
Online Ring Structure Adaptation for Mobile
Wireless Computing

Li-Hsing Yen
Dept. Computer Science & Information Engineering

Chung Hua University
Hsinchu, Taiwan 300, R.O.C.

Email: lhyen@chu.edu.tw

Kuang-Hui Chi
Dept. Electrical Engineering

National Yunlin University of Science & Technology
Touliu, Taiwan 640, R.O.C.

Email: chikh@yuntech.edu.tw

Abstract— In a mobile ad hoc(multi-hop) wireless network, the
logical structure of a ring is likely to become volatile or expensive
to maintain over time due to changeable network topology.
Additional adverse effects take place when a node joins or leaves
the computation in the presence of mobility. This paper presents
a protocol that adapts a ring among mobile nodes to the network
dynamics to reflect overall communication efficiency. This is
achieved by modifying the ring structure in a localized, mutual
exclusive fashion, thereby allowing for concurrent segment-wise
modifications to proceed. Remarkably our proposal operates
without global knowledge of the logical structure and can be
embodied as an underlying protocol stratum that supports
transparent deployments of conventional algorithms in mobile
environment. Subsequent to correctness proof, simulation results
show that our proposal is promising in several regards.

I. I NTRODUCTION

Due to the development of wireless technology and portable
computing devices, mobilead hoc (multihop) wireless net-
works have drawn considerable attention from the research
community. This type of network, unlike conventional in-
frastructured wireless counterparts, operates in the absence
of fixed switching stations and thus all networking entities
therein can be mobile. In order to maintain system-wide
communication, each host may serve as an intermediate node
to relay messages. Applications such as disaster recovery,
crowd control, search and rescue, and automated battlefields
are typical examples of where ad hoc networks are deployed.

To date, study in this field mainly focuses on medium access
control [1] and routing [2], [3]. Instead, we are concerned
with maintaining a ring structure among mobile nodes that
adapts to changeable network topology. Rings are widely used
for distributed control computations like leader election [4],
[5], [6], [7], multicast [8], [9], mutual exclusion [10], or
termination detection because of simple connectivities. In this
text, a ring refers to an embedded logical structure spanning
independently from the physical network topology and is not
necessarily a subgraph thereof. A ring may remain unchanged
even though the network has altered physical connectivities
due to participant host migrations.

Fig. 1 shows two possible rings overlaid to an ad hoc
network. It can be seen that the correctness of a ring structure
is defacto orthogonal to the underlying network topology.
Nevertheless, a structure in line with physical linkage favors

Physical Structure

Logical Structure

Physical Structure

Logical Structure

(a) (b)

Fig. 1. Two rings on the same physical network topology.

communication as well as computation to an extent, e.g.,
reducing message-circulation time of a Token Ring. This paper
addresses the performance aspects of logical structure in an ad
hoc network. In the context of infrastructured mobile networks,
Badrinathet al. [11] identified similar issues and suggested
that a logical structure be confined on the fixed part of the
network. Following the thread, researchers adapted ring- or
tree-based distributed algorithms for mobile nodes [12], [13].
Their derived results, however, do not apply to ad hoc settings
in the absence of stationary devices.

Given the communication cost of each link, finding a
minimum-cost ring is essentially the traveling salesperson
problem and thus NP-hard. Further, benefits from an optimal
structure are likely overwhelmed by repeatedly invoking an
algorithm that involves all nodes even merely on a slight
change of network status. This may lead to substantial system
resource (power, bandwidth, etc) consumption, making an
optimal solution untenable in highly mobile environment.
Moreover, an optimal algorithm may not terminate if restarted
whenever the network changes partly.

We do not aim at maintaining a globally but a locally
optimal ring structure in response to host movements or
participant changes. In this light, we propose to modify the
logical structure only when the network has changed some
certain degree. Each such modification is restricted within a
single region of four nodes, without the awareness of the entire
system. Our protocol fabrics are illustrated in Fig. 2 where
solid lines represent directed edges of the ring, each labeled
with message-delivery cost. We observe that interchanging

b

ca

d

15
8

5

7 20

13

18

b

ca

d

15
8

5

7 20

13

18

(a) (b)

Fig. 2. Illuminating the basic idea behind our approach. (a) Original
arrangement. (b) After a local modification.

logical positions of nodesb andc in Fig. 2(a) benefits overall
communication (see Fig. 2(b) for a result.) Since our scheme
involves a small number of nodes, resource and execution time
can be thus saved significantly.

Our proposal enables prescribed segment-wise modifica-
tions to proceed concurrently. Nonetheless, concurrent updates
to overlapping segments require arbitration. For this, we fur-
ther develop an algorithm whereby nodes acquire a localized,
mutual exclusive authority for modification activities. The
algorithm is shown both safe and deadlock-free. Our overall
development is intended for a communication substratum un-
derlying conventional protocols so that protocols designed for
stationary hosts remain viable in mobile ad hoc environment.

The rest of this paper is organized as follows. In the next
section, we will present the ring modification procedure and
the localized mutual-exclusion protocol that deals with concur-
rent modifications. Section III proves the correctness of the
proposed mutual-exclusion protocol. Performance evaluation
results are given in Section IV. Lastly, Section V draws our
concluding remarks.

II. T HE PROTOCOL

To set the stage for subsequent development, we make
assumptions as follows. Each nodeN has a unique identity
and is aware of its preceding, immediate succeeding, and
second succeeding nodes (termedN.pred, N.succ, andN.succ2,
respectively.) There are hosts serving as intermediate routing
nodes such thatN can be mutually reached fromN.pred,
N.succ, and N.succ2. Communication costs with the three
neighboring nodes are measured as well. To simplify the
discussion, we assume that message delivery betweenN and
any of these neighbors is reliable and in order, which can be
achieved by, e.g., TCP. We impose neither restrictions on the
speed and direction of host movements, nor on the number
of participating processes. Each process is allowed to join or
leave a computation at its will.

A. Base Procedure

In intuitive terms, re-arranging a ring of nodes is suggested
if the performance gain outweighs its execution cost. Perfor-
mance gain refers to the difference of cost for transferring a
message over the ring before and after topological changes.
This measure can be derived next, considering that communi-
cation cost between two nodes may differ bidirectionally.

Let Cost(M, N) represent the communication cost
from nodes M to N . Any node N sends detected
Cost(N,N.pred) and Cost(N,N.succ) to its N.pred,
and collected Cost(N,N.succ) and Cost(N,N.succ2) to
N.succ. Such message exchanges enableN to learn
Cost(N.succ, N), Cost(N.succ,N.succ2), Cost(N.pred, N),
and Cost(N.pred,N.succ) from neighboring sites. NodeN
thereby determines whether a switch from topologies{N.pred,
N.succ, N , N.succ2} to {N.pred, N , N.succ, N.succ2} is
cost-effective. That is, the former demands

C = Cost(N.pred, N)+Cost(N, N.succ)+Cost(N.succ, N.succ2)

whereas the latter

C′ = Cost(N.pred, N.succ)+Cost(N.succ, N)+Cost(N, N.succ2)

If C > C′ + δ, whereδ > 0 represents the cost of executing
the proposed protocol,N initiates connectivity modifications
in the ring by swapping its position withN.succ. Indeed, we
can subsume inδ an additional threshold by whichC outgrows
C′, indicating the minimum performance gain of actual interest
to the system.

We introduce a messageSet(Pred,Succ,Succ2) to update the
recipient knowledge of its preceding, succeeding, and second
succeeding nodes. A parameter absent from actual use by the
message is denoted as an underscore (‘’) for short. To initiate
structural modifications, nodeN executes steps below.

1) SendSet(N.pred,N ,N.succ2) to N.succ.
2) SendSet(,N.succ,N) to N.pred.
3) SendSet(N, ,) to N.succ2.
4) N.pred← N.succ
5) N.succ← N.succ2

On receipt ofSetmessage, a node, includingN itself, executes
the protocol of Fig. 3.

On receivingSet(W, X, Y) from nodeZ
if (W 6= ‘ ’) then

M.pred← W
if (X 6= ‘ ’) then

M.succ← X
if (Y 6= ‘ ’) then

M.succ2← Y
if (W = ‘ ’ and X 6= ‘ ’) then

SendSet(, ,M .succ) to M.pred
if (Z = W) then

SendSet(, ,M .succ) to Z

Fig. 3. Protocol for structural modifications

An application of our protocol over nodes
{P, Q,R, S, T, U} is depicted in Fig. 4. Table I summarizes
how corresponding nodes alter connectivities before and after
executing the protocol (first two columns.)

B. Tackling Concurrent Modifications

We allow concurrent modifications of a ring, which, how-
ever, cannot be conducted arbitrarily. Otherwise, incorrect

Q R S T

(R.pred) (R.succ) (R.succ2)

Set(_, S, R) Set(Q, R, T)

Set(R, _, _)

Set(_, _, U)

P

Set(_, _, S)

U

32

15

6

4

(R.pred) (R.succ) (R.succ2)

(Before)

(After)

Fig. 4. A scenario of applying our protocol.R initiates a topological change.

TABLE I

CHANGE OF CONNECTIVITIES INFIG. 4. THE LAST COLUMN INDICATES

THE TIME INSTANTS OF THESE EVENTS NUMBERED IN THE FIGURE.

Before After Time instant

P.succ2= R P.succ2= S 5
Q.succ= R Q.succ= S 2
Q.succ2= S Q.succ2= R 2
R.pred= Q R.pred= S 1
R.succ= S R.succ= T 1
R.succ2= T R.succ2= U 6
S.pred= R S.pred= Q 3
S.succ= T S.succ= R 3
S.succ2= U S.succ2= T 3
T.pred= S T.pred= R 4

structure may occur. For instance, nodesb andc of Fig. 5(a) ac-
tivate modifications concurrently, resulting in incorrect logical
structures. Let us take the result of Fig. 5(c) as an explanation.
Note first only thepredpointers ofb, c, andd will be changed
by b’s modification activation and only those ofc, d, and e
will be changed byc’s. When b and c activate modifications
concurrently,b.predwill be set toc as a part ofb’s protocol
initiation steps whilee.predwill be set toc due to the reception
of c’s Setmessage. Bothb’s and c’s Setmessages instructd
to change itspred pointer tob, so the result is deterministic
despite of race condition. Finally,c.predwill first point to d
as a part ofc’s protocol initiation steps and later be changed
to a due to the reception ofb’s Setmessage. The final result
is therefore obtained.

As a remedy for the problem, we further contrive a mech-
anism that mediates structural updates in a localized, mutual
exclusive fashion. We essentially preclude two nodesN and
M in close vicinity such that{N.pred, N.succ, N.succ2} ∩
{M.pred, M.succ, M.succ2} 6= ∅ from initiating concurrent
topological adjustments. One may question if this restriction
is too strong. In particular, one may suspect thatP and S
in any ring segment{P,Q, R, S, T} can safely initiate the
protocol without any harm, thoughR = P.succ2= S.pred.
To explain, note that a topological change will modify the
initiating node’ssucc2pointer as well as thesucc2pointers
of the initiating node’s successor, predecessor, and second
predecessor. Therefore, whenP and S initiate the protocol
concurrently,Q.succ2can be changed toR due toP ’s action
and can also be changed toT due to S’s, a harmful race
condition.

This problem reduces to distributed dining philosophers
problem [14] (diners problem), which demands mutual ex-
clusion only amongneighboringnodes, in the following way.

(b) (c)

b

ca

d

15
5

5

10 18

13

15

e
6

12

b

ca

d

15
5

5

10 18

13

15

e
6

12

b

ca

d

15
5

5

10 18

13

15

e
6

12

(a)

Fig. 5. Illustrating concurrent structural modifications. (a) Original arrange-
ment. (b) Incorrect result (arrowed lines indicatesuccpointers). (c) Incorrect
result (arrowed lines indicatepred pointers).

Given a ring ofn nodes, we can construct a undirected graph
G = (V, E) whereV represents the set of all nodes in the ring
and edge(u, v) is in E if and only if nodesu and v cannot
perform adjustments concurrently. This forms a Harary graph
H6,n [15], the smallest 6-connected graph withn vertices. In
this way, the problem at hand reduces to the diners problem on
a Harary graph. Solutions to the diners problem on a Harary
graph, however, are not equally viable here for the following
reasons.
• Observed solutions to the diners problem require message

exchange facility between neighboring nodes. In contrast,
a node in our Harary graph is not aware of all its
neighbors, so such facility does not necessarily exist.

• Our architecture does not require every request to be
eventually satisfied as with the diners problem. We dis-
able some of the conflicting requests; nodes with unful-
filled requests depart from exclusion contention and, after
re-assessment, can issue requests subsequent to current
topological changes.

We thus develop a new algorithm suited to our setting.
To resolve contending nodes, we take a similar strategy that
many distributed mutual exclusion algorithms exploit: define
a total ordering relation on a pair of node’s identity and some
other value. Each node is associated with a tuple〈m,n〉,
wherem quantifies the benefits to be gained after triggering a
modification andn represents the node’s unique identity. For
any 〈m,n〉 and 〈m′, n′〉, we have〈m,n〉 ≺ 〈m′, n′〉 if and
only if

m < m′ or (m = m′ andn < n′)

In this case, the node with〈m′, n′〉 has higher priority.
At any time each node operates in one of six states:WHITE,

GRAY, RED, BLUE, GREEN, or BLACK. Initially WHITE, the
current state of nodeN is recorded in a local variable, denoted
by N.color. Only whenN.color is WHITE, N is qualified to
request the authority for initiating structural modifications:

1) Quantify the benefits to be gained from the modification
into N.gain.

2) Send messageRedReqto N.pred, BlueReqto N.succ, and
GreenReqto N.succ2, all messages tagged with〈N.gain,
N.id〉.

3) N.color← GRAY.
A recipient nodeM in the WHITE state accepts the request
through theacceptanceprocedure:

1) ChangeM.color to the received message’s type (RED,
BLUE, or GREEN) and record the tagged〈N.gain, N.id〉.

2) ReplyN with ReqAcpt.

After having received threeReqAcptmessages, nodeN in the
GRAYstate switches to theBLACK state and then invokes the
modification protocol of Section II-A.

When nodeN in the GRAYstate receives a request from
neighboring siteM , N determines whether〈N.gain, N.id〉 ≺
〈M.gain, M.id〉. If so, N performs the acceptance procedure;
otherwise, messageReqRejis replied, causingM to fall back
to theWHITE state. A node operating in any state other than
GRAYsimply discards arrivedReqRejmessages.

When nodeM in the RED state receivesBlueReqor in the
BLUE state receivesRedReq, both sitesM.pred and M.succ
are contending. Though having accepted a request,M accepts
the current one if the tagged tuple indicates a higher-priority
requestor. It is immaterial that bothM.predandM.succreceive
ReqAcpt’s, sinceM.pred has sentGreenReqto M.succwhere
the final decision will be or has been made.

Likewise when nodeM in the BLUE state receivesGreen-
Reqor in theGREENstate receivesBlueReq, two immediate
preceding nodes are contending. NodeM may accept the
current request with higher priority. SiteM.pred determines
which of the two requests is actually accepted.

Given that nodeM in theREDstate receivesGreenReqor in
the GREENstate receivesRedReq, M is the only intersection
that can arbitrate contending nodes. In this case, we specify
that, if M has accepted a request, messageReqRejis replied
in response to the subsequent request.

The above actions by nodeM are collectively summarized
in Fig. 6. Operations not otherwise provided in the figure
are as follows. Note that a requesting site in theBLACK
state is authorized to initiate topological modifications. This
site neither accepts further requests nor resets its state to
WHITE until the intended procedure has terminated. While
the modifications are progressing, nodeM in the WHITE,
GREEN, RED, or BLUEstate will receiveSetmessage, thereby
executing the protocol of Fig. 3. SubsequentlyM changes its
state back toWHITE. The entire state transition diagram is
shown in Fig. 7.

C. Dynamic Adds and Drops

This subsection addresses how a node is added into or
dropped from a ring. Procedures described here operate in
a locally mutual exclusive manner as well. Therefore mecha-
nisms of Section II-B can be applied beforehand.

Let {P,Q, R, S} be part of a ring. If a nodeN is to be
inserted afterQ, Q is committed to send its precedingP a
messageSet(, , N) and N messageSet(Q,Q.succ,Q.succ2),
respectively. ThenQ resets Q.succ2 to R and Q.succ to
N . On receiving theSet message fromQ, N sends the
site specified by the second parameter, namelyR, another
messageSet(N, ,). Next N resumes its designated process
in response to its reception.

On the contrary, to delete nodeN from {P, Q,N,R},
N.pred, viz Q, executes the actions as follows. FirstlyQ.succ
is changed toR. ThenQ sends a messageSet(, , R) to its
precedingP and Set(Q, ,) to R. The latter message will

When (M.color = WHITE)
On receivingRedReq(m, n), BlueReq(m, n), or GreenReq(m, n)

from N

M.gain← m

SendReqAcptto N

SetM.color to RED, BLUE, or GREENaccordingly
When (M.color = GRAY)

On receivingRedReq(m, n), BlueReq(m, n), or GreenReq(m, n)

from N

if (〈M.gain,M.id〉 ≺ 〈m, n〉) then
M.gain← m

SendReqAcptto N

SetM.color to RED, BLUE, or GREENaccordingly
elsesendReqRejto N

When (M.color = RED)
On receivingBlueReq(m, n) from N

if (〈M.gain,M.id〉 ≺ 〈m, n〉) then
M.gain← m

SendReqAcptto N

SetM.color to BLUE
elsesendReqRejto N

On receivingGreenReq(m, n) from N

SendReqRejto N

When (M.color = BLUE)
On receivingRedReq(m, n) or GreenReq(m, n) from N

if (〈M.gain,M.id〉 ≺ 〈m, n〉) then
M.gain← m

SendReqAcptto N

SetM.color to RED or GREENaccordingly
elsesendReqRejto N

When (M.color = GREEN)
On receivingBlueReq(m, n) from N

if (〈M.gain,M.id〉 ≺ 〈m, n〉) then
M.gain← m

SendReqAcptto N

SetM.color to BLUE
elsesendReqRejto N

On receivingRedReq(m, n) from N

SendReqRejto N

Fig. 6. Protocol for nodeM

behoove the recipientR to hand back anotherSet message,
to renew Q.succ2, whereuponQ instructs N to leave the
computation gracefully. HenceforthN releases its internal
storage space for pointersN.pred, N.succ, andN.succ2.

III. C ORRECTNESSPROOF

We now carry out the correctness proof of our mutual
exclusive protocol. Here safety property refers to that two
nodes in close vicinity cannot initiate structural modifications
concurrently. Concerning liveness property, we show that our
scheme is deadlock-free,i.e., no node requesting structural
modifications will be prevented indefinitely from executing its
intended operations.

Lemma 1:Let P andQ be two consecutive nodes of a ring,
whereP precedesQ. If these two nodes request topological

WHITE GRAY

RED

BLUE

GREEN

Receive RedReq1

2

3

4

5

Receive BlueReq

Receive GreenReq

Receive RedReq
with higher priority

Receive BlueReq
with higher priority

6 Receive GreenReq
with higher priority

7 Receive Set

1

2

3

4 5

6

7

78 Sent request messages

9 Receive ReqRej

8

4

5

6
5

7

BLACK
10 3 ReqAcpt's received

11

9

10

11 Modification completes

Fig. 7. State transition diagram

changes concurrently, our protocol ensures that the one with
higher priority can proceed.

Proof: By our protocol,P will send messageBlueReq
to Q whereasQ will send RedReqto P . This enablesP
in the GRAYstate to learn aboutQ, and vice versa. Since
either 〈P.gain,P.id〉 ≺ 〈Q.gain,Q.id〉 or 〈Q.gain,Q.id〉 ≺
〈P.gain,P.id〉, only one of the two nodes will receiveReqAcpt
from its counterpart. Hence, the node with higher priority is
allowed to invoke the modification procedure.

Lemma 2:Let {P, Q, R} be part of a ring. If multiple nodes
request topological changes concurrently, our protocol ensures
that only one can proceed.

Proof: There are four possible combinations of con-
current requestors:{P,Q}, {Q,R}, {P, R}, and {P, Q,R}.
The first two cases follow Lemma 1. In the third case,
P will send messageGreenReqto but receives no request
from R. If 〈P.gain,P.id〉 ≺ 〈R.gain,R.id〉, P cannot initiate
modifications, because ofReqRejfrom R. On the other hand,
if 〈R.gain,R.id〉 ≺ 〈P.gain,P.id〉, R may still receive three
ReqAcpt’s from other nodes. IfR receivesGreenReqfrom
P but has not received threeReqAcpt’s, R will reply ReqAcpt
to P and change its state toGREEN. Hence, onlyP is able
to initiate modifications. IfR receivesGreenReqfrom P after
having received threeReqAcpt’s (R in the BLACK state),R
will reply ReqRejto P . At this point, only R can initiate
modifications.

While P , Q, andR are contending andQ has the highest
priority, P andR cannot procure the authority by Lemma 1.
If Q does not have the highest priority,Q cannot secure the
authority (by Lemma 1) and it suffices to consider whether
both P and R can be authorized to initiate modifications.
Hereinafter the argument becomes identical to that of the third
case above. Reasoning shows that eitherP or R (but not both)
can obtain the authority.

Lemma 3:Let {P, Q,R, S} be part of a ring. EitherP or S
can be authorized to initiate topological changes concurrently.

Proof: By our protocol, nodeR will receive GreenReq
and RedReqfrom P and S, respectively. IfP acquires the

authority, (R received P ’s GreenReqfirst and has replied
ReqAcpt), R will reply ReqRejon receivingRedReqfrom S (R
in the GREENstate at that time). ThereforeS cannot acquire
the permission concurrently. IfS acquires the authority, we
can reason similarly thatP cannot be authorized.

Theorem 1 (safety property):Let {P, Q,R, S} be part of a
ring. If multiple nodes request topological changes concur-
rently, only one can proceed.

Proof: There are 11 possible combinations of concurrent
requesting nodes. Three ({P, Q}, {Q,R}, and {R, S}) can
be dealt with by Lemma 1, four ({P, R}, {Q,S}, {P, Q,R},
and{Q,R, S}) by Lemma 2, and one ({P, S}) by Lemma 3.
The remaining three combinations,{P, Q, S}, {P,R, S}, and
{P, Q,R, S}, need further discussions.
• {P,Q, S}: If P acquires the authority, neitherQ

(Lemma 1) norS (Lemma 3) can be authorized. While
Q acquires the authority, neitherP (Lemma 1) norS
(Lemma 2) can be authorized. WhileS acquires the
authority, neitherQ (Lemma 2) norP (Lemma 3) can be
authorized. This ensures a mutually exclusive authority
amongP , Q, andS.

• {P,R, S}: Similar argument to the previous case can be
adopted.

• {P,Q, R, S}: If either Q or R acquires the authority,
this obviates other three nodes from being authorized
concurrently (Lemmas 1 and 2.) If eitherP or S obtains
the authority, this obviates other three nodes from being
authorized concurrently (Lemma 3.)

Regarding liveness property, the following theorem indicates
that our proposal is deadlock free.

Theorem 2 (liveness property):Consider a set of nodes ini-
tiating structural modifications. No node will be prevented
indefinitely by others from executing its intended operations.

Proof: On the contrary, assume that there exist a set of
nodes{N1, N2, N3, · · · ,
Ni}, where i > 1, such that N1 is deferred by
N2, N2 is deferred by N3, ..., and Ni is deferred by
N1. Such an assumption is justifiable, since a deadlock
implies circular waiting. From our proposal, it follows
that 〈N1.gain, N1.id〉 ≺ 〈N2.gain, N2.id〉 ≺ · · · ≺
〈Ni.gain, Ni.id〉 ≺ 〈N1.gain, N1.id〉. Nonetheless this in-
equality can never hold, a contradiction.

IV. SIMULATION RESULTS

We conduct simulations on our protocols in the following
way. Consider a ring of 100 mobile nodes which are randomly
distributed over a1000 × 1000 rectangle. Given any pair of
nodes, we measure their physical distance as the in-between
communication cost. We assume that the region under discus-
sion accommodates intermediate hosts which, though not part
of the ring, assist message delivery in the system. In other
words, any two nodes in the logical structure are regarded
mutually reachable throughout our simulations.

Host movements are approached by using a discrete-time
based model: on each time tick, a mobile node decides

its next position, at probabilityp that it remains stationary.
Upon a movement, the heading direction is arbitrary with an
exponential distribution of meand in distance. Smalld implies
low mobility, for example at pedestrian walking speed. In this
sequel we varyp from 0.1 to 0.9 and setd to 1, 25, and 50,
respectively. If the node is to hop off the margin, it rebounds
on the regional boundary. Furthermore, since our simulation
model runs in a synchronous manner, a non-requesting node
may receive messagesRedReqand GreenReqcoincidentally.
Here we let such an arbitrator node always acknowledge first
the RedReq-message source with aReqAcpt, assuming that
messages from theGreenReq originator, which points to
the arbitrator as the second successor, traverses comparatively
more hops.

The first performance metric of interest is the total com-
munication cost incurred by a given ring of nodes without
and with applying our proposal. Corresponding measures are
represented as dashed and solid lines, respectively, in Fig. 8.
This figure pictures the average cost versus the probability
p over 500 time units in each round. Remarkably in (a), on
average our proposal has reduced the original cost of 52476.5
to the cost of 38700.2, whereas in (b) 53183.5 to 39261.8.
This amounts to a saving of more than 26%, a nontrivial
improvement.

In addition, we observe thatp would play as a light factor
to overall system performance. In case our protocol is not
deployed, the mean distanced by which hosts migrate is
seemingly immaterial to the incurred cost of the ring. In
contrast, when our protocol is in use, the smallerd is, the more
performance we tend to gain. This agrees with a commonly
held belief — when mobile nodes roam less drastically, it is
favorably apropos to achieve better communication efficiency
by locally adjusting the ring topology, as with our strategy.

Another dimension to be examined is the average perfor-
mance gain resulting from each structural modification by our
protocol. On condition thatd is 25, we illustrate the corre-
sponding measures in Fig. 9, where the correlation between
probabilityp andδ of Section II-A is considered. It can be seen
that, asδ becomes larger, the benefits per modification due to
applying our proposal are likely to increase. However, a larger
δ will meanwhile lead to less flexible topological changes,
possibly causing communication inefficiency to some extent.

V. CONCLUDING REMARKS

In mobile ad hocenvironment, a logical structure is likely
to become fragmented or costly to maintain over time. This
paper presented a remedial approach to adapting a ring among
mobile nodes to changeable network topology, so as to im-
prove overall system efficiency. We modify the ring structure
in a localized, mutual exclusive manner, enabling modifica-
tions to progress concurrently. Simulation results showed that
our approach facilitates communication activities substantially.
Our development, as a communication substrate for process
arrangements, benefits ring-based distributed computations.
The proposed design tenet elegantly lends itself to other
settings like meshes or trees.

0.9

= 0 (Avg. 215.9) = 20 (Avg. 290.3)

= 60 (Avg. 335.2)

= 40 (Avg. 345.9)

= 100 (Avg. 398.2)= 80 (Avg. 367.6)

0.1
100

200

300

400

500

0
20

40
60

80
100

p

A
ve

ra
ge

 p
er

fo
rm

an
ce

 g
ai

n
pe

r
m

od
if

ic
at

io
n

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Fig. 9. Average performance gain per modification versusp andδ (assuming
that d is 25.)

There are pragmatic issues for future investigations. One is
that, in the course of topology changes, a participant node may
leave the computation due to forced termination or power off.
This might result in an incorrect ring structure. To deal with,
an additional mechanism needs to be introduced.

To conclude this paper, we draw two remarks on our
proposal. First, a side effect might happen when more than two
nodes, sayN1, N2, andN3, request structural modifications
concurrently.N1’s request may not be fulfilled because of
receiving a singleReqRejmessage fromN2, while N2 receives
ReqRejfrom higher-priorityN3. In this case, the prevention
of N1 activating modifications becomes redundant ifN1 is
situated sufficiently far fromN3 (since ReqRejby N2 has
turned invalid and should be ruled out.) For recovery, we let
N2 which experiences request failure signal its contending
neighborhood such asN1 that receivedN2-originatedReqRej.
This revivesN1 to proceed with original request process.

Second, we tailor a ring by interchanging the positions
of two logically adjacent nodes. This working paradigm, as
stated previously in Section 1, is not intended for a glob-
ally optimal process organization whose maintenance requires
larger scale structural adjustments. For instance, consider a
scenario, where the communication cost between any two
nodes is represented as their distance. Given a ring of six
nodes initially configured like a regular hexagon (Fig. 10(a)),
node N4 begins moving straight towardsN1. Throughout
the migration,N4 running our protocol does not initiate any
structural alteration, i.e., configuration{N3, N4, N5, N6} does
not change to{N3, N5, N4, N6}. This can easily be verified
since the former configuration incurs a cost of2d + r, less
than or equal to the latter does,

√
3r + d + d′, where

d =
√

r2 + x2 − 2rx cos
π

3
=

√
r2 + x2 − rx

20

30

40

50

60

0.1 0.3 0.5 0.7 0.9
Probability of being stationary (p)

20

30

40

50

60

0.1 0.3 0.5 0.7 0.9
Probability of being stationary (p)

d = 1

d = 1

d = 25

d = 25

d = 50

d = 50

(a) = 0

T
ot

al
 c

om
m

un
ic

at
io

n
co

st
 (

x
10

3)

T
ot

al
 c

om
m

un
ic

at
io

n
co

st
 (

x
10

3)

d = 1

d = 1

d = 25

d = 25

d = 50

d = 50

(b) = 10

Fig. 8. Comparisons in terms of total communication cost.

r

(move)
x

d

d'

N
6

N
1

N
2

N
3

N4

N
5

(a)

y

d N
6

N
1

N
2

N
3

N
5

(b)

N
4

r

Fig. 10. Restructuring more than local modifications. (a) Original config-
uration. NodeN4 starts moving towardsN1. (b) A better topology when
0 < y < r/2.

(0 ≤ x ≤ 2r) and

d′ =
√

(2r − x)2 + r2 − 2(2r − x)r cos
π

3

=
√

3r2 − 3rx + x2.

When nodeN4 reaches somewhere withinr/2 distant from
N1, we can exploit a lower-cost structure as Fig. 10(b)
demonstrates by updating connectivities amongN1, N2, and
N4, and betweenN3 and N5. The new configuration will
demand a total cost of(3r + d + y +

√
3r), less than the

original 6r. However, our protocol cannot take effect in this
case, because the firing condition holds only for structural
modifications involving adjacent nodes. Our ring structure thus
remains unchanged.

ACKNOWLEDGEMENT

This work was supported by the National Science Council,
ROC, under grant NSC 89-2213-E-216-051.

REFERENCES

[1] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: a me-
dia access protocol for wireless LAN’s,” inProc. of ACM SIGCOMM’94,
London, England, 1994, pp. 212–225.

[2] A. Iwata, C. C. Chiang, G. Pei, M. Gerla, and T. W. Chen, “Scalable
routing strategies for ad hoc wireless networks,”IEEE Journal on
Selected Areas in Communications, vol. 17, no. 8, pp. 1369–1379, Aug.
1999.

[3] E. M. Royer and C.-K. Toh, “A review of current routing protocols for
ad hoc mobile wireless networks,”IEEE Commun. Magazine, pp. 46–55,
Apr. 1999.

[4] E. Chang and R. Roberts, “An improved algorithm for decentralized
extrema-finding in circular configurations of processes,”Comm. ACM,
vol. 22, no. 5, pp. 281–283, May 1979.

[5] L. Higham and T. Przytycka, “A simple, efficient algorithm for max-
imum finding on rings,” inDistributed Algorithms (7th International
Workshop, WDAG ’93), A. Schiper, Ed. Lausanne, Switerland: Springer-
Verlag, September 1993, pp. 249–263, also published inLecture Notes
in Computer Science, 725.

[6] D. S. Hirschberg and J. B. Sinclair, “Decentralized extrema-finding in
circular configurations of processes,”Comm. ACM, vol. 23, no. 11, pp.
627–628, Nov. 1980.

[7] G. L. Perterson, “AnO(n log n) unidirectional distributed algorithm for
the circular extrema problem,”ACM Trans. on Programming Languages
and Systems, vol. 4, no. 4, pp. 758–762, Oct. 1982.

[8] W. Jia, J. Cao, T. Y. Cheung, and X. Jia, “A multicast protocol based on
a single logical ring using a virtual token and logical clocks,”Computer
Journal, vol. 42, no. 3, pp. 203–220, 1999.

[9] I. Nikolaidis and J. J. Harms, “A logical ring multicast protocol for
mobile nodes,” inProc. of 7th Int’l Conf. Network Protocols, Toronto,
Canada, Oct. 1999.

[10] A. Silberschatz, P. Galvin, and G. Gagne,Applied Operating System
Concepts, 1st ed. John Wiley & Sons, 2000, pp. 526–527.

[11] B. R. Badrinath, A. Acharya, and T. Imielinski, “Impact of mobility on
distributed computations,”Oper. Syst. Rev., vol. 27, no. 2, pp. 15–20,
Apr. 1993.

[12] ——, “Structuring distributed algorithms for mobile hosts,” inProceed-
ings of the 14th International Conference on Distributed Computing
Systems, June 1994, pp. 21–28.

[13] L. M. Patnaik, A. K. Ramakrishna, and R. Muralidharan, “Distributed
algorithms for mobile hosts,”IEE Proc.-Comput. Digit. Tech., vol. 144,
no. 2, pp. 49–56, Mar. 1997.

[14] K. M. Chandy and J. Misra, “The drinking philosophers problem,”ACM
Trans. on Programming Languages and Systems, vol. 6, no. 4, pp. 632–
646, 1984.

[15] F. Harary, “The maximum connectivity of a graph,”Porc. Nat. Acad.
Sci., vol. 48, pp. 1142–1146, 1962.

