
Resetting Vector Clocks in Distributed Systems�Li-Hsing Yen and Ting-Lu HuangDepartment of Computer Science and Information EngineeringNational Chiao Tung UniversityHsinchu, Taiwan 300, R.O.C.

�This research was supported by the National Science Council, Taiwan, ROC, under grants NSC85-2213-E009-061.

Resetting Vector Clocks in Distributed SystemsPerson to contact: Ting-Lu HuangE-mail address: tlhuang@csie.nctu.edu.twFax: (8863) 5724176, Tel: (8863) 5712121 Ext. 54725Department of Computer Science and Information EngineeringNational Chiao Tung UniversityHsinchu, Taiwan 300, R.O.C.AbstractThis paper establishes the necessary and su�cient condition for a correct clock resetting suchthat the functionality of vector clocks can be preserved. A clock reset protocol is presentedwith its applicability and limitation discussed. Our result indicates that for some applica-tions, the potential of clock overow can be completely prevented by carefully choosing thecondition for initiating the clock reset protocol.Key words: distributed systems, logical time, vector clocks, causal ordering, happened-before relation

abmnPiVi vee (calligraphic letter)T T (calligraphic letter)kiEisent(m)recv(m)tiE E (calligraphic letter)ei� phi (uppercase)� sigma (uppercase)� xi� phi (lowercase)rjk� etaLi;jLpk L (calligraphic letter)

1 IntroductionNo common system-wide clocks exist in distributed systems. Their absence makes it di�cultto reason about temporal ordering of events occurring in these systems. Lamport [15] de�nedthe happened-before relation which is a partial ordering on the set of system events. To realizethis relation, Fidge [8] and Mattern [18] introduced the vector clock scheme, in which eachevent is timestamped with the value of the vector clock maintained by the process where theevent occurs. By comparing the timestamps of events, we can determine the causal relationof events in the system.It has been proven that, given n processes, vector clock size must be at least n in order tocharacterize the causality of events [4]. Singhal and Kshemkalyani also presented an e�cientimplementation of vector clocks [24]. Applications of vector clocks have been found in the�eld of distributed debugging [18, 12], especially in detecting global predicates [7, 11, 5, 10, 6].Vector clocks have also been used in developing protocols which guarantee causal orderingamong messages [2, 23], rollback recovery [19], and in many other distributed applications[20].When using vector clocks, it is di�cult to determine the optimal number of bits usedto implement the integer variables for clock values. If the number is too small, overow isimminent; if the number is too large, the extra cost of storing and maintaining clocks becomesintolerable. One straightforward strategy to relieve us from such a dilemma is to roughlyestimate the necessary number of bits, and to reset vector clocks at each process when anyof them is about to overow. The purpose of this paper is to establish the necessary andsu�cient condition for a correct clock resetting such that the functionality of vector clockscan be preserved. Our result indicates that for some applications, the potential clock overowcan be completely prevented by carefully choosing the condition for initiating the clock resetprotocol.Rest of this paper is organized as follows. Section 2 introduces our system model. Section1

3 presents and proves a necessary and su�cient rule for a correct clock resetting. Theimplementation details of this rule is given in Section 4, with its applicability and limitationdiscussed in Section 5. Section 6 concludes this paper.2 The ModelThree types of events occur in distributed systems: the sending of messages, the receipt ofmessages, and internal events [18]. The happened-before relation (denoted by !) on theset of events is the smallest transitive relation satisfying the following conditions [15]: (1) ifevents a and b occur in the same process and if a comes before b then a ! b; (2) if a is asending of a message m and b is the receipt of m, then a! b. Events a and b are said to becausally related if a! b or b! a; otherwise, a and b are said to be concurrent.Let n be the number of processes in a distributed system. Each process Pi has its ownvector clock Vi which is de�ned as an n-element integer vector. Every event e occurring inPi is assigned a timestamp T (e), which is the content of Vi at the instant that e occurs.The rule by which each process evolves its clock and timestamps its events is as follows.(1) When an internal or sending event e occurs at process Pi, Vi[i] is increased by one, andthen assigned to T (e). (2) Every message m is attached a timestamp T (m) equal to thetimestamp of the event that sends m. When message m is received by process Pi, Vi[i] isincremented by one, and for all k 6= i, Vi[k] :=max(Vi[k];T (m)[k]). The timestamp of thisreceipt event is then set to be the result Vi.Let Ti and Tj represent two distinct timestamps, between which an ordering relation less-than (<) is de�ned [24] as Ti < Tj if Ti 6= Tj^8k : Ti[k] � Tj[k]. The set of all events possessesthe vector clock property [18]. That is, for any two events a and b, a! b() T (a) < T (b).Note both the happened-before and the less-than relation are precedence [17] relations, whichmeans that they are antisymmetric and transitive. Many researchers have extended theserelations to include the reexivity property, so that the terminologies and results pertaining2

to partial ordering relations can be applied.We call the action that a process takes to reset its vector clock a reset event. A collectionof reset events, one from each process, constitutes a reset cut. The setup of a new reset cutconcludes the current timestamping phase and starts a new one. Let us begin with Phase 1and let Ei be the set of all events occurring in Phase i. It is necessary that the vector clockproperty holds for each Ei:8i : 8a; b 2 Ei :: a! b() T (a) < T (b):This is referred to as the restricted vector clock property (RVCP). Note that a reset eventdoes not belong to any Ei.Let sent(m) and recv(m) represent the sending and receipt of a message m, respectively.Suppose that sent(m) 2 Ei and recv(m) 2 Ej. We call m a normal message if i = j, aforward message if i < j, or a backward message if i > j.3 The Reset Rule3.1 The Reset Rule is Necessary for RVCPWe de�ne a reset line to be a temporal line connecting two reset events in the time-spacediagram (refer to the dotted lines shown in Figure 1). A reset cut partitions the progressionof clocks into two separate parts. However, a forward or a backward message which crossessome reset line can break the vector clock property. The delivery of a forward messagepropagates obsolete information about the sender's clock to the receiver, causing the receiverto incorrectly update its clock. So it is possible that there exist two events ei and ej in thesame timestamping phase and that T (ei) < T (ej) but ei 6! ej. As an example, consider thetime-space diagram shown in Figure 1. Suppose that each process Pi resets its respectivevector clock at time ti. The delivery of m1 causes the timestamp of event b, which is thereceipt of m1, to leap to [7; 2; 7]. We can see that T (a) < T (b) but a 6! b. The delivery of a3

backward message can also break RVCP. Message m2 in Figure 1 is a such example. We cansee that c! d but T (c) 6< T (d). This problem arises since the clock evolution contributedby the reception of a backward message will vanish when later this clock is reset. Evidently,it is necessary to preclude the possibility of forward or backward messages to guaranteeRVCP. This is explicitly stated as follows.Reset Rule: Messages must not cross any reset line.� All messages sent from process Pi to process Pj before Pi resets its clock must be re-ceived before Pj has reset its clock, thus precluding the possibility of forward messages.� All messages sent from process Pi to process Pj after Pi resets its clock must be receivedafter Pj has reset its clock, thus precluding the possibility of backward messages.This rule demands synchronization between clock resetting and message receptions. Inthe next subsection we shall justify that the reset rule is not only necessary, but also su�cientto ensure RVCP.3.2 The Reset Rule is Su�cient for RVCPA set of events E, together with the happened-before relation ! on E, constitutes an eventstructure (E;!) that represents a distributed computation. A causal chain de�ned on(E;!) is a sequence of events e1; e2; : : : ; er, where r � 2, such that ei 2 E; 1 � i � r, ande1! e2; e2! e3; � � � ; er�1 ! er. The set of all possible causal chains starting at event a andending with event b is denoted by �(a; b). Let �(�) denote the set of all elements containedin a causal chain �. A causal chain � : e1; e2; : : : ; er is said to be a closure of �(e1; er) if andonly if 8i 2 f1; : : : ; r � 1g : 8e0 2 E � �(�) :: ei 6! e0 _ e0 6! ei+1.Lemma 1 Given a �nite event set E and two events a; b 2 E, each non-closure causal chain� 2 �(a; b) can be extended to a closure of �(a; b).4

Proof: Let � : e1; e2; : : : ; er be a non-closure causal chain, where a = e1 and b = er. Itfollows that 9i 2 f1; : : : ; r� 1g : 9e0 2 E ��(�) :: ei ! e0 ^ e0! ei+1. By placing e0 betweenei and ei+1, we can form a new causal chain �0 : e1; e2; : : : ; ei; e0; ei+1; : : : ; er. If �0 is a closureof �(a; b), then we are done. Otherwise, we follow the above argument and yield anothercausal chain. Since the number of events in E is �nite, eventually we will obtain a a closureof �(a; b). 2Let �(a; b) � �(a; b) be the set of all closures of �(a; b). It turns out that for any twoevents a and b, a ! b if and only if �(a; b) is not empty. A causal chain � : e1; e2; : : : ; er,where r � 2, such that 8i 2 f1; : : : ; r � 1g : T (ei) < T (ei+1) is said to be monotonic.Obviously, a closure causal chain whose elements are all in the same timestamping phase ismonotonic. Thus we have the following invariant.8a; b 2 Ei : 9� 2 �(a; b) ^ �(�) � Ei =) T (a) < T (b): (1)Theorem 1 The reset rule su�ces to guarantee RVCP.Proof: Suppose that RVCP does not hold. We shall prove that the reset rule is violated.Case 1 9a; b 2 Ei : a! b ^ T (a) 6< T (b).The relation a! b implies that �(a; b) is not empty, while by (1), T (a) 6< T (b) impliesthat there exists no causal chain � in �(a; b) such that �(�) � Ei. Therefore, for eachcausal chain � : e1; e2; : : : ; er in �(a; b), where a = e1, b = er, and r > 2, we can �ndthe minimal j, 2 � j � r � 1, such that ej 2 Ej0 and j 0 < i, or we can �nd themaximal k, 2 � k � r � 1, such that ek 2 Ek0 and k0 > i. The former case indicatesa backward message sent by ej�1 to ej, while the latter indicates the presence of abackward message from ek to ek+1.Case 2 9a; b 2 Ei : T (a) < T (b) ^ a 6! b.Since timestamps always take monotonically increasing values in the same timestamp-ing phase, this case arises only if the timestamp of event b is illogically enlarged. The5

only way for processes to illogically enlarge vector contents is to receive forward mes-sages whose timestamps are obsolete but larger than those of the receivers. Messagem1 in Figure 1 is a such example.24 The Implementation of the Reset RuleTheorem 1 implies that a correct reset cut must be a strongly consistent cut [9, 13], i.e., aconsistent cut without in-transit messages (forward messages in terms of our de�nition). Inthe following we present a coordinating protocol that yields on-the-y reset cuts.4.1 The AlgorithmOur approach is inspired by Chandy and Lamport's distributed snapshot algorithm [3].We assume that between any two processes, there is at most one communication channelconnected which provides bidirectional, reliable, and FIFO-ordered delivery. Message trans-mission delays are assumed to be arbitrary but �nite.Two kinds of control messages are used by our protocol: reset req and reset done. Eachprocess Pi, which can operate in one of the three modes normal, mute, and stand-by, main-tains a variable Si that records Pi's current process mode. Let �(Pi) denote the set ofprocesses having a communication channel connected to Pi. For each of Pi's neighbor,Pj 2 �(Pi), Pi maintains a variable, Si;j, that records Pj's process mode currently known byPi. Si and Si;j are initiated to be normal for all i, j.The execution of our algorithm is triggered by some condition local to a process (whichwill be discussed later). A process that starts the execution is called an initiator, which�rst sends control message reset req to each of its neighbors and then enters mute mode.A process operating in mute mode is not allowed to send application messages. Any non-6

initiator process Pi operating in normal mode, on receiving reset req for the �rst time,behaves like an initiator. That is, it sends out reset req message to each of its neighbors, andthen enters mute mode. In the mean time, it sets Si;k to mute, if Pk is the process that sentreset req to Pi. When Pi in mute mode receives a control message from one of its neighbors,say, Pj , it sets Si;j according to the message it receives: it sets Si;j to mute on receivingreset req, and sets Si;j to stand-by on receiving reset done.At Pi, when the values of all Si;j's have been changed from normal to mute or stand-by,Pi resets its clock, sends control messages reset done to all its neighbors, and then entersstand-by mode. A process operating in stand-by mode can send application messages toanother only if the former has recorded the latter's mode as stand-by. Finally, after thevalues of all Si;j's have been changed to stand-by, Pi sets all Si;j's to normal , and entersback to normal mode, which indicates the completion of the current run of the protocol onthis process. The detailed algorithm of the clock reset protocol executing in Pi is shown inFigure 2. Note both message-driven routines are atomic, i.e., non-interruptable during itsexecution.4.2 Correctness Justi�cationWe now justify that the presented protocol correctly implements the clock reset rule. Forany two adjacent processes Pi and Pj, Pj does not send any application message to Pi after itsends reset req to Pi and before it resets Vj. Because message delivery is FIFO, the deliveryof Pj's reset req message on Pi indicates that all application messages sent by Pj before Vjis reset have been received. Since Pi resets its clock after it has received reset req along eachincoming channel, our protocol precludes the possibility of forward messages.After resetting Vi, Pi sends application messages to Pj only after it has received reset donefrom Pj , which indicates that Pj has already reset its own clock. Therefore our protocol alsoprecludes the possibility of backward message.7

The process that initiates the reset protocol e�ectively plays the role of a di�using sourceof reset req messages. If two or more processes initiates the protocol simultaneously, therewill be multiple sources that spread reset req messages. Concurrent initiations of the protocoldoes not cause any correctness problem, since the correctness of the protocol relies on thefact that eventually reset req messages are spread over every communication channel, nomatter how many di�using sources there will be.4.3 Eliminating Reset done MessagesControl message reset done is used to prevent the occurrence of backward messages. It canbe eliminated if we modify the original protocol as follows. (1) Each process now operatesin two possible modes: normal or mute. (2) As soon as Pi resets its clock, it is allowed tosend out application messages to any adjacent process. (3) When Pi operating in mute modereceives an application message m sent from Pj, it examines the value of Si;j to decide whataction should be taken. If the value of Si;j is normal, m must have been sent before Pj resetsVj and therefore can be accepted; if Si;j = mute, m must have been sent after Pj resets Vjand thus needs to be bu�ered. The bu�ered messages will not be accepted or processed untilPi resets Vi.With this modi�cation, potential backward messages are not inhibited by their sender.Instead, they are bu�ered at the receiver site and will not be processed until the receiver hasreset its clock. So the correctness of the original protocol is still preserved.This approach reduces message cost, but we need to pay for storage cost instead. If avail-able storage for bu�ering backward messages at some process is limited, all other processessending messages to this process must be careful not to overrun its bu�er. Suppose that Pjhas a storage bu�er which is capable of storing r messages for Pi. After Pi resets Vi butbefore any application message is received from Pj , Pi has no way to tell if Pj has reset Vjor not, so the maximal number of messages allowed to be sent from Pi to Pj is limited tor. Pi has to suspend sending to Pj after it has sent out r application messages to Pj , unless8

and until it has received an application message from Pj , which indicates the completion ofVj's reset.5 Discussion5.1 The Triggering Condition of the ProtocolThe triggering condition of the reset protocol must be appropriately set up so that vectorclocks do not overow before being reset. Mattern [18] showed that at any instant of time,8i; j : Vi[i] � Vi[j]. Therefore, if each process Pi can ensure that clock entry Vi[i] willnot get overwhelmed, overow is not possible. Generally, Vi[i] is incremented by one everytime a message is sent, a message is received, or an internal event occurs. In some appli-cations, however, we do not concern for the causality of internal events, and vector clocksdo not advance on the occurrence of internal events. We can prevent clock overow in thiskind of applications by constraining the number of messages allowed to be sent within eachtimestamping phase. Speci�cally, each process counts the number of messages it sends ina per-channel basis, and initiates the reset protocol when some of its counting value cor-responding to a particular channel reaches a prede�ned limit for that channel. Since if allprocesses constrain the number of messages they send, the number of messages they mayreceive is also bounded, there is no need to also constrain the number of messages a processis allowed to receive.Let Li;j denote the maximal number of messages allowed to be sent from Pi to Pj . Withour reset protocol, an overow-free setting of Li;j must satisfy the following inequality:8i : XPj2�(Pi)(Li;j + Lj;i) � ti; (2)where ti denotes the maximal value of Vi[i]. Finding a triggering condition subject to (2) isnot di�cult. As an example, Li;j can be set to12 �min(b tij�(Pi)jc; b tjj�(Pj)jc)9

for each Pi and Pj 2 �(Pi). However, �nding a triggering condition both to satisfy (2) andto constrain message sending only when necessary is impossible without prior knowledge ofrun-time behavior of the processes in the system.5.2 The Insu�ciency of RVCPFor some applications, we may have to compare timestamps of events occurring in di�erenttimestamping phases. RVCP does not help in this case, thus we need an auxiliary functionfor this kind of event comparisons. Let a and b be two events occurring respectively intimestamping phases Ei and Ej (i < j). It is impossible that b happens before a, since thereset protocol precludes the possibility of any backward messages. The auxiliary functiontherefore only needs to decide whether a happens before b or a and b are concurrent. Figure 3shows the auxiliary function which attempts to �nd a causal chain form a to b by referringto a set of intermediate events, speci�cally, the set of each process's last event in eachtimestamping phase between Ei and Ej�1. This function returns true if a ! b and falseotherwise.Unfortunately, implementing such a rule will inevitably involve attaching each event anadditional variable indicating the number of the current timestamping phase, which hasessentially the same unfavorable e�ect as adding an extra entry in the clock vector. Moreover,the variable storing the timestamping phase numbermay also overow. How this problem canbe dealt with depends on available domain knowledge about the applications. For example,if a vector-clock application never needs to examine causal relationship between events thatare two or more timestamping phases apart, a three-valued counter is su�cient to representthe current timestamping phase number. Let f1; 2; 3g be the set of possible values. We canexplicitly de�ne that E1 precedes E2, E2 precedes E3, and E3 precedes E1. These threevalues thus can be cyclicly used without worrying about overow.10

5.3 Applicability of the ProtocolIn the application of preserving causal message ordering [2, 21, 23], vector clocks advanceonly when a message is sent or received, so clock overow can be completely prevented bysetting up a triggering condition satisfying (2). Vector clocks in this kind of applications aremainly used to timestamp messages. Timestamps are to be examined by receiver processesto determine if received messages can be delivered. Once a message has been delivered,its timestamp becomes useless and can be safely discarded. Since our protocol ushes allmessages between timestamping phases, there is no possibility to compare two timestampsor vector clock contents that are from di�erent timestamping phases. Therefore, the insu�-ciency of RVCP does not cause a problem.In some applications, vector clocks advance only when a message is sent or received, andare used to timestamp events or states as well as messages. However, only certain types ofevents or states are of interest, and so are their timestamps. For example, in applicationsthat exploit vector clock to detect global predicates [11, 5, 10, 6], only local states thatsatisfy some particular local predicate are of interest. Their timestamps are locally collectedand on which a consistent global predicate is to be identi�ed by either a centralized checkerprocess or a set of cooperative processes. Since this kind of clocks does not advance on theoccurrences of internal events, clock overow will not happen if we set up trigger conditionssatisfying (2). However, the insu�ciency of RVCP does pose a problem, as noted in Section5.2, in identifying consistent global states. We believe that this problem has no satisfactorysolution other than using extra counter bits to represent phase numbers.In other applications, clocks advance even on the occurrences of internal events, and itis needed to examine timestamps that are from di�erent timestamping phases. The in-su�ciency of RVCP remains to be an inherent problem. Since internal events may occurarbitrarily, it is impossible to prevent clock overow unless we can suspend a process's com-putation during the execution of the reset protocol. Suspending a process's computation isusually considered unacceptable. Therefore, for this kind of applications, clock resetting is11

not appropriate.5.4 Related WorkOur necessary and su�cient condition for clock reset can be related to the consistent snapshotrecording problem [3] in the sense that a correct reset cut forms a consistent snapshot withno in-transit messages, if each reset event is viewed as an event that takes local snapshot.However, existing solutions to this problem [3, 14, 16, 13, 1] do not preclude the existenceof in-transit messages, and thus cannot be adopted as a reset protocol. Fischer et al. [9]proposed a method of taking strongly consistent (i.e., no in-transit message) global check-pointings for distributed transaction system. Their method is suitable only for an o�-lineanalysis of the entire system, and thus cannot be used to produce on-the-y reset cuts.Birman et al. proposed a ushing protocol which is used to cope with the changes ofgroup membership in a process group [2]. After executing the ush protocol, all processescan reset their clocks, so clock overow can be prevented in some way. Our method is similarto their timestamp reinitializing technique. Both approaches use two-phase ushing protocolto conclude a timestamping phase and start the next one. Additionally, both require thatmessage sending should be inhibited during the execution of the ushing protocol.However, Birman's method resets vector clocks after the ush protocol is completed,while ours does so as soon as the �rst phase of the ushing protocol has been completed.Moreover, in our protocol, after resetting its clock a process can start communicating withanother process provided that the former has been informed of the latter's reset action (asexplained in Section 4.1). As a consequence, the time period during which message sendingis inhibited will be much shorter in our protocol.
12

6 Concluding RemarksFor many vector-clock applications, our scheme relieves us from the di�cult task of deter-mining the optimal number of bits to implement vector clocks. One only has to determinea triggering condition for the reset protocol such that the overhead of strongly consistencyenforcement between phases can be tolerated while clock overow can be prevented.Although we are primarily concerned with vector clock reset, the established result canalso applied to matrix clocks [20, 22].References[1] Acharya, A., and Badrinath, B. R. Recording distributed snapshots based on causalorder of message delivery. Inform. Process. Lett. 44, Dec. 1992, 317{321.[2] Birman, K., Schiper, A., and Stephenson, P. Lightweight causal and atomic groupmulticast. ACM Trans. Comput. Syst. 9, 3 (1991), 272{314.[3] Chandy, K. M., and Lamport, L. Distributed snapshots: determining global states ofdistributed systems. ACM Trans. Comput. Syst. 3, 1 (Feb. 1985), 63{75.[4] Charron-Bost, B. Concerning the size of logical clocks in distributed systems. Inform.Process. Lett. 39, 1 (1991), 11{16.[5] Chiou, H.-K., and Korfhage, W. E�cient global event predicate detection. Proc. 14thInternational Conference on Distributed Computing Systems, June 1994, pp. 642{649.[6] Chiou, H.-K., and Korfhage, W. Enhancing distributed event predicate detection algo-rithms. IEEE Trans. Parallel and Distrib. Syst. 7, 7 (July 1996), 673{676.13

[7] Cooper, R., and Marzullo, K. Consistent detection of global predicates. Proc.ACM/ONR Workshop on Parallel and Distributed Debugging, ACM SIGPLAN Notices26, 12 (Dec. 1991), 167{174.[8] Fidge, J. Timestamps in message-passing systems that preserve the partial ordering.Proc. 11th Australian Computer Science Conference, Feb. 1988, pp. 56{66.[9] Fischer, M. J., Gri�eth, N. D., and Lynch, N. A. Global states of a distributed system.IEEE Trans. Software Engrg. SE-8, 3 (May 1982), 198{202.[10] Garg, V. K., and Chase, C. M. Distributed algorithms for detecting conjunctive pred-icates. Proc. 15th International Conference on Distributed Computing Systems, June1995, pp. 423{430.[11] Garg, V. K., and Waldecker, B. Detection of weak unstable predicates in distributedprograms. IEEE Trans. Parallel and Distrib. Syst. 5, 1 (Mar. 1994), 299{307.[12] Goldberg, A. P., Gopal, A., Lowry, A., and Strom, R. Restoring consistent global statesof distributed computations. ACM SIGPLAN Notices 26, 12 (Dec. 1991), 144{154.[13] Helary, J.-M. Observing global states of asynchronous distributed applications. Proc.Third International Workshop on Distributed Algorithms, 1989, pp. 124{135.[14] Lai, T. H., and Yang, T. H. On distributed snapshots. Inform. Process. Lett. 25, May1987, 153{158.[15] Lamport, L. Time, clocks, and the ordering of events in a distributed system. Comm.ACM 21, 7 (July 1978), 558{565.[16] Li, H. F., Radhakrishnan, T., and Venkatesh, K. Global state detection in non-FIFOnetworks. Proc. 7th International Conference on Distributed Computing Systems, Sep.1987, pp. 364{370. 14

[17] Liu, C. L. Elements of Discrete Mathematics. McGraw-Hill, 1985, page 119.[18] Mattern, F. Virtual time and global states of distributed systems. In M. C. et al. (Eds.).Proc. International Workshop on Parallel and Distributed Algorithms. North-Holland,Elsevier Science, 1989, pp. 215{226.[19] Peterson, S. L., and Kearns, P. Rollback based on vector time. Proc. 12th Symposiumon Reliable Distributed Systems, Oct. 1993, pp. 68{77.[20] Raynal, M. About logical clocks for distributed systems. Oper. Syst. Rev. 26, 1 (Jan.1992), 41{48.[21] Raynal, M., Schiper, A., and Toueg, S. The causal ordering abstraction and a simpleway to implement it. Inform. Process. Lett. 39, 6 (Sep. 1991), 343{350.[22] Raynal, M., and Singhal, M. Logical time: capturing causality in distributed systems.IEEE Computer 30, 2 (Feb. 1996), 49{56.[23] Schiper, A., Eggli, J., and Sandoz, A. A new algorithm to implement causal ordering.Proc. Third International Workshop on Distributed Algorithms, 1989.[24] Singhal, M., and Kshemkalyani, A. An e�cient implementation of vector clocks. Inform.Process. Lett. 43, 1 (1992), 47{52.
15

Author BiographiesLi-Hsing Yen received the B.S. and M.S. degrees in computer science and informationengineering, both from National Chiao Tung University, Hsinchu, Taiwan, in 1989 and 1991,respectively. Since September 1993, he has been a Ph.D. student in the Department ofComputer Science and Information Engineering at National Chiao Tung University, Hsinchu,Taiwan. His current research interests include distributed algorithms, program testing andveri�cation, and mobile computing. E-mail: lsyen@csie.nctu.edu.tw.

CaptionsFig. 1: A reset cut with a forward message m1 and a backward message m2Fig. 2: The clock reset protocol in process PiFig. 3: A function implementing the auxiliary rule.

P1

P2

P3

[7,8,7]

m

[6,6,8]

[7,2,7]

[1,0,0]

[0,0,1]

d

a

[0,1,0]
1

m 2

c

b

t 1

t
2

t
3Figure 1:

Upon receiving a reset req message from Pj doif Si = normal then /* receives reset req for the �rst time */Si mute /* enters mute mode */send reset req to all Pk 2 �(Pi)end ifSi;j mute /* records Pj 's mode as mute */if Si;k 6= normal for all Pk 2 �(Pi) thenreset Pi's clocksend reset done to all Pk 2 �(Pi)Si stand-by /* enters stand-by mode */end ifend.Upon receiving a reset done message from Pj doSi;j stand-by /* records Pj 's mode as stand-by */if Si = stand-by and Si;k = stand-by for all Pk 2 �(Pi) thenset Si;k to normal for all Si;kSi normal /* enters normal mode */end ifend. Figure 2:

Function happen-before(a; b)/* Assume that a and b occur in Ei and Ej respectively (i < j) *//* Let � represent the bit-wise \and" operator taken in pair-wise manner */Let Lpk represent the timestamp of Pk's last event in EpLet IV be an integer vector of length n, initially [0; 0; : : : ; 0].for l = 1 to n doif T (a) � Lil then IV(l) 1end forfor k = i+ 1 to j � 1 dofor l = 1 to n doif Lkl � IV 6= [0; 0; : : : ; 0] then IV(l) 1end forend forif T (b)� IV 6= [0; 0; : : : ; 0] then return trueelse return falseend. Figure 3:

