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Abstract

Orthogonal variable spreading factor (OVSF) codes have been proposed as the chan-

nelization codes used in the wideband CDMA access technology of IMT-2000. OVSF

codes have the advantages of supporting variable bit rate services, which is impor-

tant to emerging multimedia applications. The objective of OVSF code assignment

algorithm is to minimize the probability of code request denial due to inappropriate

resource allocation. In this paper, we propose an efficient OVSF code assignment

scheme that utilizes multiple RAKE combiners in user equipments. Our approach

finds in constant time all feasible codewords for any particular request, trying to

minimize both rate wastage and code fragments. When working together with an

independent code replacement scheme, our approach has the same code request

denial rate as previous work but has lower code management overhead. If code re-

placement is not used, our approach still has a bit of improvement on request denial

rate.

Key words: OVSF, IMT-2000, Code Assignment, Radio Resource Management,

CDMA
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1 Introduction

UMTS/IMT-2000 aims to provide not only voice services that are offered by

the second-generation mobile systems, but also higher data rate and vari-

able bit rate services that support differentiated quality-of-service (QoS) for

emerging multimedia applications. W-CDMA, selected as the technology for

use in the UMTS terrestrial radio access (UTRA), employs direct spread code

division multiple access (DS-CDMA) technique, where each user equipment

(UE) uses different orthogonal codes on the same frequency band. To support

fixed- and mixed data rate services, the 3rd Generation Partnership Project

(3GPP) proposed orthogonal variable spreading factor (OVSF) codes as the

channelization codes used in W-CDMA. OVSF codes, providing variable data

rates by using variable spreading factors (the number of chips for a data bit),

can be generated according to an OVSF code tree. OVSF code tree is a binary

tree where OVSF codes with spreading factor f are placed at the (1+log f)-th

level. Each code in the tree has twice data rate than its child has. Once a code

has been allocated to a UE, all its ancestors and descendants in the tree can

no longer be allocated to other UEs. With the dynamic nature of code request

arrival and code usage time, it becomes an important performance issue how

to effectively allocate codes to various data rate requests so as to minimize

the code blocking rate (the probability that a request is rejected).

Existing code assignment algorithms toward this direction [1–4] can be clas-

sified into two categories: single-code assignment and multi-code assignment.
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Single-code assignment assumes that each UE has only one RAKE combiner

so the system can only allocate one code to it. For multi-code assignment,

a UE has more than one RAKE combiner so its request can be honored by

allocating multiple codes. Due to the dynamic nature of code usage, code as-

signment algorithm may suffer from code fragmentation problem, which refers

to the circumstance that the system has enough capacity but cannot grant a

request simply because the code tree is too fragmented. Code fragmentation

may occur to both single-code and multi-code assignments, but it is believed

that the problem is less serious in the multi-code case since data rates can be

aggregated there. Code fragments can be compacted by using a code replace-

ment algorithm that tries to exchange some allocated codes with unallocated

codes of the equal spreading factor in order to obtain codes of lower spreading

factors (i.e., higher data rates). However, the number of code replacements re-

quired is considered code management overhead (code exchange pays signaling

cost) and should be kept minimal whenever possible.

In the paper, we propose a multi-code assignment algorithm that aims to min-

imize the number of code fragments. The technique of dynamic programming

is used to build a codeword table in advance so that when a request is re-

ceived, all feasible codewords can be found in the corresponding table entries.

The one that minimizes the number of code fragments is then selected for

allocation. The simulation result shows that our scheme outperforms previous

work in the code replacement overhead. Even without the aid of any code re-

placement scheme, our scheme has an equal to lower code blocking rate than

any counterpart has.

The rest of the paper is organized as follows. The OVSF code system is de-

scribed in Section 2. Section 3 details our channelization code assignment
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Fig. 1. An OVSF code tree.

scheme. Complexity analysis and numerical results are shown in Section 4.

Section 5 concludes our work.

2 Problem Statement

OVSF codes collectively form a tree structure as shown in Fig. 1. Each level in

the code tree defines channelization codes of the same spreading factor (SF).

Codes of the same SF provide equal data rate, which is the double of that of

the next level codes. We denote a single channelization code as Cf,n, where

f = 2i for some integer i is the SF of the code and n is a sequence number

ranging from 0 to f − 1. We may omit the sequence number whenever it is

irrelevant to our discussion.

In order to keep the orthogonality among codes of different levels, a code can

be assigned to a UE if and only if neither code on the path from this code

to the root nor code in the subtree of this code is assigned. In other words,

once a code has been allocated to UE, all codes on the path from the root of

the tree to this node and all codes in the subtree of the code can no longer

be allocated. If we remove all such codes and associated incident edges from

the code tree once a code has been allocated, the result will be a forest of
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Fig. 2. Code fragments after allocating C4,1.

complete binary trees, each represents a code fragment that can be directly

allocated or decomposed for further code request. For example, if code C4,1

of Figure 1 has been assigned to some UE, codes on the path from the root

to C4,1, i.e., C1,0 and C2,0, and all codes in the subtree rooted at C4,1 can no

longer be allocated. After removing these nodes and associated incident edges,

the result will be a forest of two complete binary trees, one representing code

fragment C4,0 and the other C2,1, as shown in Fig. 2.

For practical reasons, the entire code tree is initially divided into four sub-

trees, each represents a code fragment of SF 4. Let

Ω = 〈S4, S8, S16, S32, S64, S128, S256〉

represent the numbers of various spreading codes available for allocation at

any time, where Sf denotes the number of available code fragments of SF f .

Initially, Ω = 〈4, 0, 0, 0, 0, 0, 0〉. Since one code fragment corresponds to one

complete binary tree, the number of complete binary trees in the forest is

simply N(Ω) = S4 + S8 + S16 + S32 + S64 + S128 + S256.

Let R be the basic data rate that a code of SF 256 can offer. Clearly, the data

rate offered by a code of SF f = 2i is 28−iR, where i ∈ [2, 8] is an integer.

When a UE requests a data rate rR, any code of SF f ′ = 2j, where j is an
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integer in [2, 8], such that 28−j ≥ r can be allocated to grant the request. How

to select a code to grant the request is the code placement problem [5]. When

no code can be allocated, a code blocking occurs. One reason behind code

blocking is due to insufficient system capacity. The other reason is that the

code tree becomes too fragmented. Code fragmentation problem refers to the

circumstance that the system has enough capacity but cannot grant a request

simply because the capacity does not belong to a single code. Code fragmenta-

tion can be resolved by switching some allocated codes with unallocated ones.

For example, a system with Ω = 〈0, 0, 0, 0, 0, 0, 2〉 cannot grant a request for

data rate 2R, since there is no code of SF 128. However, by switching a allo-

cated code of SF 256 with an available equal-rate code, two available codes of

SF 256 can be combined into a single code of SF 128. How to find and replace

code fragments to grant a request is the code replacement problem [5]. Code

placement scheme, optionally with code replacement scheme, aims to reduce

code blocking rate, i.e., the probability that a code request cannot be granted.

If we allocate a data rate which exceeds UE’s actual demand, some amount

of date rate is wasted. Rate wastage is critical to the code blocking rate (it

diminishes system capacity) and should be kept minimal whenever possible.

Solving code placement problem involves two steps. First, determine the data

rate to be allocated. Second, locate a code in the code tree that corresponds to

the data rate. If UE is equipped with only one RAKE combiner, the first step is

straightforward: find a code rate 2iR that minimizes rate consumption. As to

locate a code of rate 2iR in the code tree, there have been several approaches

proposed. Among them, leftmost allocation [6] and crowded-first [5] allocation

will be mentioned in our discussion.
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If UE is equipped with k RAKE combiners (k > 1) and demands data rate

rR, we can assign UE a multi-code, which is a collection of maximal k codes

with aggregated data rate not less than rR. Formally, the set of all feasible

multi-codes ω(r, k) is the set of all vectors 〈a6, a5, a4, a3, a2, a1, a0〉, where ai ∈
Z+ ∪{0}, that satisfy a6 · 26 + a5 · 25 + · · ·+ a0 · 20 ≥ r subject to

∑6
i=1 ai ≤ k.

In particular, we are interested in a subset of ω(r, k) that minimizes rate

consumption, which is not trivial to find since many combinations of codes

need to be considered. As an example, if a UE equipped with three RAKE

combiners demands data rate of 6R, totally three multi-codes minimize rate

consumption (actually they waste no rate), as shown below:

• one code of spreading factor 64 (rate 4R) plus one code of spreading factor

128 (rate 2R)

• one code of spreading factor 64 (rate 4R) plus two codes of spreading factor

256 (rate R each)

• three codes of spreading factor 128 (rate 2R each)

Generally speaking, rate wastage will be less serious if UEs have multiple

RAKE combiners rather than only one, since code fragments can be better

utilized with multiple RAKE combiners.

Once the set of minimal-wastage multi-codes is determined, we must select

one from the set to be allocated to the UE. A good multi-code assignment

algorithm should select a multi-code that minimizes code blocking rate. How-

ever, as future requests cannot be known in advance, an optimal on-line code

assignment algorithm seems impossible. Existing solutions thus take heuristic

approach. The scheme in [2] favors allocating the multi-code that maximizes

the number of small-SF codes left. When there is a tie to break, it selects
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the one that uses the least number of codes. In [4], Shueh et al. proposed

a scheme that first chooses a multi-code that represents the request rate in

binary-number form. The multi-code is then adjusted in accordance with the

number of RAKE combiners that the UE has. This approach may allocate

more small-SF codes than necessary, therefore increasing rate wastage.

3 Proposed Scheme

Let Req(r, k) be a code request for data rate rR that is submitted by a UE

equipped with k RAKE combiners. The basic idea behind our scheme is that

the set of all possible multi-codes that satisfy Req(r, k) can be evaluated off-

line and in advance. In case we have two or more multi-code candidates, we

select the one that minimizes the number of remaining code fragments.

A multi-code is denoted as C = 〈a6, a5, a4, a3, a2, a1, a0〉, where ai denotes the

number of codes with rate 2i that C uses. The number of codes used by multi-

code C is N(C) =
∑6

i=0 ai. When N(C) = 1, the multi-code C may be simply

denoted as Cf , where f is the spreading factor of the only code used.

Let C = 〈a6, a5, a4, a3, a2, a1, a0〉 and C ′ = 〈a′6, a′5, a′4, a′3, a′2, a′1, a′0〉 be two

multi-codes. We define C +C ′ as 〈a6 +a′6, a5 +a′5, a4 +a′4, a3 +a′3, a2 +a′2, a1 +

a′1, a0 + a′0〉. Let W (r, k) be the set of all possible multi-codes that have data

rate r and use k codes. We define C⊕W (r, k) as {C+C ′|C ′ ∈ W (r, k)}. W (r, k)

can be computed as follows. W (r, 1) = {Cf} if r = 256/f and W (r, 1) = ∅
otherwise. For a general W (r, k), we can examine every integer g such that

0 ≤ g ≤ blog2 rc to see if any multi-code of W (r, k) may include a code of

spreading factor 28−g (i.e. C28−g). If the code is indeed included, all the multi-
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codes in W (r, k) that include it can be obtained by C28−g ⊕W (r − 2g, k − 1).

Therefore we have

W (r, k) =
blog2 rc⋃

g=0

C28−g ⊕W (r − 2g, k − 1).

In this way, we decompose the problem of solving W (r, k) into smaller sub-

problems, which can be further decomposed. Fig. 3 shows the process of eval-

uating W (6, 3). Each path from the root to a leaf labeled ‘+’ sign represents

a valid multi-code. The multi-code consists of every code that is associated

with an edge on the path.

In solving a particular W (r, k), there may be some duplicated W (r′, k′)’s to

be evaluated, where r′ < r and k′ < k. We use the technique of dynamic

programming [7] to avoid redundant computation. Table 1 shows the result.

Let M(r, k) =
⋃

1≤j≤k W (r, j). Given a request Req(r, k), all possible multi-

codes that can be assigned without rate wastage are in the set M(r, k). If

|M(r, k)| = 0, we look up for the minimal r′ > r such that r′ is not greater

than the system capacity and M(r′, k) is not empty. If no such r′ can be found,

this request is rejected due to insufficient system capacity. Otherwise, we grant
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Table 1

Table for W (r, k).

the request with rate wastage (r′ − r).

If the set of minimal-wastage multi-codes has only one element (|M(r, k)| = 1

or |M(r′, k)| = 1), the only multi-code is chosen. If the set has two or more

multi-codes, we select the one that minimizes the number of code fragments

left. For example, assume that Ω = 〈0, 0, 0, 0, 1, 3, 1〉 and a request Req(6, 3)

arrives. From Table 1 we know that

M(6, 3) = {〈0, 0, 0, 0, 1, 1, 0〉, 〈0, 0, 0, 0, 1, 0, 2〉, 〈0, 0, 0, 0, 0, 3, 0〉}.

Table 2 shows all possible allocations. Clearly, multi-code 〈0, 0, 0, 0, 0, 3, 0〉
results in the least number of code fragments and thus will be selected for

allocation.

If there is a tie to break, the one that uses least codes will be selected. As an

example, consider Req(6, 3) and Ω = 〈0, 0, 0, 1, 2, 1, 0〉. Table 3 shows all pos-

sible allocation results. As all three multi-codes result in two code fragments

left, the one that uses least codes, i.e., 〈0, 0, 0, 0, 1, 1, 0〉, will be selected.

Once the multi-code is selected, how to locate all code fragments of the multi-

code in the code tree becomes straightforward. We may allocate these codes

one by one, using any approach that is proposed for single-code allocation. If
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Multi-code Ω′ N(Ω′)

〈0, 0, 0, 0, 1, 1, 0〉 〈0, 0, 0, 0, 0, 2, 1〉 3

〈0, 0, 0, 0, 1, 0, 2〉 〈0, 0, 0, 0, 0, 2, 1〉 3

〈0, 0, 0, 0, 0, 3, 0〉 〈0, 0, 0, 0, 1, 0, 1〉 2

Table 2

Possible code allocations for Req(6, 3) with Ω = 〈0, 0, 0, 0, 1, 3, 1〉. Ω′ denotes the

contents of Ω after code allocation.

Multi-code Ω′ N(Ω′)

〈0, 0, 0, 0, 1, 1, 0〉 〈0, 0, 0, 1, 1, 0, 0〉 2

〈0, 0, 0, 0, 1, 0, 2〉 〈0, 0, 0, 1, 1, 0, 0〉 2

〈0, 0, 0, 0, 0, 3, 0〉 〈0, 0, 0, 1, 1, 0, 0〉 2

Table 3

Possible code allocations for Req(6, 3) with Ω = 〈0, 0, 0, 1, 2, 1, 0〉. Ω′ denotes the

contents of Ω after code allocation.

any one of the code fragments cannot be located due to code fragmentation

problem, a code replacement algorithm is invoked to resolve the problem.

4 Performance Evaluation

4.1 Complexity Analysis

We shall analyze the number of codewords that will be examined for a particu-

lar request. This stands for the time complexity of our approach. Experimental
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results are presented in the next section.

Let us start with W (r, k). Each element of W (r, k) is a partition of integer

r into parts which are powers of two, with the additional constraint that the

number of parts is k. In the literature, binary partition function, denoted by

b(r), counts the number of partitions of r into powers of two without the

restriction on the part size. Readily,

b(r) = lim
m→∞

m∑

k=1

|W (r, k)|.

Both the function and its evaluation have been well investigated. In fact, the

binary partition function can be expressed as a recurrence relation





b(2n + 1) = b(2n)

b(2n) = b(2n− 1) + b(n)

for any natural number n [8]. However, it appears that the asymptotic rate of

growth is not known exactly [9]. Churchhouse [10] gives the asymptotic upper

bound b(r) ∼ O(r0.5·log2 r). Unfortunately, this is a poor approximation for

small values of r [11], as the sequence {b(r)}r exhibits oscillatory behavior in

some of its lower order terms [12]. Since we are primarily concerned with small

r’s, these theoretical results, though interesting, do not help much. Besides,

the binary partition function does not consider part size constraint, making it

only an approximation solution to our problem.

Figure 4 is a stacked bar diagram showing the number of multi-codes in W (r, k)

for r = 1 to 128 and k = 1 to 5. There are total 635 multi-codes. The oscillatory

behavior is quite obvious. Given a request Req(r, k), where 1 ≤ r ≤ 128 and

12
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1 ≤ k ≤ 5, the number of multi-codes to be examined by our scheme is at

most 12 (occurring on r = 72 and k = 5). From a practical perspective, the

time complexity of our scheme is not much.

4.2 Numerical Results

We evaluated the performance of our multi-code assignment algorithm by

simulation. The performances of [2] (referred to as OCCA) and [4] (referred

to as FED) are also evaluated for comparison. We assume that the depth

of the OVSF code tree is 9 and the initial set of multi-codes of the system

is 〈0, 0, 4, 0, 0, 0, 0, 0, 0〉. Code requests are randomly generated by a Poisson

process with mean arrival rate λ. The time interval for which a multi-code is

used is assumed to be an exponentially distributed random variable with mean

1/µ. Each request Req(r, k) is randomly generated with r being uniformly

distributed between 1 and M , where M is 64 or 128. The value of k depends

on r. When 1 ≤ r ≤ 64, k is a random variable uniformly distributed between

1 and 4. When 65 ≤ r ≤ 128, k is uniformly distributed in [2, 4]. Total 50000

requests are generated for each round. All algorithms use the same trace of
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each round as their input.

We measured the code blocking rate caused by each algorithm. The measured

code blocking rate is essentially the sum of two components: one is due to

insufficient system capacity and the other is due to code fragmentation. In

the following figures, our method is labeled with OursA. OursB refers to a

variation of our method that considers only multi-codes consisting of exactly k

codes when handling Req(r, k) (while OursA considers all multi-codes that use

k or less codes). Once a multi-code has been chosen, leftmost [6] or crowded-

first [5] code placement algorithm is used to allocate one by one all associated

codes.

Figs. 5 and 6 show the results of M = 64 with leftmost and crowded-first code

placement algorithms, respectively. In both scenarios, OursA as well as FED

performs better than either OCCA or OursB. The performances of OCCA and

OursB are similar. With M = 128, the performances of these four methods

are all about the same, though OursA still slightly outperforms others. We

also found that the performance of any method is higher with crowded-first

code placement algorithm than with leftmost one. This is consistent with what

previous report claimed [5].

We also conducted experiments to investigate the impacts of code replacement

algorithm on code blocking rate. Table 4 shows the result of using DCA scheme

[3] as the code replacement algorithm. With the aid of code replacement al-

gorithm, code fragmentation can be totally eliminated and code blocking now

occurs only for insufficient system capacity. Therefore, all four methods re-

sult in the same code blocking rate. However, each method requires different

number of code replacements. The number of code replacements is considered

14
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Fig. 6. Code blocking rate with crowded-first code placement (M = 64, q = λ/µ).

the overhead of code management. Figs. 7 to 10 show the number of code

replacements in different settings. We can see that OursA performs the best,

which is followed by FED, OCCA, and then OursB.

As OursB considers only multi-codes in W (r, k) rather than those in M(r, k) =

⋃
1≤j≤k W (r, j) when handling request Req(r, k), it does not perform well com-

pared with the counterparts. The merit of OursB is that it examines less

multi-codes than OursA does. We are interested in the amount of multi-code

examinations that OursB can save. Table 5 shows the ratio of average number
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Fig. 7. Number of code replacements with leftmost code placement (M = 64,

q = λ/µ).

of multi-codes examined by OursB to that examined by OursA. We can see

that about two third examinations are saved by OursB.

5 Conclusions

The objective of OVSF multi-code assignment algorithm is to minimize code

blocking rate. The causes of code blocking are due to insufficient system capac-
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q = λ/µ).

ity and code fragmentation. To preserve system capacity, rate wastage must

be kept minimized. To eliminate code fragmentation, we can invoke a code re-

placement procedure. If UEs have multiple RAKE combiners, rate wastage can

be reduced while the frequency of invoking code replacement can be lowered.
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Fig. 10. Number of code replacements with crowded-first code placement (M = 128,

q = λ/µ).

λ/µ

0.6 0.8 1.0 1.2 1.4

M = 64 36.29% 36.28% 36.28% 36.27% 36.29%

M = 128 31.39% 31.43% 31.47% 31.49% 31.50%

Table 5

Ratio of average multi-code examinations by OursB to that by OursA.

In this paper, we have proposed a multi-code assignment scheme that utilizes

multiple RAKE combiners in UEs. The dynamic programming technique is

used to find all feasible multi-codes for all possible requests. The result is

stored in a table and can be retrieved on-line in a constant time. Among all

candidate multi-codes, the scheme selects the one that minimizes both rate

wastage and code fragments. The analysis shows that this strategy examines at

most 12 candidate multi-codes for requests using up to five RAKE combiners.

The simulation result shows that this strategy outperforms previous work in

18



code replacement overhead. If no code replacement scheme can be used, our

scheme has an equal to lower code blocking rate than any counterpart has.

References

[1] W.-T. Chen, H.-C. Hsiao, Y.-P. Wu, A novel code assignment scheme for W-

CDMA systems, in: Proc. of IEEE 2001 Vehicular Technology Conference,

Vol. 2, 2001, pp. 1182–1186.

[2] R.-G. Cheng, P. Lin, Ovsf code channel assignment for IMT-2000, in: Proc. of

IEEE 2000 Vehicular Technology Conference, Vol. 3, 2000, pp. 2188–2192.

[3] T. Minn, K.-Y. Siu, Dynamic assignment of orthogonal variable-spreading-

factor codes in W-CDMA, IEEE Journal on Selected Areas in Communications

18 (8) (2000) 1429–1440.

[4] F. Shueh, Z.-E. Liu, W.-S. Chen, A fair, efficient, and exchangeable

channelization code assignment scheme for IMT-2000, in: Proc. of 2000 IEEE

International Conference on Personal Wireless Communications, 2000, pp. 429–

433.

[5] Y.-C. Tseng, C.-M. Chao, Code placement and replacement strategies for

wideband CDMA OVSF code tree management, IEEE Trans. on Mobile

Computing 1 (4) (2002) 293–302.

[6] R. Fantacci, S. Nannicini, Multiple access protocol for integration of variable

bit rate multimedia traffic in UMTS/IMT-2000 based on wide-band CDMA,

IEEE Journal on Selected Areas in Communications 18 (8) (2000) 1441–1454.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to algorithms,

McGraw-Hill Book Company, 1990.

19



[8] G. Alkauskas, Generalization of the Rodseth-Gupta Theorem on binary

partitions, Lithuanian Mathematical Journal 43 (2) (2003) 103–110.

[9] C.-E. Froberg, Accurate estimation of the number of binary partitions, BIT 17

(1977) 386–391.

[10] R. Churchhouse, Binary partitions, in: A. Atkin, B. Birch (Eds.), Computers

in Number Theory, Academic Press, 1971, pp. 397–400.

[11] J. L. Pfaltz, Evaluating the binary partition function when n = 2n, Congressus

Numeramtium 109 (1995) 3–12.

[12] H. S. Wilf, T. A. Scott, Asymptotic oscillations and binary partitions of integers,

in: SIAM Annual Meeting, 1999.

20


