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Abstract—Orthogonal variable spreading factor (OVSF) codes
have been proposed as the channelization codes used in the wide-
band CDMA access technology of IMT-2000. OVSF codes have
the advantages of supporting variable bit rate services, which is
important to emerging multimedia applications. The objective of
OVSF code assignment algorithm is to minimize the probability of
code request denial due to inappropriate resource allocation. In
this paper, we propose an efficient OVSF code assignment scheme
that utilizes multiple Rake combiners in user equipments. Our ap-
proach finds in constant time all feasible codewords for any partic-
ular request, trying to minimize both rate wastage and code frag-
ments. The simulation result shows that our scheme outperforms
previous work in the probability of request denial. The code man-
agement overhead is also minimal in our scheme.

I. I NTRODUCTION

UMTS/IMT-2000 aims to provide not only voice services
that are offered by the second-generation mobile systems, but
also higher data rate and variable bit rate services that sup-
port differentiated quality-of-service (QoS) for emerging mul-
timedia applications. W-CDMA, selected as the technology
for use in the UMTS terrestrial radio access (UTRA), employs
direct spread code division multiple access (DS-CDMA) tech-
nique, where each user equipment (UE) uses different orthog-
onal codes on the same frequency band. To support fixed- and
mixed data rate services, the 3rd Generation Partnership Project
(3GPP) proposed orthogonal variable spreading factor (OVSF)
codes as the channelization codes used in W-CDMA. OVSF
codes, providing variable data rates by using variable spreading
factors (the number of chips for a data bit), can be generated
according to an OVSF code tree. OVSF code tree is a binary
tree where OVSF codes with spreading factorf are placed at
the (1 + log f )-th level. Each code in the tree has twice data
rate than its child has. Once a code has been allocated to a UE,
all its ancestors and descendants in the tree can no longer be
allocated to other UEs. With the dynamic nature of code re-
quest arrival time and code usage time, it becomes an important
performance issue how to effectively allocate codes to various
data rate requests so as to minimize the code blocking rate (the
probability that a request is rejected).

Existing code assignment algorithms toward this direction
[1], [2], [5], [6] can be classified into two categories: single-
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code assignment and multi-code assignment. Single-code as-
signment assumes that each UE has only one Rake combiner
so the system can only allocate one code to it. For multi-code
assignment, a UE has more than one Rake combiner so its re-
quest can be honored by allocating multiple codes. Due to the
dynamic nature of code usage, code assignment algorithm may
suffer from code fragmentation problem, which refers to the cir-
cumstance that the system has enough capacity but cannot grant
a request simply because the capacity does not belong to a sin-
gle code. Code fragmentation may occur to both single-code
and multi-code assignments, but it is believed that the prob-
lem is less serious in the multi-code case since data rates can
be aggregated there. Code fragments can be compacted by us-
ing a code replacement algorithm that tries to exchange some
allocated codes with unallocated codes of the equal spreading
factor in order to obtain codes of lower spreading factors (i.e.,
higher data rates).

In the paper, we propose a multi-code assignment algorithm
that aims to minimize the number of code fragments. The tech-
nique of dynamic programming is used to build a codeword
table in advance so that when a request for data rater issued
by a UE equipped withk Rake combiners is received, all pos-
sible combinations of valid codewords can be found in the cor-
responding table entries. The one that results in the minimal
number of code fragments is then selected for allocation.

The rest of the paper is organized as follows. The OVSF code
system is described in Section 2. Section 3 details our chan-
nelization code assignment scheme. Simulation model and its
results are shown in Section 4. Section 5 concludes our work.

II. PROBLEM DEFINITION

The OVSF codes can be defined using the code tree shown in
Fig. 1. Each level in the code tree defines channelization codes
of the same spreading factor (SF). Codes of the same SF have
equal data rate, which is the double of that of the next level
codes. We denote a single channelization code asCf,n, where
f = 2i for some integeri is the spreading factor of the code and
n is a sequence number ranging from 0 tof − 1. We may omit
the sequence number whenever it is irrelevant to our discussion.

In order to keep the orthogonality among codes of different
levels, a code can be assigned to a UE if and only if no code on
the path from this code to the root or any code in the subtree of
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Fig. 1. An OVSF code tree
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Fig. 2. Code fragments after allocatingC4,1

the code is assigned. In other words, once a code has been allo-
cated to UE, all codes on the path from the root of the tree to this
node and all codes in the subtree of the code can no longer be
allocated. If we remove all such codes and associated incident
edges from the code tree once a code has been allocated, the
result will be a forest of complete binary trees, each represents
a code fragment that can be directly allocated or decomposed
for further code request. For example, if codeC4,1 of Figure 1
has been assigned to some UE, codes on the path from the root
to C4,1, i.e., C1,0 andC2,0, and all codes in the subtree rooted
atC4,1 can no longer be allocated. After removing these nodes
and associated incident edges, the result will be a forest of two
complete binary trees, one representing code fragmentC4,0 and
the otherC2,1, as shown in Fig. 2.

For practical reasons, the entire code tree is initially divided
into four sub-trees, each represents a code fragment of spread-
ing factor 4. Let

SF = 〈S4, S8, S16, S32, S64, S128, S256〉

represent the numbers of various spreading codes available for
allocation at any time, whereSf denotes the number of avail-
able code fragments of spreading factorf . Initially, SF =
〈4, 0, 0, 0, 0, 0, 0〉. Since one code fragment corresponds to one
complete binary tree, the number of complete binary trees in
the forest is simplyN(SF ) = S4 + S8 + S16 + S32 + S64 +
S128 + S256.

Let R be the basic data rate that a code of spreading fac-
tor 256 can offer. Clearly, the data rate offered by a code of
spreading factorf = 2i is 28−iR, wherei ∈ [2, 8] is an in-
teger. When a UE requests a data rater, any code of spread-
ing factorf ′ = 2j , wherej is an integer in[2, 8], such that
28−jR ≥ r can be allocated to grant the request. How to select
a valid code to grant the request is thecode placementprob-
lem [7]. When no code can be allocated, acode blockingoc-
curs. One reason behind code blocking is due to insufficient
system capacity. The other reason is because of the occurrence

of code fragmentation.Code fragmentation problemrefers to
the circumstance that the system has enough capacity but can-
not grant a request simply because the capacity does not belong
to a single code. Code fragmentation can be resolved by replac-
ing some allocated codes with ones that are not allocated. For
example, a system withSF = 〈0, 0, 0, 0, 0, 0, 2〉 cannot grant
a request for data rate2R, since there is no code of spreading
factor 128. However, by switching a allocated code of spread-
ing factor 256 with an available equal-rate code, two available
codes of spreading factor 256 can be combined into a single
code of spreading factor 128. How to find and replace code
fragments to grant a request is thecode replacementproblem
[7]. Code placement scheme, perhaps together with code re-
placement scheme, aims to reduce code blocking rate,i.e., the
probability that a code request cannot be granted.

If we allocate a code with data rate higher than that the UE
actually requests, some amount of date rate is wasted. Rate
wastage is critical to the code blocking rate (it diminishes sys-
tem capacity) and should be kept minimal whenever possible.

Solving code placement problem involves two steps. First,
determine the code rate to be allocated. Second, locate a code
in the code tree that corresponds to the code rate. If UE is
equipped with only one Rake combiner, the first step is straight-
forward: find a code rate2iR that minimizes rate consumption.
As to locate a code of rate2iR in the code tree, there have been
several approaches proposed. Among them, leftmost allocation
[4] and crowded-first [7] allocation will be mentioned in our
discussion.

If UE is equipped withk Rake combiners (k > 1), we can as-
sign UE amulti-code, which is a collection of maximalk codes
with aggregated data rate(2i1 +2i2 + · · ·+2ik)R (i1, i2, . . . , ik
are integers in[0, 6]). Determining the set of multi-codes that
minimize rate consumption is not trivial since many combina-
tions of codes need to be considered. As an example, if a UE
equipped with three Rake combiners demands data rate of6R,
totally three multi-codes minimize rate consumption (actually
they waste no rate), as shown below:
• one code of spreading factor 64 (rate4R) plus one code of

spreading factor 128 (rate2R)
• one code of spreading factor 64 (rate4R) plus two codes

of spreading factor 256 (rateR each)
• three codes of spreading factor 128 (rate2R each)
In general, rate wastage will be less serious if UEs have mul-

tiple Rake combiners rather than only one, since code fragments
can be better utilized with multiple Rake combiners. Once the
set of minimal-wastage multi-codes is determined, we must se-
lect one multi-code to be allocated to the UE. A good multi-
code assignment algorithm should select a multi-code that re-
sults in lower code blocking rate. However, as future requests
cannot be known in advance, an optimal on-line code assign-
ment algorithm seems impossible. Existing solutions thus take
heuristic approach. The scheme in [2] favors allocating the
multi-code that results in the most small-SF codes left. If more
than two multi-codes are favored, the one that uses the least
number of codes is selected. In [6], Shueh et al. proposed a
scheme that first chooses a multi-code that represents the re-
quest rate in binary-number form. The multi-code is then ad-
justed in accordance with the number of Rake combiners that
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Fig. 3. Process of evaluatingW (6, 3)

the UE has. This approach may allocate more small-SF codes
than necessary, therefore decreasing code utilization.

III. PROPOSEDSCHEME

Let Req(r, k) be a code request for some data rater which is
submitted by a UE equipped withk Rake combiners. The basic
idea behind our scheme is that the set of all possible multi-codes
that satisfyReq(r, k) can be evaluated off-line and in advance.
In case we have two or more multi-code candidates, we select
the one that results in the least number of code fragments left.

A multi-code is denoted as C =
〈N4, N8, N16, N32, N64, N128, N256〉, where Ni de-
notes the number of codes with SF=i that C uses.
The number of codes used by multi-codeC is
N(C) = N4 + N8 + N16 + N32 + N64 + N128 + N256. When
N(C) = 1, the multi-codeC may be simply denoted asCi,
wherei is the spreading factor of the only code used.

Let C = 〈N4, N8, N16, N32, N64, N128, N256〉 and C ′ =
〈N ′

4, N
′
8, N

′
16, N ′

32, N
′
64, N

′
128, N

′
256〉 be two multi-codes. We

defineC + C ′ as 〈N4 + N ′
4, N8 + N ′

8, N16 + N ′
16, N32 +

N ′
32, N64 + N ′

64, N128 + N ′
128, N256 + N ′

256〉. Let W (r, k) be
the set of all possible multi-codes that have data rater and use
k codes. We defineC ⊕W (r, k) as{C + C ′|C ′ ∈ W (r, k)}.
W (r, k) can be evaluated as follows.W (r, 1) = {Cf} if
r = 256/f andW (r, 1) = ∅ otherwise. For a generalW (r, k),
we can examine every integerg such that0 ≤ g ≤ blog2 rc to
see if any multi-code ofW (r, k) may include a code of spread-
ing factor28−g (i.e. C28−g ). If the code is indeed included, all
the multi-codes inW (r, k) that include it can be obtained by
C28−g ⊕W (r − 2g, k − 1). Therefore we have

W (r, k) =
blog2 rc

⋃

g=0

C28−g ⊕W (r − 2g, k − 1)

In this way, we decompose the problem of solvingW (r, k) into
smaller sub-problems, which can be further decomposed. Fig. 3
shows the process of evaluatingW (6, 3). Each path from the
root to a leaf labeled ‘+’ sign represents a valid multi-code.
The multi-code consists of every code that is associated with an
edge on the path.

In solving a particularW (r, k), there may be some dupli-
catedW (r′, k′)’s to be evaluated, wherer′ < r andk′ < k.
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k
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TABLE I
TABLE FOR W (r, k)

Multi-code SF ′ N(SF ′)
〈0, 0, 0, 0, 1, 1, 0〉 〈0, 0, 0, 0, 0, 2, 1〉 3
〈0, 0, 0, 0, 1, 0, 2〉 〈0, 0, 0, 0, 0, 2, 2〉 4
〈0, 0, 0, 0, 0, 3, 0〉 〈0, 0, 0, 0, 1, 0, 1〉 2

TABLE II
POSSIBLE CODE ALLOCATIONS FORReq(6, 3) WITH

SF = 〈0, 0, 0, 0, 1, 3, 1〉. SF ′ DENOTES THE VALUE OFSF AFTER CODE

ALLOCATION .

We use the technique of dynamic programming [3] to avoid re-
dundant computation. Table I shows the result.

Let M(r, k) =
⋃

1≤j≤k W (r, j). Given a requestReq(r, k),
all possible multi-codes that can be assigned without rate
wastage are in the setM(r, k). If |M(r, k)| = 0, we look up for
the minimalr′ > r such thatr′ is not greater than the system
capacity andM(r′, k) is not empty. If no suchr′ can be found,
this request is rejected due to insufficient system capacity. Oth-
erwise, we grant the request with rate wastage (r′ − r).

If the set of minimal-wastage multi-codes has only one el-
ement (|M(r, k)| = 1 or |M(r′, k)| = 1), the only multi-
code is used. If the set has two or more multi-codes, we se-
lect the one that results in the least number of code fragments.
For example, assume thatSF = 〈0, 0, 0, 0, 1, 3, 1〉 and a re-
questReq(6, 3) arrives. From Table I we know thatM(6, 3) =
{〈0, 0, 0, 0, 1, 1, 0〉, 〈0, 0, 0, 0, 1, 0, 2〉, 〈0, 0, 0, 0, 0, 3, 0〉}. Ta-
ble II shows all possible allocations. Clearly, multi-code
〈0, 0, 0, 0, 0, 3, 0〉 results in the least number of code fragments
and thus will be selected for allocation.

If two or more multi-codes result in the least number of frag-
ments, the one that uses least codes will be selected. As an
example, considerReq(6, 3) andSF = 〈0, 0, 0, 1, 2, 1, 0〉. Ta-
ble III shows all possible allocation results. As all three multi-
codes result in two code fragments left, the one that uses least
codes, i.e.,〈0, 0, 0, 0, 1, 1, 0〉, will be selected.

Once the multi-code is selected, how to locate all code frag-
ments of the multi-code in the code tree becomes straightfor-
ward. We may allocate these codes one by one, using any ap-
proach that is proposed for single-code allocation. If any one of
the code fragment cannot be located due to code fragmentation
problem, a code replacement algorithm is invoked to resolve the
problem.
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Multi-code SF ′ N(SF ′)
〈0, 0, 0, 0, 1, 1, 0〉 〈0, 0, 0, 1, 1, 0, 0〉 2
〈0, 0, 0, 0, 1, 0, 2〉 〈0, 0, 0, 1, 1, 0, 0〉 2
〈0, 0, 0, 0, 0, 3, 0〉 〈0, 0, 0, 1, 1, 0, 0〉 2

TABLE III
POSSIBLE CODE ALLOCATIONS FORReq(6, 3) WITH

SF = 〈0, 0, 0, 1, 2, 1, 0〉. SF ′ DENOTES THE VALUE OFSF AFTER CODE

ALLOCATION .

IV. SIMULATION

We evaluated the performance of our multi-code assignment
algorithm by simulation. The performances of [2] (referred
to as CL00) and [6] (referred to as SLC00) are also evalu-
ated for comparison. We assume that the depth of the OVSF
code tree is 9 and the initial set of multi-codes of the system
is 〈0, 0, 4, 0, 0, 0, 0, 0, 0〉. Code requests are randomly gener-
ated by a Poisson process with mean arrival rateλ. The time
interval for which a multi-code is used is assumed to be an ex-
ponentially distributed random variable with mean1/µ. Each
requestReq(r, k) is randomly generated withr being uniformly
distributed between 1 andM , whereM is 64 or 128. The value
of k depends onr. When1 ≤ r ≤ 64, k is a random variable
uniformly distributed between 1 and 4. When65 ≤ r ≤ 128,
k is uniformly distributed in [2, 4]. Total 50000 requests are
generated for each round. All algorithms use the same trace of
each round as their input.

We measured the code blocking rate caused by each algo-
rithm. The measured code blocking rate is essentially the sum
of two components: one is due to insufficient system capacity
and the other is due to code fragmentation. In the following
figures, our method is labeled with TY02B. TY02A refers to a
variation of our method that considers only multi-codes consist-
ing of exactlyk codes when handlingReq(r, k) (while TY02B
considers all multi-codes that usek or lesscodes). Once a
multi-code has been chosen, leftmost [4] or crowded-first [7]
code placement algorithm is used to allocate one by one all as-
sociated codes.

Figs. 4 and 5 show the results ofM = 64 with leftmost and
crowded-first code placement algorithms, respectively. Clearly,
TY02B results in the lowest blocking rate in both scenarios.
The performance of these four methods is about the same with
M = 128, though TY02B slightly outperforms others. We also
found that the performances with leftmost and with crowded-
first code placement algorithms are about the same.

We also conducted experiments to investigate the impacts of
code replacement algorithm on code blocking rate. Table IV
shows the result of using DCA scheme [5] as the code replace-
ment algorithm. With the aid of code replacement algorithm,
code fragmentation can be totally eliminated and code blocking
now occurs only for the reason of insufficient system capacity.
Therefore, all four methods result in the same code blocking
rate. However, each method requires different number of code
replacements. The number of code replacements is considered
the overhead of code management. Figs. 6 to 9 show the num-
ber of code replacements in different settings. In all settings,
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Fig. 4. Code blocking rate with leftmost code placement (M = 64, q = λ/µ)
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Fig. 5. Code blocking rate with crowded-first code placement (M = 64,
q = λ/µ)

TY02B requires the least number of code replacements.

As we mentioned before, TY02A is a variation of TY02B
that considers only multi-codes inW (r, k) rather than multi-
codes inM(r, k) =

⋃

1≤j≤k W (r, j) when handling request
Req(r, k). Apparently, TY02A examines less multi-codes than
TY02B does. We are interested in the amount of multi-code
examinations that TY02A can save. Table V shows the ratio
of average number of multi-codes examined by TY02A to that
examined by TY02B. We can see that about two third examina-
tions can be saved.

λ/µ
0.6 0.8 1.0 1.2 1.4

M = 64 0.012% 0.026% 0.062% 0.086% 0.218%
M = 128 2.56% 3.88% 5.46% 7.44% 8.65%

TABLE IV
CODE BLOCKING RATE WITH CODE REPLACEMENT
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λ/µ
0.6 0.8 1.0 1.2 1.4

M = 64 36.29% 36.28% 36.28% 36.27% 36.29%
M = 128 31.39% 31.43% 31.47% 31.49% 31.50%

TABLE V
RATIO OF AVERAGE MULTI-CODE EXAMINATIONS BY TY02A TO THAT BY

TY02B
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V. CONCLUSIONS

The objective of OVSF multi-code assignment algorithm is
to minimize code blocking rate. The causes of code blocking
are due to insufficient system capacity and code fragmentation.
To preserve system capacity, rate wastage must be kept mini-
mized. To eliminate code fragmentation, we can invoke a code
replacement procedure. If UEs have multiple Rake combiners,
rate wastage can be reduced while the frequency of invoking
code replacement can be lowered.

In this paper, we have proposed a multi-code assignment
scheme that utilizes multiple Rake combiners in UEs. By using
dynamic programming technique, our approach finds in con-
stant time all feasible multi-codes for any particular request.
It then selects the one that will bring about both minimal rate
wastage and least code fragments. The simulation result shows
that our scheme outperforms previous work in the code block-
ing rate. The number of code replacements required is also
minimal in our scheme.
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