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Abstract— Bluetooth is a short-range TDD (Time Division
Duplex) wireless network that supports both circuit- and packet-
oriented applications. A piconet is composed of a device config-
ured as master and at most seven other devices acting as slaves.
At Medium Access Control (MAC) layer, the master can select
a slave to send a data packet and until then, the slave is not
allowed to transmit. Round-Robin (RR) and Exhaustive Round-
Robin (ERR) are two elementary MAC scheduling schemes that
are both simple and efficient. This paper proposes RR-FCFS, a
simple MAC scheduling scheme that has the same advantages
as RR and ERR. RR-FCFS acts as RR if the master’s queue
is empty and starts transmitting packets in first-come-first-serve
order otherwise. The simulation results show that RR-FCFS’s
performance in terms of packet delay and queue length is
comparable with those of RR and ERR.

I. I NTRODUCTION

Bluetooth [1] is a short-range wireless technology that was
intended to replace numerous proprietary cables. It provides
both voice and data transmission services, which allow users to
interconnect their laptops, handsets, and other devices forming
a small indoor picocellular wireless network (piconet). A
piconet is an arbitrary collection of Bluetooth-enabled devices
which are close enough to be able to communicate and
are exchanging information in a regular way [2]. A device
configured as master forms and manages a piconet, while
other devices acting as slaves listen to the master and adopt
the master’s timing. All devices share the radio channel in
a time-division manner and transmissions are TDD (Time
Division Duplex). The master sends a packet to a slave on
even-numbered time slot, while the slave sends packet to the
master on an odd slot. A slave is allowed to take a slot for
packet transmission only right after it is polled by the master,
i.e., it receives a packet from the master. The master may
send POLL packet rather than data packet to a slave. A POLL
packet does not convey any user information and serves only
for the purpose of giving the polled slave the privilege of
sending packet in the succeeding slot. When the polled slave
has no data packet to send, it responds to the master with a
NULL packet which does not convey any user information.

Two types of physical links are supported by Bluetooth:
SCO (Synchronous Connection-Oriented) and ACL (Asyn-
chronous ConnectionLess). SCO links support circuit-oriented
applications with constant bit rate and must use reserved time

slots in a periodic fashion. An ACL link, on the other hand,
provides a packet-switched connection between the master and
a slave and can only be allocated unreserved slots. For any
unreserved even slot, the master may either select one device to
transmit ACL traffic or simply do nothing. The selection rule
corresponds to MAC (Medium Access Control) scheduling.
The performance issues we consider here include packet delay
and queue length. A straightforward scheduling policy would
be Round Robin (RR), which polls each slave in a cyclic order
and transmits POLL/NULL packet when necessary. Exhaustive
Round Robin (ERR) [3] is another simple scheduling policy
which polls each slave in a cyclic order as well but does
not switch to the next slave until the current master-slave
pair has no more data to send in either direction. Several
researchers have studied Bluetooth MAC scheduling problem
[4], [5], [3], [6], [7], [8], [9]. Some works assume that the
master has up-to-date knowledge of the slave queues’ status
[4], [3], [10], which makes these works impractical. Some
approaches utilize Bluetooth’s power-saving mode [5], [6]
or control master’s polling frequency [8] to reduce power
consumption. Linet al. [9] proposed a scheme that aims to
increase link utilization by exploiting different combinations
of Bluetooth packet types. This approach is too complex to
be practical and it will increase packet delay. In [7], Das
et al. utilized flow information at upper-layer to give more
slots to slaves that have more queued data packets. However,
this approach requires cross-layer information and it lacks a
systematic way to determine the optimal number of slots that
should be given.

In this paper, we propose a simple MAC scheduling scheme
that requires neither slave queues’ status nor cross-layer in-
formation. It operates in two folds: when the master’s queue
is empty, RR is used to poll each slave; when the master’s
queue is non-empty, queued packets are served in a FCFS
(First-Come-First Serve) fashion. Our simulation results show
that this scheme’s performance is comparable with those of
RR and ERR.

The rest of the paper is organized as follows. The MAC
scheduling problem and related work are described in Section
2. Section 3 details our MAC scheduling scheme and analyzes
stability conditions of network. Simulation model and numeri-
cal results are presented in Section 4. Section 5 concludes our



work.

II. PROBLEM DEFINITION AND RELATED WORK

MAC scheduling problem in Bluetooth piconet can be
modeled as follows. The master has logically 7 individual
master-to-slave queues storing packets destined for slaves,
one for each slave. Each slave has its own slave-to-master
queue storing packets to be sent to the master. A slave can
send a packet to the master on sloti if and only if it has
received data from the master on sloti − 1. The problem is
to schedule packet transmission in master-to-slave queues so
higher performance (lower packet delay, shorter queue length,
etc.) can be achieved. When some master-to-slave queue is
selected to be served but no data packet is pending there, the
master can either send a POLL packet or omit that slave.

RR is simple and straightforward, but it wastes bandwidth
on transmitting POLL/NULL packets under light traffic load.
It also forces an equal partition of bandwidth capacity to each
slave. Therefore, RR may suffer from performance degradation
if traffic load from each slave are non-uniform. ERR performs
well under light traffic load but suffers from long packet
delay in case of heavy load. It may also need to transmit
POLL/NULL packets when the load on master-to-slave and on
slave-to-master queues are not symmetric. There are “preview”
schemes assuming that the master has up-to-date knowledge
of the slave-to-master queues’ status [4], [3], [10]. This is
only possible in an ideal scenario even if an explicit signaling
between the master and slaves were provided [3]. This kind
of preview schemes will not be discussed further. Some
related researches aim to reduce power consumption by utilize
Bluetooth Sniff operation mode [5], [6]. In Sniff mode, a
slave listens for a master transmission every predefined period
(a sniff interval) for a specified number of slots (an active
window). Garget al. [5] proposed to dynamically adjust sniff
interval and/or active window on the basis of slot utilization.
Other schemes proposed by Chakrabortyet al. [6] try to
predict slaves’ traffics to decide the criterion of switching
to or back from Sniff mode, under the assumption that the
inter-arrival time till the next packet is drawn from the same
distribution as those that have been observed. ASP [8] assumes
that sources send data in constant bit rate so the master can
implicitly learn appropriate share ratio of bandwidth allocated
to each slave. The bandwidth share is controlled by limiting
the polling success rate to a desired range. Though effective in
reducing power consumption, these power efficient schemes all
have the disadvantage of increasing queueing delay of packets.

Lin et al. [9] proposed a scheme that uses different com-
binations of Bluetooth packet types to match the traffic char-
acteristics of master and slaves. This work assumes that the
traffic arrival rates of each master-slave pair are known and
the goal is to increase bandwidth utilization. This approach
is too complex to be practical and it will increase packet
delay. In [7], Daset al. exploited flow bit that is used to
convey upper-layer (i.e., L2CAP) flow information as intended
in the Bluetooth specification [1]. Their approach sets the flow
bit when the number of packets buffered at the upper-layer

reaches a predefined threshold, and sets variableflow when
the flow bit for packets traveling in either direction is turned
on. Based on the flow information, the authors proposed three
approaches: Adaptive Flow-based Polling (AFP), Stick, and
StickAFP. AFP dynamically changes polling intervals in favor
of slaves that have more queued data packets. Sticky operates
in RR fashion and StickyAFP is similar to AFP. They allow a
slave withflowset to transmit at mostnumstickypackets when
the slave is polled. It was reported that AFP and Sticky have
higher throughput than RR on a particular simulated network.
The disadvantage of this work is that it requires cross-layer
information and it has no systematic way to determine the
appropriate value fornumsticky.

III. PROPOSEDSCHEME AND ANALYSIS

Our MAC scheduling scheme operates in accordance with
the state of the master-to-slave queues. All master-to-slave
queues are viewed as a global one where packets are stored
in their arrival order. When the queue is empty, this scheme
polls slaves in round-robin fashion. Whenever the queue
becomes non-empty, the master suspends RR polling and starts
transmitting packets in First-Come-First-Serve (FCFS) order.
After emptying the queue, the master resumes regular RR
polling. We denote this scheme by “RR-FCFS” hereafter.

RR-FCFS integrates RR with FCFS. The basic idea behind
this integration is that FCFS has the shortest delay for master-
to-slave packets and RR would acquire low delay average for
slave-to-master packets. In fact, our preliminary study found
the following result:

• In the downlink part (concerning master-to-slave traffic),
FCFS has the shortest delay. RR-FCFS performs similar
to but slightly worse than FCFS does. Both FCFS and
RR-FCFS are significantly better than RR.

• In the uplink part (concerning slave-to-master traffic), RR
has the shortest delay. RR-FCFS performs slightly worse
than RR does but significantly better than FCFS does.

The result is obtained from simulations with the following
settings:

• uniform traffic load among slaves,
• symmetric traffic load between the master to a salve and

the slave to the master, and
• various traffic load ranging from0.1 to 0.9 packet/slot-

pair.

In terms of average packet delay, RR-FCFS outperforms either
RR or FCFS. More comprehensive results will be presented
in the next section.

In the following, we analyze the stability condition for a
piconet with RR, ERR, and RR-FCFS. Letλi

m be the mean
data traffic load from the master to slavei andλm

i be that from
slave i to the master. Let us assume seven slaves and define
system configurationσ = {λi

m, λm
i }7i=1 to be a particular set

of all traffic load. We say thatσ is stable if no queue in
either direction of the link grows unlimitedly, which can be
guaranteed if traffic load on any channel does not exceed the
bandwidth allocated to that channel.



TABLE I

A SCENARIO FOR WHICH THE SYSTEM IS UNSTABLE WITHERR.

i 1 2 3 4 5 6 7

λi
m C/7 0 2C/7 0 C/7 C/7 0

λm
i 0 2C/7 0 2C/7 0 0 C/7

DenoteC the total bandwidth capacity of all uplink chan-
nels. Due to TDD transmission, the total bandwidth capacity
of all downlink channels is alsoC. Since RR forces an equal
bandwidth share on either direction, the condition forσ staying
in stable with RR is

∀i : λi
m <

C

7
∧ λm

i <
C

7
. (1)

With RR, it is possible to have an overloaded channel (i.e.,
traffic load on a channel is higher than the bandwidth allocated
to that channel), while others remain stable (traffic load is
lower than allocated bandwidth).

ERR allocates bandwidthmax(λi
m, λm

i ) to both uplink and
downlink channels of master-slave pairi, so the condition for
system’s stability with ERR is

7∑

i=1

max(λi
m, λm

i ) < C. (2)

With ERR, it is possible that neither the total traffic load on
all uplink channels nor that on all downlink channels exceeds
C but the system is still unstable. Table I illustrates a scenario
where total traffic load on either direction is only5C/7 but
the system is unstable with ERR.

The ‘FCFS’ part of RR-FCFS allocates bandwidth to each
downlink channel according to the channel’s traffic load.
Therefore, the total traffic load on all downlink channels must
not exceedC for system stability. The remaining available
downlink bandwidth is equally distributed to all downlink
channels by the ‘RR’ part of RR-FCFS. Since each uplink
channel receives the same amount of bandwidth as the corre-
sponding downlink channel does due to TDD, the condition
for system’s stability with RR-FCFS is

7∑

j=1

λj
m < C ∧ ∀i : λm

i < λi
m +

C −∑7
j=1 λj

m

7
. (3)

The following two theorems show that ERR has a wider
range of operation retaining stability then either RR or RR-
FCFS has.

Theorem 1:For any given system configurationσ, if σ is
stable using RR,σ is also stable using ERR.

Proof: Sinceσ is stable using RR, Eq. (1) is ensured.
It follows that

∑7
i=1 max(λi

m, λm
i ) < C. So σ is also stable

using ERR.
Theorem 2:For any given system configurationσ, if σ is

stable using RR-FCFS,σ is also stable using ERR.

TABLE II

A SCENARIO ILLUSTRATING DAMAGE CONTROL.

i 1 2 3 4 5 6 7

λi
m C/14 C/14 2C/7 C/14 C/14 C/14 C/7

λm
i C/14 2C/7 C/14 C/7 C/14 C/14 C/14

Proof: Let M denote the set of slavesi such thatλi
m <

λm
i and letN be {1, 2, · · · , 7} −M . We have

7∑

i=1

max(λi
m, λm

i ) =
∑

i∈N

λi
m +

∑

i∈M

λm
i . (4)

Sinceσ is stable using RR-FCFS, by (3) we have

∑

i∈M

λm
i <

∑

i∈M

(
λi

m +
C −∑7

j=1 λj
m

7

)

=
∑

i∈M

λi
m + |M |

(
C −∑7

j=1 λj
m

7

)
.

Note that|M | ≤ 7, so

∑

i∈M

λm
i <

∑

i∈M

λi
m + C −

7∑

j=1

λj
m. (5)

By (4) and (5), it is clear that
7∑

i=1

max(λi
m, λm

i ) <

7∑

i=1

λi
m + C −

7∑

j=1

λj
m = C.

So σ is also stable using ERR.
Both RR and RR-FCFS are superior to ERR in ‘damage

control’, which refers to the ability of confining the impacts
of an overloaded channel to that channel. With ERR, when-
ever the system becomes unstable, all queues grow without
bound. In contrast, only queues that correspond to overloaded
channels grow unlimitedly with RR or RR-FCFS. There is
always some queue remaining bounded as long as the overall
downlink/uplink traffic load does not exceed the associated
bandwidth capacity. As an example, all queues grow unlimit-
edly with ERR in the scenario of Table II, while only two do
so with either RR or RR-FCFS.

IV. SIMULATION AND RESULTS

We conducted simulations to evaluate the performance of
RR-FCFS. We assume a piconet consisting of one master and
seven slaves numbered from 1 to 7. The master generates
packets to slavei by a Poisson process with rateλi

m and
slave i generates packets to the master by a Poisson process
with rateλm

i . We say that the traffic issymmetricif λi
m = λm

i

for all i and asymmetricotherwise. The traffic isuniform if
λi

m = λj
m and λm

i = λm
j for all i, j, and the traffic isnon-

uniformotherwise. Table III lists the experiment settings which
cover possible combinations of different traffic patterns. A
variable,λ, is used to control traffic load on both downlink and
uplink channels. Its value is ranged from 0.1 to 0.9 packet/slot-
pair. Total 60,000 packets are generated for each simulation.



TABLE III

EXPERIMENT SCENARIOS(λ IS A TUNABLE PARAMETER).

ID Traffic type Setting

S1 Symm. & Uniform λi
m = λm

i = λ/7 for all i
S2 Asym. & Uniform λi

m = λ/7 andλm
i = λ/14 for all i

S3 Asym. & Uniform λi
m = λ/14 andλm

i = λ/7 for all i
S4 Symm. & Non-uni λ1

m = λ3
m = λ5

m = λ7
m = λ/12;

λ2
m = λ6

m = λ/2; λ4
m = λ/3;

andλm
i = λi

m for all i
S5 Asym. & Non-uni λ1

m = λ3
m = λ4

m = λ6
m = λ/12;

λ2
m = λ5

m = λ/6; λ7
m = λ/3;

λm
1 = λ/3; λm

3 = λm
6 = λ/6; and

λm
2 = λm

4 = λm
5 = λm

7 = λ/12

All packets are assumed of one-slot length (i.e., DH1 packets
[2]).

We investigated packet delay and queue length of RR-FCFS.
The results are compared with those of RR and ERR. RR
and ERR are chosen simply because they both are simple and
efficient methods.

A. Stability Condition

Before presenting the numerical results, it is worth noting
that all queues in Scenarios S1-S3 (Table III) are all stable
with either RR, ERR, or RR-FCFS. In S4, all queues becomes
unstable whenλ ≥ 0.6 with either ERR or RR-FCFS. With
RR, some queue becomes unstable whenλ > 2/7. In S5,
the threshold value ofλ (the maximumλ value for a given
queue staying in stable) varies. With RR, some queue becomes
unstable whenλ > 3/7 while some others are stable even
whenλ > 1. The threshold value for all queues with ERR are
0.71. With RR-FCFS,

∑
i λi

m = λ, so slave-1-to-master queue
(the most extreme one) grows unbound when

λ

3
≥ λ

12
+

1− λ

7
.

Thus the threshold value for slave-1-to-master queue is∼
0.36. However, many other queues stay in stable through all
experiments. This can be easily verified using the analytic
results presented in the preceding section.

B. Packet Delay

Packet delay is the time (measured in slots) between a
packet’s generation and transmission. Figures 1-5 show the
averaged results for S1 to S5, respectively, under various
values ofλ. Generally speaking, RR-FCFS performs better
than RR in most cases, and ERR outperforms RR in all cases
with the exception of S1 under heavy load. The results of RR-
FCFS are similar to those of ERR in symmetric traffic cases
(Figures 1 and 4). In asymmetric-and-uniform traffic cases,
RR-FCFS outperforms ERR if the master has higher total
packet rate than slaves have, i.e.,

∑
λi

m >
∑

λm
i , (Figure 2)

and performs worse than ERR otherwise (Figure 3). In S5
(Figure 5), ERR is superior to RR-FCFS because ERR has a
higher threshold value ofλ.
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Fig. 2. Packet delay with S2

C. Queue Length

Queue length is defined to be the number of packets pending
in queue. Figures 6-8 show the average queue lengths with
S1, S2, and S3, respectively. Clearly, RR-FCFS always has the
shortest master-to-slave queues. For S4, we look at slave 4 as it
is the most extreme case. RR’s master-to-slave-4 and slave-4-
to-master queues grow unlimitedly whenλ > 0.43 (Figure 9).
The reason is that whenλ > 0.43, λ4

m = λm
4 = λ/3 is larger

than 1/7, the service rate allocated to slave 4. The average
length of master-to-slave queue with RR-FCFS is shorter than
that with ERR. ERR has shorter slave-to-master queue than
RR-FCFS has whenλ is below the threshold value.

For S5, Figures 10 and 11 show the average queue length
concerning slaves 1 and 7, respectively. Again, RR-FCFS has
the shortest master-to-slave queues in both cases. Concerning
slave-1-to-master queues, ERR is superior to RR and RR-
FCFS for its higher threshold value ofλ. In Figure 11(a),
the master-to-slave-7 queue with RR gets overwhelmed when
λ > 0.4 and that with ERR does so whenλ > 0.8. In contrast,
RR-FCFS behaves stably. In Figure 11(b), ERR has the longest
slave-7-to-master queue under heavy load due to the lack of
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Fig. 9. Average queue length of master-slave-4 pair with S4. (a) master-to-
slave-4 (b) slave-4-to-master

‘damage control’. Both RR and RR-FCFS are better than ERR
but RR-FCFS performs slightly better than RR does. The
reason for RR-FCFS’s superiority is that it provides higher
service rate to slave 7 (λ7

m = λ/3) than RR does under
moderate to high traffic load.

V. CONCLUSIONS

MAC scheduling scheme for Bluetooth piconet is critical
to link-layer performance. RR and ERR are two simple and
efficient MAC scheduling schemes that require neither slave
queues’ status nor cross-layer information. This paper pro-
poses RR-FCFS, a simple MAC scheduling scheme that has
the same advantages as RR and ERR. RR-FCFS acts as RR
if the master’s queue is empty and starts transmitting packets
in FCFS order otherwise.

Our analysis shows that ERR has a wider range of operation
retaining stability then either RR or RR-FCFS has. But RR
and RR-FCFS has better ‘damage control’ in the sense that
the impacts of an overloaded channel can be confined to
that channel. The simulation results show that ERR and RR-
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Fig. 10. Average queue length with S5. (a) master-to-slave-1 (b) slave-1-to-
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FCFS generally outperforms RR in terms of packet delay.
The packet delay with RR-FCFS is similar to that with ERR
under symmetric traffic, better than ERR under asymmetric-
and-uniform traffic, and worse than ERR in other cases.

RR-FCFS always has the shortest queue for downlink
channels. RR’s master-to-slave or slave-to-master queues may
easily grow unlimitedly under non-uniform traffic, even overall
downlink/uplink traffic load does not exceed bandwidth ca-
pacity. ERR generally has shorter slave-to-master queue than
RR-FCFS has, since some slave-to-master queue with RR-
FCFS may become unstable when the traffic load on uplink
channels is higher than that on downlink channels. On the
other hand, RR-FCFS may perform the best at slave queues
where it provides higher service rate than necessary (at the
cost of overwhelming other slave queues).

In short, RR-FCFS’s performance is comparable with those
of RR and ERR, and none is definitely better than others in
all circumstances.
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