optimal approach in terms of en-
ergy use. In this paper, we propose the concept of
virtual chain, where each edge of the chain corre-
sponds to a multi-hop data propagation path to
conserve power. In this way, the chain structure is in-
dependent of the actual data propagation paths among
nodes: the topology superimposed by all data prop-
agation paths is generally a graph rather than a
chain.

The introduction of virtual chain is independent
of chain construction methods: all existing methods
can be used to form virtual chains. Nevertheless, we
propose an additional chain construction scheme that
converts a minimum spanning tree into a chain. This
method yields more energy-efficient chain than PEGA-
SIS does and has lower computational cost than [7].

When the BS is distant from sensors, leader node
will dissipate more power then non-leader nodes. This
would lead to early power exhaustion of the leader, de-
creasing network life time. As a remedy, nodes in pre-
vious work play the role of leader by turns. Unfortu-
nately, such a round-robin leader scheduling still results
in non-uniform energy consumption among sensors as
their distances to the BS vary. We have formulated the
problem of optimal leader scheduling as a linear pro-
gramming problem and proposed a simple scheduling
rule called Maximum Residual Power First (MRPF).
As the name suggests, MRPF selects the node that
has the maximum residual power to be the leader in
each round of data collection. Simulation results show
that MRPF performs only slightly worse than the op-
timal scheduling.

2. Problem Definition and Related
Work

We are given a set of n sensor nodes that are as-
sumed to be static (no mobility). A BS distant from
these sensors is capable of communicating with them
directly by radio. The BS is aware of all sensor’s po-
sitions so that it can run a chain construction algo-
rithm and broadcast the result to all sensors. Each sen-
sor node is assumed to have power control capability
so that minimum energy is expended to reach the in-
tended recipients. A round of data collection is com-
pleted when all sensed data are sent to the BS. The
leader in each round of data collection is selected by
the BS.

change the computational complexity of the problem.

PEGASIS [13] uses a greedy algorithm for chain con-
struction. The farthest node from BS is first added
into the chain as a head. Then the node not in the
chain but closest to the head is appended to the chain
and becomes the new head. The process repeats un-
til all nodes are included in the chain. This simple
method has O(n2) time complexity, but the chains it
produces are typically not power optimal. Du et al. [7]
proposed an improved version of the chain construc-
tion algorithm. Unlike PEGASIS, where a non-chain
node can only be appended to the end of the chain, in
[7] the node can be considered inserting into any po-
sition within the chain to minimize the increase of en-
ergy use due to the addition of the node. In each round
of the chain construction process, the node that in-
creases energy to the minimum possible extent will be
added into the chain. The constructed chains are gen-
erally power efficient, but the time complexity of this
method is O(n3).

Virtual chains can be formally defined as follows.
Consider two arbitrary nodes X and Y. Let a data
propagation path starting at X and ending at Y be de-
noted by PX,Y , which is a sequence of nodes X = xi,
xi+1, . . . , xj = Y , where j ≥ i+1. The length of PX,Y ,
|PX,Y |, is defined to be the number of elements in PX,Y

minus one. A sequence of n nodes x1, x2, . . . , xn with
VP = {Pxi,xi+1 |1 ≤ i ≤ n} is a virtual chain if there ex-
ists some Pxi,xi+1 ∈ VP such that |Pxi,xi+1 | > 1. It is a
conventional chain otherwise.

We use the same model described in [10] to express
energy dissipation caused by radio transmission, which
has been commonly adopted [9, 13, 7, 17]. The radio
dissipates Eelec = 50 nJ/bit to run the transmitter or
receiver circuitry and the transmitter amplifier spends
εamp = 100 pJ/bit/mα to achieve an acceptable signal-
to-noise ratio, where α is the path exponent that indi-
cates the rate at which the pass loss increases with dis-
tance. The value of α typically ranges from 2 to 4, de-
pending on the characteristics of the communication
environment [16]. All above-mentioned papers assume
that α = 2, which is the case in free space. We as-
sume that α = 3, which is typically the path loss ex-
ponent obtained in noisy urban area [16] and thus is
more realistic.

We assume that data fusion is used so that ev-
ery data message has k bits. It follows that if node
x transmits a message to node y, x consumes energy
kEelec + kεampd(x, y)α, where d(x, y) denotes the dis-
tance between x and y, while y expends kEelec. The
energy dissipation per transmission therefore consists
of two parts. One part is of fixed quantity denoted by
δk = 2kEelec. The other depends on α and on the dis-
tance between transmitter and receiver.



Given a data propagation path X = xi,
xi+1, . . . , xj = Y , the cost of PX,Y is defined to
be the total energy expense for propagating a k-bit
message from X to Y , i.e.,

c(PX,Y ) = (j − i + 1)δk + kεamp

j−1∑

t=i

d(xt, xt+1)α.

Let Φ(X, Y ) = {PX,Y } be the set of all possible data
propagation paths from X to Y . Define mcp(X,Y ) =
{p|p ∈ Φ(X, Y ) ∧ ∀p′ ∈ Φ(X, Y ) : c(p) ≤ c(p′)} be the
set of minimum-cost data propagation paths from X to
Y . Given a virtual chain {Ni}n

i=1 and associated data
propagation path set {PNi,Ni+1}n

i=1, the cost of the vir-
tual chain is defined to be

n−1∑

i=1

c(PNi,Ni+1).

The chain has the lowest cost if PNi,Ni+1 ∈
mcp(Ni, Ni+1) for all i. The optimal virtual chain prob-
lem is to find a virtual chain whose lowest cost is the
minimum among all possible ones. This is an NP-hard
problem.

3. Proposed Scheme

Our energy-conservation approach for inter-sensor
communications consists of two independent parts. The
first is to compute and store the costs of every possi-
ble pair of nodes. Based on the cost information, the
second part constructs a logical chain among all sen-
sor nodes. The issue of leader scheduling is discussed
in Sec. 3.3.

3.1. Costs of Node Pairs

Conventionally, the cost of every pair of nodes is
simply the energy expense of a direct transmission be-
tween them [13, 7]. Let matrix Md keep the cost such
that Md(i, j) is the energy expense of a direct trans-
mission between nodes i and j. To allow virtual chain,
the costs should be associated with data propagation
paths rather than direct links. Let Mp be the mini-
mum cost matrix such that Mp(i, j) = c(Pi,j) for some
Pi,j ∈ mcp(i, j). Such a Pi,j for every i and j can be
found by running an all-pair shortest-path algorithm
(e.g., Floyd-Warshall algorithm [4]) on input Md. As
an example, Fig. 1(a) represents Md graphically for a
four-sensor network, where each edge is labeled with
the direct transmission cost between nodes on the two
ends. Fig. 1(b) shows Mp that corresponds to all-pair
shortest paths given Md.

a�

(a) (b)

b
�

c� d
�

2
�

83 9
�

12

16

a� b
�

c� d
�

2

83 9
�

5

12

Figure 1. (a) Md. (b) Mp that corresponds to the
shortest paths given (a).
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Figure 2. (a) MST of Fig. 1(a). (b) Mt that cor-
responds to (a).

All-pair shortest-path algorithms are time expensive
(O(n3) in case of Floyd-Warshall algorithm). Alterna-
tively, we may find first a minimum-cost spanning tree
(MST) on the weighted complete graph correspond-
ing to Md. Then Pi,j is designated to be the short-
est path (actually the only path) traversing along the
tree from i to j. We denote the matrix the keeps such
costs by Mt. With this approach, the data propaga-
tion paths found may not be optimal. However, the
time complexity of constructing an MST and travers-
ing it from every node is only O(n2).

Take Fig. 1(a) as an example. Fig. 2(a) shows an
MST of Fig. 1(a). Mt that corresponds to the MST is
shown graphically in Fig. 2(b). Here Mt(c, d) = 13 be-
cause the data propagation path from c to d is con-
fined to be that along the tree (i.e., c, a, b, d). Observe
that this is not a minimum-cost path.

It is interesting and also important to note the prop-
erty of triangle inequality in these cost matrices. Trian-
gle inequality refers to the condition that the cost be-
tween any two nodes A and B must be at most the
cost between A and any other node C plus the cost be-
tween C and B. Triangle inequality does not hold if Md
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Figure 3. Various chains found by runningPEGA-
SIS on (a) Md of Fig. 1(a); (b) Mp of Fig. 1(b);
(c) Mt of Fig. 2(b).

is used as the cost matrix in our problem setting (due to
the nonlinear attenuation properties of radio signals).
That is, Md(i, j) can be larger than Md(i, k)+Md(k, j)
for any i, j, and k. Triangle inequality does hold in case
of Mp, as it is a property of shortest paths [5]. For Mt

that is computed based on an MST, triangle inequal-
ity still hold by the following theorem.

Theorem 1 Let Td be an MST built on the graph corre-
sponding to Md. If Mt is computed based on Td, we have
Mt(i, j) ≤ Mt(i, k) + Mt(k, j) for any i, j, and k.

Proof: For any two nodes i and j in a tree, there ex-
ists exactly one unique simple path2 from i to j. The
path from i to k and then to j is either the same path
from i to j, for which the equality of cost holds, or a
path that is not simple. In the latter case, an edge inci-
dent with k must be included in the path twice, one im-
mediately followed by the other (one coming into k and
the other leaving k). If the occurrences of this edge are
removed from the path, the path becomes either the ex-
act simple path from i to j or a non-simple path with
lower cost which can be further shrank by the above ar-
gument. The conclusion thus follows. 2

3.2. Virtual Chain Formation

Once Mp (or Mt) and every Pi,j have been obtained,
a virtual chain can be formed using any conventional
chain construction algorithm such as those proposed in
[13, 7]. The only difference is that the algorithm may
run on Mp or Mt instead of Md. Fig. 3 shows vari-
ous chains obtained by running the appending-based
chain construction algorithm of PEGASIS [13] on dif-
ferent cost matrices.

Although the insertion-based chain construction al-
gorithm [7] usually performs well, here we consider an

2 A path is simple if it does not include the same edge twice [14].
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Figure 4. (a) A tree rooted at a. (b) The chain
corresponds to the prefix traverse of (a).

MST-based chain construction heuristic which is more
time efficient. The basic idea is to find an MST first (on
the weighted complete graph representing Md, Mt, or
Mp) and then convert it to a chain. A tree can be con-
verted to a chain by traversing the tree form the root
in prefix order. The node visiting sequence then corre-
sponds to a chain. Fig. 4 shows an example. Time com-
plexity of this approach is O(n2).

This heuristic has been devised for the traveling
salesperson problem (TSP), and is often accompa-
nied with the assumption of triangle inequality. It can
be shown that, thanks to the triangle inequality, the
heuristic creates a TSP tour whose cost is not more
than twice the cost of the MST [6]. The cost can be
further reduced to at most 1.5 times of the minimum
cost [3]. However, constant performance ratio is impos-
sible without triangle inequality.

In summary, we have one design choice among three
cost metrics and another design choice among three
chain construction algorithms. Table 1 lists all possible
combinations. Among them, the operations of MST-
based chain constructions are detailed in Fig. 5. Pro-
cedure MST-MST can be further simplified by the fol-
lowing theorem.

Theorem 2 Let Td be an MST built on the graph cor-
responding to Md. Assume that Mt is computed based on
Td. Let Tt be an MST on the graph corresponding to Mt.
The cost of Tt is equal to that of Td.

Proof: For every edge (i, j) ∈ Tt, let Pi,j denote the
data propagation path from i to j that traverses along
Td. If |Pi,j | = 1, edge (i, j) must be an edge of Td

also. So if we can prove that |Pi,j | = 1 for every edge
(i, j) ∈ Tt, the cost of Tt will be equal to that of Td.
Suppose, by way of contradiction, that there exists an
edge (i, j) ∈ Tt with |Pi,j | > 1. It follows that there is
at least one intermediate node k on Pi,j . Since Pi,j cor-
responds to the shortest path traversing along Td from
i to j, it must be a simple path. Therefore, for any k



Chain construction
Cost matrix Greedy appending Greedy insertion MST traverse
Md (direct transmission) PEGASIS [13] Direct-insertion [7] Direct-MST
Mp (all-pair shortest paths) Shortest-appending Shortest-insertion Shortest-MST
Mt (paths confined to MST) MST-appending MST-insertion MST-MST

Table 1. All possible cost-metric/chain-construction combinations.

Direct-MST

1. Compute and store in Md direct communication costs
of all node pairs.

2. Find an MST Td on Md.

3. Convert Td to a chain.

Shortest-MST

1. Compute and store in Md direct communication costs
of all node pairs.

2. Compute cost matrix Mp by running an all-pair
shortest-path algorithm on Md.

3. Find an MST Tp on Mp.

4. Convert Tp to a chain.

MST-MST

1. Compute and store in Md direct communication costs
of all node pairs.

2. Find an MST Td on Md.

3. Compute cost matrix Mt based on Td.

4. Find an MST Tt on Mt.

5. Convert Tt to a chain.

Figure 5. Operations of MST-based chain con-
structions.

we have Mt(i, k)+Mt(k, j) = Mt(i, j).3 There are four
possible cases depending on the relation among i, j,
and k.

• Both edges (i, k) and (k, j) are included in Tt. This
is impossible since the inclusion of these edges plus
(i, j) creates a cycle in Tt.

• Edge (i, k) but (k, j) is included in Tt. We can
form T ′t by first removing (i, j) from Tt and then
adding (k, j) into Tt. Note that T ′t does not con-
tain cycle and the cost of T ′t is lower than that of
Tt since we swap (i, j) for a lower-cost edge (k, j).
It follows that T ′t is a tree with cost lower than
that of Tt.

3 Recall that the equality in Theorem 1 holds when k lies on the
path from i to j.

MST-reduced

1. Compute and store in Md direct communication costs
of all node pairs.

2. Find an MST Td on Md.

3. Convert Td to a chain.

4. For every edge (i, j) of the chain, set Pi,j to be that spec-
ified by Td.

Figure 6. Operations of MST-reduced.

• Edge (k, j) but (i, k) is included in Tt. Similarly,
this leads to another tree whose cost is lower than
that of Tt.

• Neither (i, k) nor (k, j) is included in Tt. Tt must
contain a path from i to k and another from k to
j as Tt is connected. The lengths of these paths
must be greater than one. Now consider replacing
(i, j) with (i, k) and (k, j) in Tt. Let the result be
T ′t . Note that T ′t has the same cost as Tt but con-
tains two cycles, one involving the path from i to
k and the other j to k. We can remove any edge
from the first path and any other from the sec-
ond, resulting a tree with cost lower than that of
Tt.

All these cases lead to impossibility or contradiction,
so we conclude that there exists no edge (i, j) ∈ Tt with
|Pi,j | > 1. 2

Theorem 2 indicates that, in case of MST-MST, we
may directly convert Td instead of Tt to a chain. Proce-
dure MST-reduced in Fig. 6 thus replaces MST-MST.

Table 2 lists the time complexities of all mentioned
methods. Among them, PEGASIS, Direct-MST, MST-
appending, and MST-reduced are more time efficient
then others.

3.3. Leader Scheduling

Given a chain structure, leader scheduling is to de-
termine which node plays the role of leader in each
round of data collection process. The goal is to pro-
long network lifetime, i.e., to maximize the number of



Method Cost matrix Chain Overall
computation construction

PEGASIS [13] O(n2) O(n2) O(n2)
Direct-insertion [7] O(n2) O(n3) O(n3)
Direct-MST O(n2) O(n2) O(n2)
Shortest-appending O(n3) O(n2) O(n3)
Shortest-insertion O(n3) O(n3) O(n3)
Shortest-MST O(n3) O(n2) O(n3)
MST-appending O(n2) O(n2) O(n2)
MST-insertion O(n2) O(n3) O(n3)
MST-reduced O(n2) O(n2) O(n2)

Table 2. Time complexities of all methods.

data-collection rounds. In the following, we analyze the
maximum number of data-collection rounds that can
be achieved before any node exhausts its power. With-
out loss of generality, we assume that nodes in the chain
are numbered sequentially as 1, 2, . . . , n. Let ei be the
energy consumed by node i in transmitting a data mes-
sage to the BS. Let ρi,j = kEelec +kεampd(i, j)α be the
energy consumed by i and er = kEelec be that con-
sumed by j when node i transmits a k-bit message to
node j.

When some node i is selected to be the leader, ev-
ery node numbered j < i (if any) expends energy ρj,j+1

in sending data to node j+1, at which energy er is con-
sumed to receive the data. Likewise, every node num-
bered k > i (if any) expends ρk,k−1 to send data to
node k − 1, where energy er is expended in receiving
the data. The leader transmits the collected data to the
BS, consuming energy ei. Suppose that every node i is
scheduled to be the leader xi times, Table 3 shows the
energy expense of every sensor node. Optimal leader
scheduling problem is to find positive integer values of
xi’s as to maximize

∑
i xi subject to the following con-

straints:

E1 ≥ (e1 + er)x1 + ρ1,2x2 + ρ1,2x3 + · · ·+ ρ1,2xn,
...

Ei ≥ (ρi,i−1 + er)x1 + · · ·+ (ρi,i−1 + er)xi−1

+(ei + 2er)xi + (ρi,i+1 + er)xi+1 + · · ·+
(ρi,i+1 + er)xn,
...

En ≥ ρn,n−1x1 + ρn,n−1x2 + · · ·+ (en + er)xn,

where Ei denotes the amount of energy that node i ini-

tially has. These constraints can be reformulated as

A




x1

x2

x3

...
xn



≤




E1

E2

E3

...
En




,

where

A =




e1 + er ρ1,2 · · · ρ1,2

ρ2,1 + er e2 + 2er · · · ρ2,3 + er

ρ3,2 + er ρ3,2 + er · · · ρ3,4 + er

...
... · · · ...

ρn,n−1 ρn,n−1 · · · en + er




.

The problem turns out to be a linear programming
problem. Round robin leader scheduling (RR) equal-
izes the values of xi’s, which is generally far from op-
timal. The authors of PEGASIS also proposed an im-
provement on RR [13]. This approach sets up a thresh-
old of distance, and nodes are not allowed to be lead-
ers if their distances to their neighbors along the chain
are beyond the threshold.

Instead of finding an optimal solution, we propose
a simple rule called Maximum Residual Power First
(MRPF) for leader selection. As the name suggests,
MRPF selects the node that has the maximum resid-
ual power to be the leader in each round of data collec-
tion. Residual power information can be piggybacked
with data messages as a part of the aggregated data.
If every node attaches its own power level to data mes-
sage and let the BS find the maximum value, it will in-
cur an additional O(n) overhead on every message. A
better approach is to let every node compare its power
level with that attached with incoming data message
(if any) and send only the large one. This is similar
to existing distributed maximum-finding algorithms on
rings [2, 11, 12, 15] and the message overhead is only
O(1).



Node id. In sending messages to the BS In sending messages to neighbors In receiving neighbor’s messages

1 e1x1 ρ1,2

∑n

j=2
xj erx1

i ∈ {2, . . . , n− 1} eixi ρi,i−1

∑i−1

j=1
xj + ρi,i+1

∑n

j=i+1
xj er(

∑i−1

j=1
xj +

∑n

j=i+1
xj + 2xi)

n enxn ρn,n−1

∑n−1

j=1
xj erxn

xi: the number of times node i is selected to be the leader;
ei: the amount of energy consumed in transmitting message from node i to the BS;
ρi,j : the energy consumed by i in transmitting a message to j;
er: the energy consumed by any node in receiving a message.

Table 3. Energy expense of every sensor.

4. Simulations

We conducted simulations to analyze the perfor-
mances of energy conservation techniques. In all exper-
iments, message size is assumed to be 2000 bits. The
positions of sensor nodes are randomly determined by
a uniform distribution over the network region.

4.1. Performance of Virtual Chains

We measured the number of data-collection rounds
that can be achieved by each approach. Two network
sizes are considered: 50× 50 and 100× 100. The num-
ber of nodes are varied as 50, 100, and 200. The
BS is located at (50,150), (50,200), or (50,300). The
initial power of each sensor is 50J. Figs. 7-9 show
the results averaged over 100 experiments. The re-
sults of Direct-insertion, Shortest-appending, Shortest-
MST, MST-insertion, and MST-reduced are nearly the
same and are collectively denoted as ‘others’ in these
figures. We can see that Direct-MST performs better
than PEGASIS but worse than others. Also note that
the difference of performances increases when the net-
work size increases. This can be explained as when the
network is bigger, the average distance between nodes
increases and thus enlarges the performance difference
between good and bad schemes.

4.2. Performances of Leader Scheduling

We measured and compared the performance gains
brought by several leader scheduling schemes includ-
ing MRPF, RR, and RR with distance-based leader el-
igibility rule. Here the network size is 50 × 50 and BS
is located at (25, 150) or (25, 250). All nodes are as-
sumed to have power 10J initially. The chains to be
tested with leader scheduling schemes were produced
by PEGASIS. Fig. 10 shows the results, where each re-
sult was obtained by averaging 10 experiments.

It is clear that MRPF performs slightly worse than
the optimal result obtained by a linear-programming
problem solver. RR generally performs much worse
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Figure 8. Number of rounds before 1st node ex-
hausts its power in a (a) 50 × 50 network (b)
100×100 network. TheBS is located at (50,200).

than MRPF. The performance of RR with distance-
based leader eligibility rule (RR with threshold) de-
creases as the threshold value of distance decreases.
The reason is that the loads on leader nodes cannot
be fairly shared if less nodes are eligible for leaders.
We also found that only when the number of sensors is
sufficiently large, RR with threshold outperforms RR
(results are not shown here). Therefore, a critical is-
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hausts its power in a (a) 50 × 50 network (b)
100×100 network. TheBS is located at (50,300).
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Figure 10. Number of rounds before 1st node
exhausts its power. (a) The BS is located at
(25, 150). (b) The BS is located at (25, 250).

sue of using RR with threshold is to determine an ap-
propriate threshold value so that leader-eligible nodes
and others fairly share the communication load, which
is untold in the original paper.

Fig. 11 shows the variance of all other’s residual
power when the first node exhausts its power. We
can see that both the optimal and MRPF have very
small variances, meaning that they successfully equal-
ize power consumption among all nodes. RR family
does not perform well, but the results tend to be ac-
ceptable when the population of nodes is getting large.

5. Conclusions

We have considered several energy-conserving tech-
niques for chain-based data gathering. Among them,
PEGASIS, Direct-MST, MST-appending, and MST-
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Figure 11. The variance of residual power when
the 1st node exhausts its power. (a) The BS is
located at (25, 150). (b) The BS is located at
(25, 250).

reduced all have O(n2) computation time while oth-
ers have O(n3). On the other hand, Direct-insertion,
Shortest-appending, Shortest-MST, MST-insertion,
and MST-reduced perform nearly the same and out-
perform others. MST-appending and MST-reduced
both have the merits of lower time cost and, in the
same time, better results and are therefore recom-
mended.

We have cast optimal leader scheduling as a linear
programming problem. The proposed leader schedul-
ing algorithm, MRPF, successfully equalizes energy
expense among all sensors. Experiment results show
that its performance is nearly the same as the opti-
mal scheduling.
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