Deterministic Bandwidth-Based Packet-Level
Traffic Splitting for Datacenter Networks

Cheng-Yu Wu, Li-Hsing Yen, Ping-Chun Hsieh, and Chien-Chao Tseng
Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
Email: {cywu.cs06g, lhyen, pinghsieh} @nctu.edu.tw, cctseng@cs.nctu.edu.tw

Abstract—Traffic splitting is to distribute traffic over mul-
tiple paths so as to better utilize link bandwidth and avoid
potential link congestion. Many traffic splitting schemes have
been proposed for datacenter networks, which provide different
levels of splitting granularity. This paper proposes a packet-level
traffic splitting scheme, which provides the most fine-grained
link utilization as it lays out a forwarding path for each indi-
vidual packet. The proposed scheme mitigates possible packet
reordering problem by equalizing the build-ups of packet queues
in all switches as the path layout utilizes links in proportional to
the associated exploitable link bandwidth. The result is a packet
dispatching rule designated to each switch. We implemented
the rules using P4 (Programming Protocol-Independent Packet
Processors) switches and conducted experiments to measure
the performance. Experimental results show that the proposed
scheme provides higher goodput compared with another packet-
level traffic splitting scheme which dispatches packets randomly
among all links.

I. INTRODUCTION

Bandwidth demands in datacenter networks have been
steady increasing [1] due to the introduction of new appli-
cations such as interactive web services, online streaming,
video on demand, and large amount of sensory data generated
by Internet-of-Thing (IoT) devices. A technical strategy to
keep up with increasing bandwidth demands is to efficiently
manage flow of traffic across the datacenter network. An
effective traffic control scheme can improve bandwidth uti-
lization and thus reduce bandwidth provisioning costs and
increase revenues. Moreover, high bandwidth utilization also
enhances user experience by providing high throughput and
short response time to users.

Many traffic control techniques, such as transmission
control, rate limiting, packet pacing, load balancing, mul-
tipathing, and scheduling, have been proposed for band-
width utilization enhancement [2]. This study considers a
multipathing-based technique—traffic splitting. Traffic split-
ting is to distribute the traffic between a pair of source and
destination hosts over multiple paths so as to better utilize
link bandwidth and avoid potential link congestion. Many
traffic splitting schemes have been proposed for datacenter
networks. Different approaches provide different levels of
splitting granularity. Theoretically speaking, a fine-grained
traffic splitting could provide a high level of load balancing.
On the other hand, traffic splitting creates multiple transmis-
sion paths between a pair of hosts, which may cause packet
reordering [3] problem. In particular, packet reordering may
significantly degrade the performance of TCP connection due
to the triggering of TCP congestion control by fast retransmit
[4]. Several studies [5], [6] have discussed the issues caused

by packet reordering and evaluated the impact of packet
reordering on performance.

Traffic splitting can be performed on flow, flowlet, or
packet level. Flow-level traffic splitting splits traffic by flows,
which provides the coarsest splitting granularity but avoids
the packet reordering problem. Flowlet-level traffic splitting
provides a finer splitting granularity than the flow-level traffic
splitting. A flowlet is a burst of packets within a transport-
layer flow [7]. Two consecutive flowlets in the same flow
are separated by a time gap greater than a threshold value 6.
Therefore, as long as ¢ is larger than the maximum latency
of the paths between the source and the destination, packet
reordering across flowlets are impossible even if different
flowlets go through different paths. However, there are still
some issues associated with flowlet-level traffic splitting.
First, flowlet-level traffic splitting can hardly split bursty
traffic into flowlets [8]. Second, the maximum latency of
the paths between the source and the destination may vary
dynamically. If 6 does not adapt to network dynamics,
packet reordering may still occur. Packet-level traffic splitting
scheme selects a forwarding path for each individual packet,
which provides the finest splitting granularity but does not
guarantee orderly packet arrivals.

This paper proposes a new packet-level traffic splitting
scheme, named deterministic bandwidth-based (DBB), which
reserves paths for packets based on available link bandwidth.
The goal is to exploit each available link with an intensity
proportional to the available link bandwidth. Doing so can
hopefully equalize the build-ups of packet queues in all
switches in the datacenter network and thus mitigates the
possibility of packet reordering. This strategy is effective
particularly in Clos-based networks [9] such as fat-tree, VL2,
and leaf-spine networks, where multiple paths of equal length
can be found for a particular source-sink switch pair because
the topology is symmetric and multi-staged.

As the name suggests, DBB differs from existing packet-
level splitting schemes such as Random Packet Spraying
(RPS) [10] in that it elaborates (rather than randomly de-
termines) a forwarding path for each packet in a cyclic
manner so that we could evenly interleave all packets in a
dispatching cycle and thus prevent packets from accumulated
on a particular path. We implemented DBB on P4 (Pro-
gramming Protocol-Independent Packet Processors) switches
with two implementation options and conducted experiments
to measure the performance of DBB. The results indicate
that, compared with RPS, the proposed approach achieves
higher total goodput in all the experimental settings. The
results confirm the ability of DBB to mitigate potential packet

|:| : Switch

O : Host

Fig. 1: A simple VL2 network topology

reordering problem.

The remainder of this paper is structured as follows. Sec. II
briefs the backgrounds and related work. Sec. III presents the
proposed scheme from the concept to the details of the design.
Sec. IV presents the experimental results with P4 switches
and the last section concludes this paper.

II. BACKGROUND AND RELATED WORK

Datacenter networks are usually multi-staged with tree-
structured topologies. In this study, we assume a multi-staged
network with identical out-degree (i.e., the number of egress
links) in all switches in the same stage as exemplified in
Fig. 1.

Flow-level traffic splitting identifies a unique transport-
layer flows by five tuples (source IP address, destination IP
address, source port, destination port, and protocol) in the
packet header. It provides the coarsest splitting granularity
as all packets of a transport-layer flow go through the same
path. A merit of it is that no packet reordering will occur for
the reason of different packet transmission paths.

Equal-cost multi-path (ECMP) forwarding is the most
common flow-level traffic splitting scheme used in datacenter
networks. ECMP treats every flow equally and does not
consider link congestion status. Therefore, it is likely to
cause unbalanced link utilization when both elephant and
mouse flows coexist. Furthermore, multiple flows may map
to the same path through the hash function used by ECMP
schemes, leading to unbalanced link utilization. Hopps [11]
analyzed the performance and the disruption caused by the
hashing-based algorithm of ECMP. Cao et al. [12] analyzed
the performance of different hash-based schemes for load
balancing.

Flowlet-level traffic has a greater potential to achieve load
balancing if the assignment of paths to flowlets is congestion-
aware. Congestion-aware designs, on the other hand, induce
additional efforts in collecting and processing network status
and feedbacks of congestion information. The overhead may
make these schemes not fast enough to react to network
dynamics. Distributed Congestion-Aware Load Balancing for
Datacenters (CONGA) is a flowlet-level congestion-aware
load balancing scheme that collects congestion metrics on
each path based on leaf-to-leaf feedbacks. CONGA ap-
proaches load balancing by letting a leaf switch assign a
path with the minimum link utilization to a new flowlet.
A downside of CONGA is the demand of considerable
storage space from each leaf switch to keep the congestion
information of every path. Moreover, per-path congestion
information based on the leaf-to-leaf feedback may not be
timely due to the round-trip time needed for such a feedback.

CONGA may also overwhelm a downstream switch when
multiple paths from different leaf switches join at that switch.

Hop-by-Hop Utilization-Aware Load Balancing Architec-
ture (HULA) is another flowlet-level congestion-aware load
balancing scheme that uses probes to collect congestion
information. Unlike CONGA, which keeps congestion infor-
mation of all paths on every leaf switch, HULA maintains
congestion information only for the best next-hop switch
on all switches. However, HULA needs additional probes to
gather link utilization and update the best next hop on each
switch. The frequency of probing is a trade-off in HULA.
A low probing frequency cannot detect congestion in time
whereas a high probing frequency may consume considerable
link bandwidth.

Many researchers have proposed packet-level traffic split-
ting schemes [10], [13], [14] to improve the level of traffic
balancing. Random packet spraying (RPS) spreads all packets
of a flow uniformly at random among different shortest paths
[10]. The experiment results in [10] showed that flow-based
ECMP and RPS have similar throughput for small flows,
while RPS tends to yield higher throughput than ECMP
for large flows. It was reported that RPS achieves shorter
average flow completion time (FCT) for short flows and
higher average throughput for long flows over the single path
used by TCP [13]. However, [14] reported that due to the
trait of randomness, RPS would not distribute packets evenly
over all paths. Therefore, queues would still build-up, and the
number of out-of-order packets would increase, which causes
poor performance for TCP connections.

III. PROPOSED SCHEME

(b)

Fig. 2: An example illustrating the idea of the proposed approach. (a) the
input topology (b) the output result

The basic idea of the proposed approach is to let each
switch cyclically dispatch all ingress packets belonging to
a particular source-destination host pair over all its egress
links following a predetermined rule so that different packets
go through different paths in a way that all links involved
in these paths are proportionally utilized to achieve load
balance. Fig. 2a shows an example of layer-2 topology in
a datacenter network with S1 and S6 being the source and
sink switches, respectively. The number beside each link
indicates the link capacity. Fig. 2b shows the result of the
proposed approach, where four possible paths have been
created for all the packets from S1 to S6. The number beside

each link indicates the exploitable bandwidth associated with
the link that maximizes the network flow from S1 to S6.
A distinct characteristic of the result is that the number of
packets passing through a particular link is proportional to
the exploitable link bandwidth if the first packet follows
path 1, the second packet follows path 2, and so on. This
characteristic achieves load balancing via multipathing while
maximizing traffic flow from S1 to S6.

The main challenge of our task is to find out and set up cor-
responding packet dispatching rules for all switches involved
in the solution. To ease the task, we sequentially number
every packet from the same source switch to the same sink
switch. Our goal is then to determine a packet dispatching
cycle (PDC) with length N such that each switch processes
the i-th packet as the (i+N)-th packet for all positive integer i,
1 <i < N. To this end, DBB acquires the network topology
with link bandwidth information, divides the network into
stages, and finds out the exploitable bandwidth of each link
by solving the maximum network flow problem. With that
information, DBB can then determine the packet dispatching
rules for all switches in a stage-by-stage manner such that
the number of packets dispatched to any link in a PDC is
proportional to the exploitable bandwidth associated with
it. All the rules are then converted to switching rules and
deployed into the corresponding switches.

The following are details of the proposed scheme. We use
the topology shown in Fig. 2a as an example in the following.

A. Finding Exploitable Link Bandwidth

To maximize bandwidth utilization, DBB first finds out
the maximum network flow from the source to the sink
switches. This can be done by linear programming (or linear
optimization). The solution determines the set of all switches
involved and the exploitable bandwidth associated with each
link.

For example, the maximum network flow from S1 to S6
in Fig. 2a is z = 6. For this solution, Fig. 2b shows the
exploitable link bandwidth associated with each link (Si, Sj),
bij (bip=b13=bss=bss=06and bagy =brs5=>b34=
bys=3.)

B. Stage-by-Stage Packet Dispatching

Even we know the exploitable bandwidth of each link, it
is still difficult to find out the set of all paths that collectively
utilize every link in proportional to the associated exploitable
link bandwidth. Fortunately, we can divide the whole network
into stages, each of which has identical aggregated band-
width, and arrange the packet dispatching rule in a stage-
by-stage manner.

Let S be the set of all switches that are included in the
solution to the maximum flow problem. The first step is to
partition all switches in S (together with their egress links)
into stages. Let / denote the total number of stages. Stage 1
includes only the source switch (together with all of its egress
links). Stage 2 includes all switches in S (together with their
egress links) that are one-hop away from the source switch.
Similarly, stage 3 includes all switches in S that are one-hop
away from a Stage-2 switch, and so on. Fig. 3 shows the
stage partition for the network topology shown in Fig. 2a.

Sink switch

Source switch

Stage 1 Stage 2 Stage 3 Stage 4

Fig. 3: Dividing the network topology into multiple stages

source

©

3

1
I |
Stage 1 Stage 2 | Stage3 | Stage4

Fig. 4: SIR of each link (circled number)

The next step is to derive a minimum number of packets
that comprise a PDC in each stage. It involves calculating
the ratio of the exploitable bandwidth on each egress link in
a stage to the aggregated exploitable bandwidth on all egress
links in the same stage. Let L(s) denote the set of all egress
links in stage s. For each link (i, j) € L(s), that ratio is
ri.j = bij/2uvyeL(s) bu,v- We multiply each ratio r; ; by a
minimum constant so that the ratios in the same stage are all
integers. We call the result a simple integer ratio (SIR) and
use p; ; to represent the result of link (i, j). For example,
the SIR between b;» and b;3 in our example is 1 : 1 so
p1,2 = p1,3 = 1. Fig. 4 shows p; ; for each link (i, j).

We want to dispatch all packets coming into stage s to all
egress links in stage s in a manner such that the bandwidth
consumed on each link (i, j) € L(s) is in proportional to
b; ;. The idea is to dispatch exactly p; ; packets to link (i, j)
in a PDC. This implies that the PDC in stage s comprises
P* = Xuv)eL(s) Pi.j packets. In our example, the PDC in
stage 2 comprises 4 packets.

C. Determining Network-Wide Packet Dispatching Cycle
(PDC)

Because the value of p* is different in different stage s,
the minimal number of packets comprising the PDC for the
whole network is the least common multiple (LCM) of all
p%’s. Formally,

N:lcm(pl’p29"'9plil)‘ (1)

In our example, N =lcm(2,4,2) = 4.
Let N; ; be the number of packets to be dispatched through
link (7, j) € L(s) in a network-wide PDC. We have

N
Ni,j = pi,j;~ 2
In our example, N1 = 1xX4/2 =2 while No 4 = 1x4/4 = 1.
Therefore, two and one packets should be dispatched from
S1 to S2 and from S2 to S4, respectively, in a network-wide
PDC.

TABLE I: Packet Dispatching for S1

TABLE II: Packet Dispatching for Stage-2 Switches

S2 S3 . Packet | Current S4 S5 Next-Hop
Packet Sed. o oy T R@ [0 [Ray | oxvHop Switeh 1 g0 ™ | Switch [0 | K@ [0305 [Ka(5) | Switch
1 2 2 2 2 S2 1 S2 2 2 2 2 S4
2 2 1 2 2 S3 2 S3 2 1 2 2 S5
3 2 1 2 1 S2 3 S2 2 1 2 1 S5
4 2 0 2 1 S3 4 S3 2 0 2 1 S4

D. Packet Dispatching Rule for Each Switch

To lay out the packet dispatching rule for each switch,
we need to find out the quota of each switch, i.e., the
total number of packets to be dispatched to the switch in
a network-wide PDC. Formally, the quota of a switch k in
stage 5, 2 < s <1, is

Qs (k) = Nik. 3)
(i,k)eL(s—1)

We also need to know how many packets are yet to be
dispatched to each switch k. Denote it by R (k), which is
Qs (k) minus the number of packets that have already been
scheduled dispatching to switch k. When a switch in stage s
needs to pick up a next-hop switch in stage s + 1 for packet
dispatching, it simply selects a switch j that has the highest
Rsi1(j) to Qg41(j) ratio (and break ties arbitrarily).

Algorithm 1 Stage-by-Stage Packet Dispatching

Require: Network Topology
Ensure: Deterministic Path Table p
: | « number of stages in the topology
: Calculate SIR p;, ; for each link (i, j)
2 pf Z(u,v?eL(x)pi,j forall 1 <s<l-1
i N —lem(p!, p?,---,p!7h
Ni,j < pi,jN/p® for each (i,j) € L(s) and] <s <1~ 1.
Qs (k) « Z(i,k)eL(s—l) Ni k forall kand 2 < s <!
i Rs(j) « Qs(j) forall kand 2 <s <1
: for seg=1to N do do
for s=1to/-1do
k — argmax ;{Rs11(j)/Qs+1 ()}
plseq,s] « k
Ry(k+1) « Rs(k+1) -1
end for
: end for
: return p

PR U E WY

—_
AN sl s

Algorithm 1 details how to complete a PDC. Each for-
warding path is actually constructed in a link-by-link manner.
The source switch S1 in our example needs to select either
S2 or S3 as the next-hop switch for all outgoing packets.
As shown in Table I, the algorithm picks up S2 for the first
packet (seq = 1) and S3 for the second one (seq = 2). The
reversed order is also possible because S2 and S3 have the
same priority initially.

Suppose that the first packet goes to S2, which needs to
select either S4 or S5 as the next-hop switch. Here S4 and
S5 also have the same priority initially. The result shown
in Table II assumes the selection of S4. S4 has only one
selection, S6, for the next-hop switch. This completes the
path for the first packet. Table III shows the paths found for
all four packets in a network-wide PDC.

Figure 5 shows another topology with uneven link band-
width. Here N = lem(5, 10,5) = 10, so there are 10 packets
in a PDC. The result is shown in Table IV.

TABLE III: Complete PDC for the Topology Shown in Fig. 2a

Packet Seq. Stage 1 Stage 2 Stage 3 Stage 4
1 S1 S2 S4 S6
2 S1 S3 S5 S6
3 S1 S2 S5 S6
4 S1 S3 S4 S6

E. Conversion to Switch Rules

Since the route of a packet depends on the sequence
number of the packet, every switch needs a packet sequence
counter for packet dispatching. There are two design options.
A switch may uses a shared counter for all packets of the
same source-sink switch pair. Alternatively, a switch may
keep an independent counter for each distinct flow between
the same pair. The latter design actually conducts packet-
level traffic splitting for each flow. We will evaluate the
performance of these two different designs numerically in
the next section.

IV. NUMERICAL RESULTS

We implemented DBB using P4 switches (Tofino ASIC
[15]). P4 switches allow for customized headers, parsers, and
match-action tables, which facilitate the implementation of
the proposed approach. For example, we used the registers
of P4 switches to implement circular counters to identify the
ordinal numbers of ingress packets. We implemented DBB
with both shared and independent counters and conducted
experiments for performance comparisons with RPS [10].

We used 8 Barefoot Tofino Switches (INV D10056) and
3 QCT D51B-1U servers as traffic generators. Fig. 6 shows
the topology. The link capacity is uniformly 10 Gbps. We
considered different scenarios by varying the traffic loads,
the numbers of connections, the rates of connections, and the
packet sizes of connections. We used iPerf3 to establish TCP
connections between end hosts, generate traffic according to
the designated target rates, and measure the sending rates (i.e.,
goodput) at the other ends of the connections. We used TCP
connections instead of UDP datagrams because TCP con-
nections react to packet reordering so the measured goodput
could reveal whether the proposed approach is impacted by
the packet reordering problem.

TABLE IV: Complete Dispatching Cycle for the Topology Shown in Fig. 5

Packet Seq. Stage 1 Stage 2 Stage 3 Stage 4
1 Sl S2 S4 S6
2 S1 S3 S5 S6
3 S1 S3 S5 S6
4 N S3 S4 S6
5 S1 S3 S5 S6
6 S1 S2 S5 S6
7 S1 S3 S4 S6
8 S1 S3 S5 S6
9 S1 S3 S4 S6
10 S1 S3 S5 S6

Fig. 5: Topology with uneven link bandwidth. Circled number indicates the
SIR of the associated link.

> =
=3 o
1S

>
=
=

=
=
~

Fig. 6: Topology for experiments with Barefoot Tofino Switches

A. High and Low Traffic Loads

The first experiment established one TCP connection for
each of the four source-destination host pairs: (hl,h9),
(h3,h11), (h6,h10), and (h8,h12). We tested two TCP target
rates: 5 Gbps and 10 Gbps. The aggregated traffic loads with
these two rates are thus 20 Gbps and 40 Gbps, respectively.
With 10-Gbps link capacity, the bandwidth capacity of each
stage is 40 Gbps. Therefore, these two settings generated traf-
fic loads equivalent to 50% and 100% bandwidth capacities,
respectively.

We created a new connection every 10 seconds, and each
connection lasted for 60 seconds. Fig. 7 shows the sending
rate collected by iPerf3 with both settings of load. For the
proposed scheme (DBB), we can see the total sending rate
increased when a new connection was added into the network.
When all connections coexisted (during the interval from the
30th to the 60th seconds), the total sending rates of DBB
were higher than RPS. The average goodputs of RPS, DBB
(shared counter), and DBB (independent counter) during this
interval were 15.94, 20.00, and 20.00 Gbps, respectively,
with 20 Gbps traffic load and 15.77, 36.63, and 37.03 Gbps,
respectively, with 40 Gbps traffic load. We can see that the
sending rate of RPS did not even reach the half of the network
capacity (i.e., 20 Gbps).

B. Number of Connections

We had two settings for the number of connections. In the
first setting, we created 10 connections between each pair
of source and destination hosts, resulting in 40 connections
in total. The target rate of each connection was set to 1
Gbps. In the second setting, the number of connections
was increased to 100 connections per pair (resulting in 400
connections in total) with target rate 0.1 Gbps per connection.
All connections commenced at the very beginning and lasted
for 90 seconds.

Figure 8 shows the sending rates collected by iPerf3 in
these two settings. The average sending rates of RPS, DBB
(shared counter), and DBB (independent counter) were 18.87,
37.48, 37.57 Gbps, respectively, with 40 connections and

Goodput (Gbps)

RPS
©— DBB (shared)
—— DBB (independent)

0 10 20 30 40 50 60 70 80 90
Time (Sec.)

(2)

Goodput (Gbps)
8

DBB (shared)
—#— DBB (independent)

0 10 20 30 40 50 60 70 80 £
Time (Sec.)

®)
Fig. 7: Goodput with different traffic loads. (a) 20 Gbps (b) 40 Gbps

| i
R e S e

RPS
—S—DBB (shared)
DBB (independent)

0 10 20 30 40 50 60 70 80 90
Time (Sec.)

(@)

n
&

Goodput (Gbps)
a 8

RPS
5 ©— DBB (shared)
—#— DBB (independent)

0 10 20 30 40 50 60 70 80 90
Time (Sec.)

(b)

Fig. 8: Goodput with two different numbers of connections. (a) 40 connec-
tions (b) 400 connections

18.93, 37.50, 37.55 Gbps, respectively, with 400 connections.
We observed no significant performance difference between
these two settings because these two settings injected the
same total amount of traffic load and all the tested schemes
perform packet-level traffic splitting. Nevertheless, the pro-
posed scheme (DBB) significantly outperformed RPS in both
settings.

C. Heterogeneous Connection Rates

We created 40 and 400 connections and set up the tar-
get rate of each connection by the following rule. The
basic rates of a connection were 2 Gbps and 0.2 Gbps
in the 40-connection and 400-connection settings, respec-
tively. We used a ratio vector bw_ratio with contents

[0.5,0.1,0.9,0.2,0.8,0.3,0.7,0.4,0.6,0.5] to set up the tar-
get rate of each connection. The target rate of the i-th con-
nection was set to the basic rate times bw_ratio[i mod 10]
for all i.

Figure 9 shows the sending rates collected by iPerf3 with
heterogeneous connection rates. The average goodputs of
RPS, DBB (shared counter), and DBB (independent counter)
were 18.84, 37.50, 37.54 Gbps, respectively with 40 connec-
tions and 19.07, 37.62, 37.67 Gbps, respectively with 400
connections. The results are similar to those of the previous
experiment because the total traffic loads remain the same.
Here the proposed scheme (DBB) still outperform RPS.

L

Goodput (Gbps)
Goodput (Gbps)

——s
—o— 088 (shared)

0 s 80 o 10 20 % o 70 80 90

e 500
(a) (b)

Fig. 9: Goodput with heterogeneous connection rates. (a) 40 connections (b)
400 connections

Time (Sec.)

D. Heterogeneous Packet Sizes

We still created 40 and 400 connections with uni-
form target connection rates 2 Gbps and 0.2 Gbps, re-
spectively, but varied the packet sizes of connections.
We used a ratio vector pkt_size_ratio with contents
[1,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.95] to set up the
packet size of each connection. The packet size of the i-th
connection was set to 1500xpkt_size_ratio[i mod 10] bytes.

Figure 10 shows the sending rates collected by iPerf3 with
heterogeneous packet sizes. The average goodputs of RPS,
DBB (shared counter), and DBB (independent counter) were
18.40, 36.51, 36.46 Gbps, respectively, with 40 connections
and 18.40, 36.61, 36.73 Gbps, respectively, with 400 con-
nections. The results are also similar to those of previous
experiments.

Goodput (Gbps)

Goodput (Gbps)

10 ——ns
—o— 088 (shared)

0 8 90 o 10 20 6 70 80 90

w0 50
Time (Sec.)

Fig. 10: Goodput with heterogeneous packet sizes. (a) 40 connections (b)
400 connections

V. CONCLUSIONS

We have proposed a packet-level bandwidth-aware traffic
splitting scheme which determines a set of packet dispatching
rules for each switch. For each switch, the proposed scheme
evenly distributes packets over all available egress links to
avoid congestion on any particular link. For each stage, it
also evenly distributes egress packets over all downstream
switches to avoid congestion on any downstream switch. The

packet dispatching rules are executed by all switches in a
distributed manner. Each switch makes forwarding decisions
for ingress packets without explicit probes or feedback infor-
mation.

We implemented the proposed scheme on P4 switches and
conducted experiments for performance measurements. The
results show that the proposed scheme outperforms RPS in
terms of goodput with various settings, which indicates that
the proposed scheme does not suffer from packet reordering
problem that arises because of imbalanced queuing build-ups
in switches.

ACKNOWLEDGMENT

This work was supported in part by The Featured Areas Re-
search Center Program within the Framework of the Higher
Education Sprout Project by the Ministry of Education,
Taiwan; in part by the Ministry of Science and Technol-
ogy, Taiwan, under Grants 110-2221-E-A49-044-MY3, 110-
2221-E-A49-064-MY3, 111-2218-E-011-014, and 111-2628-
E-A49-019, and in part by the Ministry of Economic Affairs,
Taiwan, under Grant 107-EC-17-A-02-S5-007.

REFERENCES

[1] A. Singh et al., “Jupiter rising: A decade of Clos topologies and
centralized control in Google’s datacenter network,” ACM SIGCOMM
Computer Communication Review, vol. 45, no. 4, pp. 183-197, Oct.
2015.

[2] M. Noormohammadpour and C. S. Raghavendra, “Datacenter traffic
control: Understanding techniques and tradeoffs,” IEEE Communica-
tions Surveys & Tutorials, vol. 20, no. 2, pp. 1492-1525, 2018.

[3] D. Thaler and C. Hopps, “Multipath issues in unicast and multicast

next-hop selection,” RFC 2991, 2000.

K. cheong Leung, V. O. Li, and D. Yang, “An overview of packet

reordering in Transmission Control Protocol (TCP): Problems, solu-

tions, and challenges,” IEEE Trans. Parallel Distrib. Syst., no. 4, pp.

522-535, Apr. 2007.

[5] P. Hurtig and A. Brunstrom, “Packet reordering in TCP,” in Proc. IEEE
GLOBECOM Workshops, Houston, TX, USA, Dec. 2011.

[6] N. M. Piratla and A. P. Jayasumana, “Reordering of packets due

to multipath forwarding: An analysis,” in Proc. IEEE ICC, Istanbul,

Turkey, Jun. 2006.

S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load

balancing without packet reordering,” ACM SIGCOMM Computer

Communication Review, vol. 37, no. 2, pp. 51-62, Apr. 2007.

[8] S. Prabhavat, H. Nishiyama, N. Ansari, and N. Kato, “On the per-
formance analysis of traffic splitting on load imbalancing and packet
reordering of bursty traffic,” in Proc. Int’l Conf. on Network Infras-
tructure and Digital Content, Beijing, China, Nov. 2009.

[9] C. Clos, “A study of non-blocking switching networks,” Bell Labs Tech.

J., vol. 32, no. 2, pp. 406424, Mar. 1953.

A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact of

packet spraying in data center networks,” in Proc. IEEE INFOCOM,

Turin, Italy, Jul. 2013.

C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,

2000.

Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing-based

schemes for Internet load balancing,” in Proc. IEEE INFOCOM, Tel

Aviv, Israel, Mar. 2000.

Y. Kaymak and R. Rojas-Cessa, “Per-packet load balancing in data

center networks,” in Proc. 36th IEEE Sarnoff Symposium, Newark, NJ,

USA, Sep. 2015.

J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,

Y. Xiong, and D. Maltz, “Per-packet load-balanced, low-latency routing

for clos-based data center networks,” in Proc. 9th ACM Conf. on

Emerging Networking Experiments and Technologies, Dec. 2013, pp.

49-60.

“Intel Tofino: P4-programmable ethernet switch

that delivers better performance at lower

https://www.intel.com/content/www/us/en/products/network-

io/programmable-ethernet-switch/tofino-series.html, accessed: 2022-

07-27.

[4

[inar)

[7

—

[10]

[11]

[12]

[13]

[14]

[15] ASIC

power,”

