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Abstract—The 3rd Generation Partnership Project (3GPP)
proposes User Plane Function (UPF) in the fifth generation
(5G) mobile networks to handle user data between radio access
network (RAN) and data network (DN). Since pure software-
based UPF does not fulfill the diversified service requirements
of 5G networks, researchers have leveraged various hardware
acceleration techniques to enhance the performance of UPF.
However, different hardware implementations require different
installations and adaptations. This paper proposes a framework
to integrate various UPF implementations. It is compliant with
standard UPF but decouples the control plane function (UPF-
CP) from the user plane function (UPF-UP). We implemented
UPF-CP by Packet Forwarding Control Protocol (PFCP) Agent
with two implementations of UPF-UP: one with Intel Data
Plane Development Kit (DPDK) and the other with Smart
Network Interface Card (SmartNIC). We integrated the frame-
work with an open-source 5G core network, free5GC, and
evaluated the framework by experiments. The results confirm
the interoperability of our work with free5GC and demonstrate
the superiority of the hardware-accelerated UPF over pure
software approach in terms of packet processing speed on the
user plane.

I. INTRODUCTION

The core network in the fifth generation (5G) mobile
networks provides service connection, device authentication
and accounting for mobile users. To meet diverse application
service requirements and scenarios, the 3rd Generation Part-
nership Project (3GPP) has restructured the 5G core network
to adopt Service Based Architecture (SBA) [1] and Control
and User Plane Separation (CUPS) [2]. SBA decomposes
applications and services in 5G core network into fine-grained
network functions, leveraging Network Function Virtualiza-
tion (NFV) to enable flexible network deployment [3]. CUPS
decouples the control plane function from the user plane
function. Consequently, the processing and forwarding of user
packets are designated to User Plane Function (UPF) while
the management and control functionalities are designated to
Session Management Function (SMF). These two functions
together handle user data between radio access network
(RAN) and data network (DN).

We may apply the same notion of Software-Defined Net-
working (SDN) [4] to further divide the functionalities of
UPF into control plane and user plane [5]. On the control
plane, UPF needs to communicate with SMF via reference in-
terface N4 using Packet Forwarding Control Protocol (PFCP)
[6]. This task can be done by an application running on an
SDN controller. On the user plane, UPF needs to perform
packet routing, forwarding, and inspection. This task can be
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done by a high-speed programmable hardware such as P4
switch [7], Smart Network Interface Card (SmartNIC), or
Intel Data Plane Development Kit (DPDK) [8]. However,
most UPF implementations tie up the control plane and user
plane functions of UPF, and are hardware-specific because
the user plane is critical for the overall performance. Con-
sequently, these implementations cannot be easily adapted to
other environments even if the control plane part of UPF is
in fact hardware-independent.

This study proposes an implementation framework for UPF
that exercise the control/user plane separation. On one hand,
the separation needs only a unified, hardware-independent
UPF control plane function (UPF-CP), for which we run
PFCP Agent to communicate with SMF using PFCP. On
the other hand, the separation also enables the hosting of
different UPF user plane (UPF-UP) implementations. The
main challenge of this framework is to make the PFCP
Agent 5G-compatible and hardware-independent while al-
lowing easy plug-in of diverse hardware-boosted UPF-UP.
Our key idea is to introduce an Abstraction Layer which
provides a unified management interface for the PFCP Agent
to configure and manage abstract UPF rules, which are then
converted by an implementation-specific adaptor to physical
UPF rules that are executable by the physical hardware. We
showcase real implementations with performance evaluation
in this paper. UPF-CP in our implementation is an application
running on ONOS [9] SDN controller. Two physical UPF-
UPs are implemented: one is based on SmartNIC and the
other is based on DPDK. A unique feature of the latter
implementation is the support of downlink packet buffering
for idle user equipment (UE). Fig. 1 shows the architecture
of the proposed framework.
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The remainder of this paper is structured as follows. Sec. II
briefs the backgrounds and related work. Sec. III presents
the proposed framework and associated implementations.
Sec. IV presents the experimental results and the last section
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Control Plane of User Plane Function (UPF)

The main tasks in the control plane of UPF are to commu-
nicate with SMF using PFCP and to set up rules for packet
processing and forwarding. SMF should first establish an
association with UPF and exchange the supported capabilities
and Node ID (IP address) of each other. After that, SMF
may send PFCP messages to create, modify, and release a
PFCP session on UPF, and instruct UPF to report the user
plane information to SMF. The creation and modification of a
PFCP session are associated with relevant packet processing
and forwarding rules. These rules are used in the packet
forwarding model on UPF [6] (Fig. 2), including Packet
detection rule (PDR), forwarding action rule (FAR), QoS
enhancement rule (QER), and usage reporting rule (URR).

The packet forwarding model is used by the user plane
of UPF to handle incoming packets. When UPF-UP receives
a user packet, it first matches this packet with an existing
PFCP session. If there is a match, the UPF-UP then finds
the matching PDR of the PFCP session with the highest
precedence. The UPF-UP then applies FARs, QERs, and
URRs on the packet. These rules can be pipelines if SDN
switches are used for UPF-UP.

B. Smart Network Interface Card (SmartNIC)

SmartNIC is a technology that leverages network interface
card (NIC) equipped with power CPU and memory to offload
packet processing tasks from server CPU. Doing so not
only accelerates packet processing tasks as packets can be
processed entirely by the NIC, but also liberates precious
server CPU power from performing repetitive packet han-
dling routines, saving the CPU power for other computation-
intensive processes. The packet processing logic of SmartNIC
is programmable so that we could handle different packet
formats and meet diverse packet processing needs.

C. Data Plane Development Kit (DPDK)

The Data Plane Development Kit (DPDK) [8] is an open-
source software project that provides a development platform
and interface for packet processing enhancement. It works
by two key techniques: kernel bypass and poll-mode driver.
Kernel bypass offloads packet processing from the operating
system kernel to processes running in user space, which
eliminates context-switching time. Poll-mode driver allows
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the driver to actively poll NIC for possible incoming packet
rather than passively wait for the interrupt triggered by
packets coming into the NIC. DPDK comes with a set of
data plane libraries and network interface controller polling-
mode drivers.

D. Related Work

The concept of CUPS was in 3GPP R14 for the func-
tion decoupling of Serving Gateway (SGW), PDN Gateway
(PGW), and Traffic Detection Function (TDF) in the Evolved
Packet Core (EPC). The same concept has been applied to the
decoupled SMF and UPF in 5G and this work also follows
the same concept to further decompose UPF.

Our work here is closely related to ONF OMEC UPF
[5]. Both opt to an abstract user plane. The difference lies
in the implementations. The OMEC UPF demonstrated two
implementations: one based on a software switch and the
other based on P4 switch. By contrast, our implementations
are based on SmartNIC and DPDK. Moreover, OMEC UPF
configures the data plane only once at start-up, which makes
hot swapping impossible. By contrast, our framework allows
an on-line switch to another UPF-UP implementation without
rebooting the whole UPF.

III. OUR DESIGN AND IMPLEMENTATION

A. UPF Control Plane: PFCP Agent

The control plane of UPF centers on PFCP Agent, which
needs to interpret PFCP messages as defined in 3GPP TS
29.244 [6]. We implemented PFCP Agent as an application
on ONOS controller [9]. When the PFCP Agent receives an
Association Setup request message from SMF, it responds
with the Node ID and supported capabilities of this UPF.
When the PFCP Agent receives a message pertaining to a
PFCP session, the message may describe the packet process-
ing rules required for the session. A straightforward design
for the PFCP Agent is to convert the rules associated with
the message into corresponding physical rules to be enforced
and executed by the underlying UPF-UP entity. However,
to make the PFCP Agent independent of physical UPF-UP
implementations, the PFCP Agent in the proposed framework
converts session-related rules to corresponding abstract rules.

The abstract rules are embodied by an abstract UPF
pipeline, which includes three essential tables in the UPF
packet forwarding model (Fig. 3). The abstract rules for a
PFCP session, once created, could be modified or deleted
subsequently. Moreover, more abstract rules for the same
session could be added later. Therefore, we propose an
abstract rule management interface in the Abstraction Layer
for the PFCP Agent to manage the abstract rules.
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TABLE I: Supported UPF User Plane Pipelines

Function SmartNIC UPF DPDK UPF

PDR N3, N6 N3, N6

FAR Forwarding
Forwarding
Buffering

Notify SMF
QER No No

Since the abstract rules cannot be directly executed by the
underlying UPF-UP entity, we propose an implementation-
dependent Adaptor to convert the abstract rules into exe-
cutable UPF rules. Fig. 5 shows the conversion of abstract
rules.

We currently support two implementations of the UPF-UP:
SmartNIC UPF and DPDK UPF. Table I shows some features
of these two implementations. The following two sections
will detail these implementations.

B. UPF User Plane with SmartNIC

The SmartNIC UPF consists of hardware and software
parts. For the hardware part, we used the SmartNIC from
Netronome [10], which supports expressing packet processing
logic in C and P4 languages. We used P4 language to describe
the packet parsing and processing logic and implemented a
P4 pipeline that can run on the SmartNIC. The P4 pipeline
supports the PDR and FAR functions of UPF, through which
we could provide basic routing functionality for user packets
in the transport network.

For the software part, we used the software development
kit provided by the vendor to manage the P4 pipeline and
implement SmartNIC Adaptor. The Adaptor communicates
with the UPF-CP through the Thrift API and sends packet
forwarding rules to the SmartNIC hardware.
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Fig. 6 shows the SmartNIC pipeline. It consists of five main
parts: Parser, PDR, FAR, Routing, and Deparser. The Parser
handles user packets by analyzing the headers of different
protocol stacks and storing them as metadata for subsequent
pipeline tables. The PDR contains three tables. The first
two tables classify 5G user packets and the third table
performs GTP-U packet decapsulation based on instructions
from the UPF-CP. The FAR contains two tables. The first
table determines which FAR action to apply for a given
packet. Currently supported FAR actions include forwarding
the packet to a specific interface, discarding the packet,
and whether or not to encapsulate the packet with a GTP-
U header. The second table is for packets that require the
installation of a GTP-U header. Based on instructions from
the UPF-CP, it encapsulates the used Tunnel Endpoint ID
(TEID) and destination IP address of the GTP-U header into
the packet. Detailed PDR and FAR tables can be found in
Fig. 7.

The Routing is performed by one table, which provides
basic routing functionality for transmitting packets in the
transport network. It is worth noting that PFCP messages
only indicate the destination interface for a packet. Based on
the indicated destination interface, the routing table replaces
the destination MAC address with the MAC address of the
corresponding gateway. This replacement makes packets to
be transmitted to the DN or RAN as intended.

The last part of the SmartNIC pipeline, Deparser, reassem-
bles the packet processed by the packet parser back into a
packet according to the protocol stack. Once the reassembly
is completed, the packet will be sent to the NIC to complete
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the processing procedure.
All actions in these tables are to match packet contents

and to configure metadata. The only two exceptions are to
encapsulate and decapsulate GPU-T packets.

C. UPF User Plane with DPDK

Our implementation of DPDK UPF uses two NICs man-
aged by DPDK [8] for communication with the DN and
the RAN, respectively. Another NIC managed by the Linux
kernel is used for the communication with the UPF-CP. The
DPDK UPF architecture is shown in Fig. 8.

We implemented DPDK UPF using C++ language and
DPDK-provided APIs. DPDK UPF consists of five major
components.

• DPDK Agent, which is responsible for communication
with UPF-CP and managing packet processing modules.

• DPDK Init, which is responsible for initializing environ-
ment resources using the APIs provided by DPDK, such
as NIC information and memory allocation.

• UPF DP Core, which is responsible for obtaining packets
from physical NICs using the poll-mode driver and
processing them. This module works with the packet
processing submodules to form a packet processing
pipeline.

• UPF-UP Pipeline Submodules, which implements differ-
ent packet processing logic functions and provides APIs
to be invoked by DPDK Agent for managing rule entries
in this submodule.

• Packets Buffer, which is the storage space for temporary
downstream traffic.

Fig. 9 shows the complete DPDK UPF pipeline, which
contains Parser, PDR, FAR, and routing submodules. The
logic of packet parser and routing is similar to those used
in SmartNIC UPF. PDR-related tables use the incoming NIC
as the source interface for the classification of user plane
packets in the PDR rule determination stage. The decap flag,
FAR ID, Session Endpoint Identifier (SEID), and PDR ID
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metadata are set in this table for use by subsequent tables
(the processing of buffered downlink packets may require this
information). The third table decides whether to decapsulate
the GTP-U header on the packet based on the decap flag.
FAR-related tables use the FAR ID to decide whether to use
forwarding, buffering, or other functions.

D. Buffering Downlink Data for Idle User Equipment

DPDK UPF additionally supports downlink data buffering
for UE in idle mode. When a UE has not sent or received
packets for an extended time, the UE may enter idle mode.
The system should buffer downlink packets for an idle UE,
and release the buffered packets to the UE when the UE
becomes active. Note that this functionality is not supported
by the SmartNIC UPF.

Three tasks are needed to buffer downlink traffic for an
idle UE. First, a buffer should be prepared somewhere in the
pipeline for each idle UE. Second, the pipeline should inform
the control plane of the presence of downlink packets destined
for an idle UE besides buffering these packets. Finally, the
data plane should release all packets buffered for an idle UE
when later the UE becomes active.

It is the Buffering table (an FAR submodule) that prepares
a buffer space for an idle UE. When the AMF in the core
network detects an idle UE, it notifies the SMF to change the
packet processing rules of the PFCP session pertaining to the
idle UE. The SMF then instructs UPF to prepare downlink
data buffering for the idle UE (Fig. 10). The UPF CP issues
an Allocate Buffer Storage command to the Buffering table
to allocate a memory block to keep future downlink traffic for
this UE. All the buffer spaces kept by the Buffering table are
indexed by FAR ID. When a future packet with a matched
FAR ID comes to the Buffering table, it will be stored in the
corresponding buffer space, waiting to be released later. Each
buffer space has a flag indicating whether the Buffering table
is releasing it.

Besides buffering the packet, the UPF should also notify
the AMF when a downlink packet for an idle UE comes to the
data plane. This is to avoid possible buffer overflow and to
wake up the UE. The Notify Control Plane table (also an FAR
submodule right before the Buffering table) is responsible for
the notification. When detecting such a packet, the action in
this table sends a PFCP session report to the UPF-CP through
a UDP socket. This message carries the SEID and PDR ID
of the packet. When the UPF-CP receives the PFCP session
report from the DPDK UPF, it forwards this message to the
SMF.

To avoid buffer overflow, all packets buffered for an idle
UE should be released after the UE has been woken up.
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This is initiated by the SMF with a request to UPF-CP to
update the FAR action of a PFCP session from buffering to
forwarding. The UPF-CP then sends a packet release request
to DPDK UPF. The DPDK UPF performs two actions for the
request: to set the release flag of the corresponding buffer
space and to delete the buffering rule associated with this
FAR in the Buffering table so that subsequent packets will
not enter the buffer space.

After that, the Buffering table must handle two different
data streams from two sources (Fig. 11). One is packets
waiting to be released in the buffer space. The other is
packets sent over by the previous table. To maintain packet
sequencing, the Buffering table will prioritize releasing the
packets in the buffer space. Only when no packets are left in
the buffer space can the Buffering table process the packets
sent over by the previous table. During this period, packets
sent over by the previous table will be temporarily stored in
memory allocated by DPDK, waiting to be processed later.
In this sense, the packet buffering space and DPDK buffering
space form a two-level priority queue for the Buffering table
to process.

IV. EXPERIMENTAL RESULTS

We set up the experimental environment as shown in
Fig. 12. The core network (free5GC [11]) was placed in
Edgecore SAU5081-2X with Intel Xeon E5-2620 v4 CPU
and Intel X520-DA2 10 Gbps. UPF-CP was an application of
ONOS controller running on a Ubuntu PC with Intel Core i7-
6700 CPU. Three Ubuntu PCs each with Intel Core i7-10700
CPU (2.90 GHz) and Intel X710-DA4 10Gbps SFP+ were
used for DPDK/free5GC UPF, UE/RAN Simulator (UER-
ANSIM [12]), and DN Simulator, respectively. SmartNIC
UPF was implemented in a Ubuntu PC with Intel Core i7-
10700 CPU and Netronome Agilio CX Dual-Port 10 GbE
SmartNIC.

A. PFCP Message Processing

We first tested the interoperability between heterogeneous
UPF and the 5G core network. This was done by making
PDU session registrations from the free5GC core network.
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We took the registration testing script provided by free5GC to
measure the processing time of control messages for free5GC,
UPF-CP, and individual UPF-UP. The results are shown in
Fig. 13.

First of all, we have verified the interoperability of the pro-
posed framework with the free5GC core network. However,
the message processing time of DPDK or SmartNIC UPF was
longer than that of the original free5GC UPF. The reason
is that we implemented UPF-CP in Java and additionally
implemented abstract rules generations and conversions. By
contrast, the free5GC UPF was implemented in C language
and need not handle abstract rules. Since 5G control messages
are processed only when the UE connection status changes,
we do not expect too much volume of control messages.
Therefore, the processing delay is acceptable.

B. UPF User Plane Performance

1) TCP RTT Comparison: We used flowgrind [13] to
measure the Round-Trip Time (RTT) of TCP connections
between UE and DN. We took the results as the packet
processing delays of each UPF-DP implementation. We tested
the SmartNIC UPF, DPDK UPF, and free5GC UPF. Fig. 14
shows the experimental results. It is observed that SmartNIC
UPF and DPDK UPF exhibited lower latency compared to
the VNF-based free5GC UPF.

2) TCP/UDP Throughput Comparison: We used TRex
[14] to generate a large number of TCP/UDP short packets
(payload size set to 64 bytes) to evaluate the throughput



TABLE II: First Packet RTT and TCP Retransmissions Comparison

Function free5GC UPF DPDK UPF

First Packets RTT 18.464 ms 21.697 ms
TCP RETRs (100M bits/sec) 0 0

TCP RETRs (1G bits/sec) 140–160 0
TCP RETRs (2G bits/sec) 1k 0
TCP RETRs (3G bits/sec) 2k 90–120

of the SmartNIC UPF and DPDK UPF. The goal is to
study the packet processing capacity of each implementation.
The free5GC UPF was also tested for comparison. Fig. 15
displays the results in terms of Million Packets Per Second
(MPPS) and throughput (Gbps). The results indicate that the
hardware-accelerated UPFs (SmartNIC UPF and DPDK UPF)
significantly outperformed the VNF-based UPF.
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C. Impact of Downlink Data Buffering
We evaluate implemented downlink packet buffering fea-

ture in DPDK UPF. We used UERANSIM to emulate an idle
UE and used free5GC core network to wake up an idle UE
(when the core network receives a PFCP session report sent
by DPDK UPF upon receiving a downlink packet). We also
tested the downlink packet buffering feature built in free5GC
UPF for comparison. The testing steps are as follows.

• Register an idle PDU session with free5GC using UER-
ANSIM. This action shall cause the free5GC SMF to
send PFCP messages to inform DPDK UPF or free5GC
UPF to prepare for buffering downlink packets and set
up the corresponding buffering rules within the UPF.

• Use iperf2 [15] to generate TCP traffic from the DN to
the idle UE, which shall be handled by DPDK UPF or
free5GC UPF.

• Measure the RTT of the first packet and the number of
TCP retransmissions for free5GC UPF and DPDK UPF.

The test results are presented in Table II. The first-packet
RTT was 3 ms higher in DPDK UPF than in free5GC UPF.
This was due to the handling of considerable PFCP messages
for awakening the idle UE. However, DPDK had a lower
number of TCP retransmissions compared with free5GC UPF,
especially when the traffic rate was high. The ability to alle-
viate TCP retransmissions also demonstrates the superiority
of DPDK UPF.

We also measured the packet processing performance of
DPDK UPF with and without processing buffered packets.
Table III shows the difference in terms of MPPS. The per-
formance impact caused by the handling of buffered packets
was somehow significant.

TABLE III: Million Packets Per Second of DPDK UPF

Protocol With Buffering Without Buffering

TCP 3.41 5.02
UDP 3.42 5.02

V. CONCLUSIONS

This study proposes a heterogeneous UPF integration
framework that allows for rapid development of new 5G
UPF user plane implementation and is managed by a uni-
fied UPF control plane. The messages between UPF and
other 5G network functions conform to the 3GPP standards.
Additionally, the SDN data plane offloading technology is
applied to implement the functions of the heterogeneous 5G
UPF user planes. Compared to traditional VNF-based UPF, it
significantly reduces packet processing latency and improves
network throughput.
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