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Abstract

We are concerned with wireless sensor networks where n sensors are independently

and uniformly distributed at random in a finite plane. Events that are within a

fixed distance from some sensor are assumed to be detectable and the sensor is

said to cover that point. In this paper, we have formulated an exact mathematical

expression for the expected area that can be covered by at least k out of n sensors.

Our results are important in predicting the degree of coverage a sensor network may

provide and in determining related parameters (sensory range, number of sensors,

etc.) for a desired level of coverage. We demonstrate the utility of our results by

presenting a node scheduling scheme that conserves energy while retaining network

coverage. Additional simulation results have confirmed the accuracy of our analysis.
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1 Introduction

Rapid progress in wireless communications and micro-sensing MEMS tech-

nology has enabled the deployment of wireless sensor networks. A wireless

sensor network consists of a large number of sensor nodes deployed in a region

of interest. Each sensor node is capable of collecting, storing, and process-

ing environmental information, and communicating with other sensors. The

position of sensor nodes need not be engineered or predetermined [1] for the

reason of the enormous number of sensors involved [2] or the need to deploy

sensors in inaccessible terrains [1]. Due to technical limitations, each sensor

node can detect only events that are within some range from it. A piece of

area in the deployment region is said to be covered if every point in this area

is within the sensory range of some sensor. In this paper, we are concerned

with a fundamental property of such network: the area that can be covered

by at least k out of n sensors randomly placed in a bounded region. This is

referred to as k-coverage [3,4] and the problem of evaluating k-coverage is a

form of so-called coverage problem.

In the literature, the coverage problem has been formulated in various ways.

A related but different formulation is asking how to effectively cover a given

region. For example, the Art Gallery Problem is to determine the number of

guards/cameras and the position of each guard/camera that are necessary to

visually cover a polygonal region (the art gallery) [5]. Shakkottai et al. [6] have

considered the necessary and sufficient conditions for covering a sensor network

with nodes arranged in a grid over a square region. The coverage problem

has also been formulated as to determine whether or how well a given set

of sensors covers a region [3]. In [7], Meguerdichian et al. defined worst and
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best case coverage problems, which are to identify regions of low and high

observability, respectively. Geometry techniques such as Voronoi diagram and

Delaunay triangulation have been used in solving these problems [7,8]. For

other definitions of coverage problem, refer to the survey in [9].

In the aforementioned context, one either needs to determine (as an output)

or is given (as an input) the exact position of every sensor. In contrast, it is

the distribution of sensor positions rather than exact position of every sensor

that is assumed in our problem setting.

The problem of estimating k-coverage is complicated by two factors. First,

region covered by each sensor may overlap one another in a stochastic way.

Second, a sensor placed near the border of the deployment region will cover less

area than sensors placed midway, since not all its disk-shaped sensory region

will be within the deployment area. This is referred to as border effects. Prior

work [10,11] established approximations or asymptotic bounds for 1-coverage

problem. In contrast, we have formulated an exact mathematical expression

for expected k-coverage in face of border effects. To the best knowledge of the

authors, this is the first study that achieves this. A direct application of our

result is that given a deployment area and the number of sensors with their

sensory range, one can easily point out what level of coverage can be expected.

Equivalently, given sensor’s sensory range and the expected coverage ratio, one

can estimate the number of sensors to be deployed. For a power conserving

scheme that allows each sensor to periodically power off its sensory circuitry

without coordinations with others, our finding helps in determining the active-

to-sleep ratio for a desired network coverage.

The rest of the paper is organized as follows. Problem definition and related
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work are presented in the next section. Section 3 analyzes the expected network

coverage. Section 4 discusses the applications of our finding, including a node

scheduling scheme. Simulation model and numerical results are described in

Section 5. Section 6 concludes our work.

2 Problem Definition and Related Work

We assume that each sensor can detect events that are within distance r from

it, where r is called sensory range. The area of the region that is covered

by a sensor is defined to be the sensor’s node coverage. Let N be a random

variable denoting a node’s coverage. N is πr2 if the sensor’s sensory region is

properly contained in the deployment area. However, when a sensor is placed

near the border of the deployment region, N is expected to be less than πr2

due to border effects. A region is said to be k-covered if every location within

it is covered by at least k sensors. Define k-coverage to be the size of the k-

covered region after a number of sensors have been randomly placed. We want

to express the expected value of k-coverage in terms of E[N ].

Traditionally, only 1-coverage is of interest. In [11], Philips et al. analyzed the

condition that a given area is 1-covered with high probability by randomly lo-

cated circles. Their analysis was done under the assumption of Poisson point

process [11–15], which assumes a fixed density of nodes λ instead of the exact

number of nodes n. With this modeling, whether an elemental area ds con-

tains exactly one node is a binomial distribution with probability dsλ. For a

sufficiently large number of nodes deployed within a sufficiently large system

area (but λ remains constant), the node degree can be approximated by a

Poisson distribution with mean λπr2 [14]. Philips et al. proved that, for any
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ε > 0, if

r =

√
(1 + ε) ln A

πλ
,

then limA→∞ Pr[the deployment region is 1-covered] = 1. Since the obtained

results hold on the condition that the system area approaches infinity, where

border effects become insignificant, the results are only approximations when

applied to reasonable-size deployment region. Furthermore, they were sorely

concerned with the condition of fully covering a deployment region; their result

cannot be used to estimate the coverage degree of an arbitrary given network

scenario.

The expected area that n randomly placed circles may cover in a plane (i.e.,

1-coverage) has been analyzed by Hall [10]. He avoided border effects by us-

ing the so-called torus convention, which models the deployment region as a

torus such that a sensor’s sensory region is considered completely within the

deployment area. Let A denote the area of the deployment region. Hall has

shown that when n/A → λ, where 0 < λ < ∞, the ratio of uncovered area in

the deployment region approaches exp(−λπr2) as r increases. Here πr2 is the

node coverage with torus convention.

Although Hall’s estimate is only an asymptotic result, we found through ex-

periments that it provides good estimates to a certain degree (details will be

presented later). In this paper, we take a different approach and obtain a result

that improves the precision of Hall’s 1-coverage estimate. The improvement is

particularly significant when the network is not fully covered.

We analyze k-coverage based on our estimate of 1-coverage. The degree of

coverage is considered a measure of quality of service (QoS) that a sensor
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network provides. High QoS is essential for applications that demands high

degree of accuracy or reliability. An example is distributed data fusion [16],

which is the process of automatic combining or aggregating sensed data from

multiple sensors.

Network coverage is central to node scheduling schemes that conserve en-

ergy by powering off redundant nodes while retaining network coverage. Node

scheduling involves the decisions of when and which node can enter power-

saving or sleep mode. Based on how these decisions are made, existing ap-

proaches can be classified as coordinated or uncoordinated ones. A coordi-

nated coverage-preserving node scheduling scheme presented in [17] demands

that each sensor advertises its location information and listens to advertise-

ments from neighbors. After calculating its coverage and its neighbors’, a node

can determine if it is eligible to turn off its sensory circuitry without reducing

overall network coverage. To avoid potential “uncovered hole” due to simulta-

neous turning off, a back-off protocol is proposed that requires each off-duty

eligible sensor to listen to other sensor’s status advertisement and, if necessary,

announce its own after a random back-off time period expires. The behaviors

of other coordinated schemes [18–20] are similar to [17] in that they all require

the exchanges of location information and eligibility status.

Cărbunar et al. [21] transform the problem of detecting redundant sensors to

that of computing Voronoi diagrams. Node location information is required

in their scheme to compute the Voronoi diagram corresponding to the cur-

rent node deployment. Xing et al. [4] also exploit Voronoi diagram to ensure

k-coverage. They have shown that k-coverage is ensured if every critical point

(where two sensor’s coverage areas intersect or a sensor’s coverage area and

border line intersect) is covered by at least k sensors. The protocol they pro-
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posed needs location information of every sensor as well.

With location information in hand, coordinated node scheduling [17–21,4] can

ensure 100% network coverage. However, the requirement of location informa-

tion may not be practical if energy-hungry GPS (Global Positioning System)

device is assumed for this purpose. Moreover, it is questionable whether the

energy gained by turning-off sensors could compensate energy loss due to co-

ordination. PEAS [22] is a coordinated node scheduling scheme that demands

no location information. Nodes in PEAS periodically alternate between sleep

and working modes. When a node wakes up from sleep mode, it can enter

sleep mode again if a “probe” message can be received from any working

neighbor. PEAS does not guarantee 100% network coverage, yet energy has

to be consumed on transmitting and receiving probe messages.

A uncoordinated scheme, on the other hand, demands neither positioning nor

communications overhead. However, it is intrinsic that 100% network cover-

age cannot be guaranteed. In this paper, we present a uncoordinated node

scheduling scheme that ensures expected network coverage.

3 Network Coverage Estimate

The deployment of n sensors can be modeled as a stochastic process that

places sensors one by one according to a uniform distribution over R. For all

1 ≤ i ≤ n, let Ni denote the size of the region that is covered by the i-th

placed sensor. Ni’s are iid random variables with p.d.f. 1/A over R, where A
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is the size of R. Therefore,

E[Ni] = E[N ] =
1

A

∫

R

∫
d(x, y)dydx, (1)

where d(x, y) denotes the area covered by a node located at location (x, y) ∈ R.

When border effects are not taken into account, d(x, y) = πr2 for all (x, y) ∈ R

and E[N ] = πr2. We shall derive E[N ] with the consideration of border effects

latter in this section.

Let us start with 1-coverage, based on which the estimate of k-coverage can

be obtained. When a node is placed, only a portion of its node coverage gives

extra 1-coverage. Let Xi denote the extra 1-coverage area contributed by the

i-th placed sensor and Ci be the random variable denoting the size of the

1-covered region collectively offered by i randomly placed nodes. We have

E[C1] = E[X1] = E[N ] and Ci = Ci−1 + Xi for all i, 2 ≤ i ≤ n. In the latter

case, E[Ci] = E[Ci−1+Xi]. Although Ci−1 and Xi are correlated (a larger Ci−1

often implies a smaller Xi and vise versa), we still have E[Ci] = E[Ci−1]+E[Xi]

due to the linearity of expected value (which states that, given m random

variables Ri, where i = 1 to m, E[R1 + R2 + · · · + Rm] = E[R1] + E[R2] +

· · · + E[Rm] regardless whether Ri’s are independent to each other [23]). Let

Fi = Xi/Ni be the proportion of the extra coverage area contributed by ith

placed sensor to its node coverage. It follows that E[Ci] = E[Ci−1] + E[FiNi].

If border effects are ignored, E[Ni] = πr2 by (1), a constant that is independent

of Fi, so E[FiNi] = E[Fi]×E[Ni]. If border effects must be considered, Fi and

Ni are correlated 1 . This can be justified as a smaller Ni implies that the

1 In fact, it is border effects that makes Fi and Ni dependent. Border effects are

also the cause of the dependency between any two links in MANETs [24].
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ith node is closer to the boundary, while a larger Ni implies that the node is

around the central region. Given Ci−1, the value of Ni thus has an effect on the

distribution of Fi, though the effect may not be significant. Nevertheless, we

propose to approximate E[FiNi] by E[Fi]×E[N ], where E[N ] is the expected

node coverage when border effects are taken into account.

As sensor nodes are uniformly distributed, Fi is expected to be the proportion

of the uncovered area to the whole deployment area. Thus we have

E[Fi] =
A− E[Cn−1]

A
.

It turns out that

E[Ci] = E[Ci−1] +

(
1− E[Ci−1]

A

)
E[N ]. (2)

Since E[C1] = E[N ], solving E[Cn] by (2) yields

E[Cn] =

[
1−

(
1− E[N ]

A

)n]
A. (3)

E[N ]/A is known to be the probability of link occurrence p if the sensory

range is viewed as the range of radio communications [24]. Therefore, (3) can

also be expressed as E[Cn] = [1− (1− p)n]A.

Eq. (3) holds for any shape of deployment region as well as for any shape of

node’s coverage region. It is consistent with the intuition that limn→∞ E[Cn] =

A and the experimental observation [7] that after deploying some number of

sensors, additional sensors do not improve 1-coverage significantly.

9



Now we extend the result to general k-coverage cases. For all 0 ≤ i ≤ n and

0 ≤ j ≤ k, we define the following random variables:

• Cj
i : the size of the j-covered area after i nodes have been randomly placed.

Note that C0
i = A and C1

i = Ci for all i and Cj
i = 0 for all i < j.

• Xj
i : the extra area contributed by the i-th placed sensor to the size of j-

covered region.

• F j
i : the proportion of Xj

i to Ni.

By definition, E[Cj
i ] = E[Cj

i−1] + E[Xj
i ] for all i > j. We also propose to

approximate E[Xj
i ] by E[F j

i ]× E[N ]. F j
i is expected to be the proportion of

the area that is exactly covered by j − 1 out of i − 1 sensors to the whole

deployment area. Thus we have

E[F j
i ] =

E[Cj−1
i−1 − Cj

i−1]

A
=

E[Cj−1
i−1 ]− E[Cj

i−1]

A
.

It follows that

E[Cj
i ] = E[Cj

i−1] +

(
E[Cj−1

i−1 ]− E[Cj
i−1]

A

)
E[N ]

= (1− p)E[Cj
i−1] + pE[Cj−1

i−1 ], (4)

where p = E[N ]/A. Expanding the right-hand side recursively, we obtain

E[Cj
i ] =

d∑

t=0




d

t




pd−t(1− p)tE[Cj−d+t
i−d ] (5)

for all integer d, 0 ≤ d ≤ i−j. It is not efficient to compute E[Ck
n] by applying

(5). In fact, an efficient approach to computing E[Ck
n] is by way of dynamic

programming [25], where the computation of E[Ck
n] is carried out as a process
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Fig. 1. Regions partitioning an l ×m rectangle R.

of filling a (n + 1) × (k + 1) table c(0 . . . n, 0 . . . k). Some entries of the table

are already known (c(i, 0) = A for all i and c(i, j) = 0 for all i < j); some can

be derived by Eq. (3) (c(i, 1) = Ci for all i); and the others can be computed

by Eq. (4). The time complexity of this approach is O(nk).

Our estimate of network coverage relies on the estimate of node coverage.

Let us focus on l×m rectangular deployment region and disk-shaped sensory

region centered at the sensor with sensory range r. We have A = lm and, if

border effects are not considered, E[N ] = πr2. Eq. (3) becomes

E[Cn] =

[
1−

(
1− πr2

lm

)n]
lm. (6)

This is a rough estimation for expected network coverage. In the following,

we shall find the value of E[N ] in face of border effects with the restriction

that r ≤ min(l, m)/2. In accordance with the location-dependent nature of

coverage, we partition deployment region R into three types of sub-regions, as

depicted in Fig. 1.

Let A, B, C represent the events that a sensor node is located in sub-regions

A, B, and C, respectively. It follows that

E[N ] = Pr[A]φA + Pr[B]φB + Pr[C]φC , (7)
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Fig. 2. A sensor node located in region B.

where φi denotes the expected coverage when the sensor is located in region i.

Since sensor’s location is determined at random by uniform distribution, we

have

Pr[A] =
(l − 2r)(m− 2r)

lm
, Pr[B] =

2r(l + m− 4r)

lm
,

and Pr[C] =
4r2

lm
. (8)

We already know φA = πr2. In the following, we are devoted to estimating φB

and φC .

Computing φB

Let u denote the distance from a node located in B to the border of R (see

Fig. 2). For a given u the overlapped area of the sensor’s sensory region and

the deployment region is

fB(u) = u
√

r2 − u2 +
(
π − arccos

(
u

r

))
r2.

Since 0 ≤ u ≤ r, φB can be computed as

1

r

r∫

0

fB(u)du =
1

r




r∫

0

u
√

r2 − u2 du


 +

πr

r∫

0

du− r

r∫

0

arccos
(

u

r

)
du.
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Fig. 3. Two cases of a sensor’s location in region C.

It turns out that

φB =
(
π − 2

3

)
r2. (9)

Computing φC

Let the distances from a node located in C to the two borders of the rectangle

be u and v, respectively (refer to Fig. 3). Depending on the location of the

sensor node, two cases are possible.

1) The distance to the corner is less than r (Fig. 3a).

2) The distance to the corner is larger than or equal to r (Fig. 3b).

Let φC1 and φC2 denote the expected coverage in Cases 1 and 2, respectively.

We have

φC = Pr[C1|C] φC1 + Pr[C2|C] φC2, (10)

where C1 and C2 denote the events that the location of the node belongs to

Cases 1 and 2, respectively. Due to uniform distribution of node’s location,

Pr[C1|C] and Pr[C2|C] accounts for the proportion of the area where the re-
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spect case is concerned. Thus we have

Pr[C1|C] =
1/4 πr2

r2
=

π

4
and Pr[C2|C] = 1− π

4
. (11)

We then compute φC1. Let fC1(u, v) denote the overlapped area of the node’s

sensory region and the deployment region in Case 1. By geometry we have

(refer to Fig. 3a)

fC1(u, v) = uv +
u
√

r2 − u2

2
+

v
√

r2 − v2

2
+

(
1− arccos(u

r
) + arccos(v

r
) + π

2

2π

)
πr2.

The expected area is

φC1 =
1

1
4
πr2

r∫

0

√
r2−u2∫

0

fC1(u, v) dv du.

Due to space limitation, we omit tedious computation details here and simply

show the result (for details, refer to [26]).

φC1 =
(π2 + 1)r2

2π
. (12)

Let fC2(u, v) denote the overlapped area of the node’s sensory region and the

deployment region in Case 2. We have (refer to Fig. 3b)

fC2(u, v) = u
√

r2 − u2 + v
√

r2 − v2 +(
1− arccos(u

r
) + arccos(v

r
)

π

)
πr2.

Similar technique used in computing φC1 can be used here. It turns out that

φC2 =
4r2(π − 4

3
− π2

8
)

4− π
. (13)
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By (10), (11), (12), and (13), we have

φC =
(
π − 29

24

)
r2. (14)

We summarize all derived results by the following two theorems.

Theorem 1 If a sensor node with sensory range r is uniformly distributed at

random in an l×m rectangular region (r ≤ min(l,m)/2), its expected coverage

is

E[N ] =
1
2
r4 − 4

3
lr3 − 4

3
mr3 + πr2ml

ml
.

Proof: It can be derived by (7), (8), (9), (14), and the knowledge that φA =

πr2. 2

Theorem 2 When n sensor nodes each with sensory range r are uniformly

distributed at random in an l × m rectangle (r ≤ min(l, m)/2), the expected

area collectively covered by these sensors is

E[Cn] =

[
1−

(
1−

1
2
r4 − 4

3
lr3 − 4

3
mr3 + πr2ml

m2l2

)n]
lm.

Proof: We have A = lm for an l ×m rectangle. By Theorem 1 and (3), we

obtain the result. 2

4 Discussions

Our theoretical finding is useful in predicting the degree of coverage a sensor

network may provide. For example, if 25 sensor nodes with sensory range 100

are uniformly distributed in 1000×1000 rectangle, 51.8% (55.0% by the rough
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estimation) of the deployment region is expected to be 1-covered. If we double

the number of sensors, the result is increased to 76.8% (79.7% by the rough

estimation).

The result can also be used to determine related parameters for a desired

network coverage. Define expected network coverage ratio (ENCR) to be

E[C1
n]/A. Assuming a fixed sensory range, the following result can be used to

determine the minimal number of sensor nodes required for a desired ENCR.

Lemma 3 Consider a deployment region of size A. Given a fixed sensory

range such that the expected node coverage is E[N ], the number of sensor

nodes needed for ENCR ≥ 1− ε, where 0 < ε < 1, is at least

ln ε

ln
(
1− E[N ]

A

) .

Proof: We are given the condition

1− ε ≤
[
1−

(
1− E[N ]

A

)n]
< 1.

So we have

0 <

(
1− E[N ]

A

)n

≤ ε < 1,

which implies

n ln

(
1− E[N ]

A

)
≤ ln ε < 0.

Since ln(1− E[N ]/A) < 0, we then have

n

[
− ln

(
1− E[N ]

A

)]
≥ − ln ε.
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It turns out that

n ≥ − ln ε

− ln
(
1− E[N ]

A

) =
ln ε

ln
(
1− E[N ]

A

) .

2

By Lemma 3, for more than 99% of the deployment region being 1-covered

in the previous example, the number of sensors should be increased to 158 or

more.

In case when sensory range r is also tunable, we may adjust both n and r to

obtain a desired ENCR. The interesting thing is, whatever n and r are set for

a particular ENCR, the expected number of communication links per node

(i.e., expected link degree) is bounded.

Theorem 4 If the radio communication range of every node is the same as

the sensory range, the expected link degree is upper-bounded by − ln ε for ENCR

= 1− ε, where 0 < ε < 1.

Proof: Yen and Yu [24] have shown that the expected link degree in a n-node

network is f(n) = (n − 1)p, where p is the probability of link occurrence.

Recall that ENCR can be expressed in terms of p as 1 − (1 − p)n. Letting it

be 1 − ε, where 0 < ε < 1, we have p = 1 − ε
1
n and the expected link degree

is f(n) = (n− 1)(1− ε
1
n ). Since f ′(n) = (1− ε

1
n ) + (n− 1)(n−2ε

1
n ln ε) > 0 for

all n > 1, f(n) is monotonically increasing when n > 1. To derive the limit of

f(n) when n approaches infinity, let t = 1/n and we have

lim
n→∞(n− 1)(1− ε

1
n ) = lim

t→0

(1− t)(1− εt)

t
.

By L’Hôpital’s rule,
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lim
t→0

(1− t)(1− εt)

t
= lim

t→0

−(1− εt) + (1− t)(−εt ln ε)

1
=− ln ε.

Therefore, the expected link degree is upper-bounded by − ln ε. 2

Higher link degree usually indicates higher degree of channel contentions and

thus poor link performance in case of contention-based medium access control

(MAC) protocol. Theorem 4 therefore implies that if contention-based MAC

protocol (such as CSMA/CA) is used in sensor networks, the degree of channel

contentions can be bounded yet a particular ENCR can be ensured.

The result also has theoretical relevance to other fundamental properties such

as network connectivity. Let rt denote the radio communication range of every

sensor. It has been pointed out [15] that, given rt = 2r, a set of communication

units are in the same connected component (connected) if the area jointly 1-

covered by these units (with sensory range r) is not partitioned. Intuitively,

one would not expect separately covered area with a sufficiently high coverage

ratio. In fact, it have been proven recently [20,4] that rt = 2r suffices to ensure

network connectedness on the premise of 100% coverage ratio.

The probability of link occurrence becomes 4E[N ]/A if rt = 2r. Accordingly,

the expected link degree is upper-bounded by −4 ln ε for ENCR = 1− ε.

We now demonstrate the utility of our result by presenting a uncoordinated

node scheduling scheme. It works as follows.

• Each node independently alternates between active and sleep modes. The

decision of switching from active to sleep modes or vise versa is purely

stochastic. The time periods of active and sleep modes are exponentially

distributed random variables with means λa and λs, respectively.
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• The probability of any node being in active mode initially is pa = λa/(λa +

λs).

Suppose that a node has entered active and sleep modes for m times. The total

time that the node stays in active and sleep modes are k-Erlang distributions

with means mλa and mλs, respectively. Therefore, the probability that a node

is in active mode at any given time is mλa/(mλa + mλs) = pa. Since the

states of nodes are not correlated, the number of active nodes at any given

time forms a binomial distribution with mean npa. Therefore, npa nodes are

expected to be active at any time and the expected network coverage can be

estimated by substituting npa for n in Theorem 2. A merit of this approach

is that, though the method is stochastic in nature, it is deterministic to set

the values of parameters λa and λs for a desired network coverage. This is not

possible without the help of our theoretical finding.

The above node scheduling scheme is similar to that proposed in [19], where

all nodes randomly and independently switch operating modes on a time-

slot basis. The assumption of time slots implies that all sensors are clock-

synchronized, which incurs additional communications overhead. The authors

have analyzed the probability of a point being uncovered under the assumption

of Poisson point process. Given that a sensor is in active mode with probability

pa (calculated as a long-term average), the probability that a given point is

uncovered in a given time slot has been shown to be exp(−paλπr2). This

is consistent with Hall’s result on the ratio of uncovered area, as the node

scheduling effectively drops node density from λ to paλ.
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5 Simulation Results

We conducted additional experiments to demonstrate the accuracy of our

theoretical findings. A Monte Carlo algorithm [27] is used to calculate the size

of k-covered region given a particular sensor deployment. It works as follows.

We conducted 10,000 random tests for a given deployment. A point in the

target area is randomly chosen in each test and the test successes if this point

is covered by at least k sensors. Let p be the total number of tests that success.

The k-covered area is 10002 × p/10000.

The simulation design for 1-coverage is as follows. The number of sensors

n is varied 1 to 99 in increments of 2 and sensory range r is varied 1 to

491 in increments of 10. For each combination of n and r, we repeated 100

experiments and took an average on coverage area. In all experiments, sensor

nodes are randomly uniformly distributed over a 1000× 1000 rectangle.

We measured coverage ratio, the ratio of 1-coverage to the whole system area.

Fig. 4(a)-(c) show results estimated by Theorem 2, Eq. (6), and Hall, re-

spectively. Fig. 4(d) shows the results obtained from the experiments. The

differences between theoretical estimations and the experimental results are

shown in Figs. 5-7, where the difference is defined as value obtained by theoret-

ical estimate minus that of experimental result. Table 1 lists means, standard

deviations, maximum values, and minimum values of the differences.

We found that all theoretical predictions overestimate the coverage ratio at

most cases. Furthermore, the degree of overestimate is high when the network

is not fully covered and approaches zero when 100% coverage ratio is almost

ensured. This can be explained as all estimates converge to 100% coverage
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Fig. 4. Network coverage ratios in 1000× 1000 rectangle, with n ranging from 1 to

99 and r ranging from 1 to 491. (a) Results estimated by Theorem 2. (b) Results

estimated by Eq. (6). (c) Results estimated by Hall [10]. (d) Results obtained from

simulations (averaged over 10,000 experiments).

Table 1

Differences of various estimations.

Estimation Mean Std. Deviation Max Min

Theorem 2 0.3912% 0.5747% 2.9037% -0.1398%

Eq. (6) 1.6590% 2.9599% 28.6529% -0.0002%

Hall’s 1.1947% 1.6888% 8.0457% -0.0002%

ratio when the number of nodes or the sensory range goes beyond some value.

When numerous sensors are deployed but the sensory range is small enough

so that the deployment region is not yet fully covered, the results are similar

(Fig. 8). Based on the experimental results, we conclude that Theorem 2 is

more accurate and has smaller variance than either Eq. (6) or Hall’s estimate,

particularly when the network is not completely covered.

In k-coverage experiments, we changed the number of sensors n (ranged from
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Fig. 5. Differences between Theorem 2’s prediction and the experimental results.
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Fig. 6. Differences between Eq. (6)’s prediction and the experimental results.

1 to 199) and measured different k’s (from 1 to 10). The sensory range r is

fixed to 100 and the deployment region is assumed 1000 × 1000. For each

combination of n and k, we repeated 100 experiments and took an average on

the ratio of k-coverage to the whole system area.
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Fig. 7. Differences between Hall’s prediction [10] and the experimental results.
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Fig. 8. Differences of all estimates when numerous sensors are deployed. The de-

ployment region is 1000× 1000 and the sensory range is 10.

Fig. 9 shows our estimates, while Fig. 10 shows the results obtained from the

experiments. The differences between theoretical estimations and the experi-

mental results are shown in Fig. 11. The mean, standard deviation, maximum

value, and minimum value of the differences are 2.18 × 10−4, 0.82 × 10−2,
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Fig. 9. Estimated k-coverage ratios in 1000 × 1000 rectangle, with n ranging from

1 to 199 and k ranging from 1 to 10.
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Fig. 10. Measured k-coverage ratios in 1000× 1000 rectangle, with n ranging from

1 to 199 and k ranging from 1 to 10.

0.0253, and −0.0190, respectively. The results confirm that our estimate is

accurate in general.
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Fig. 11. Differences between theoretical estimations and the measured results.

6 Conclusions

We have analyzed the expected k-coverage offered by a number of randomly

placed sensors with the consideration of border effects. We found that, al-

though many combinations of n (the number of sensors) and r (sensory range)

can be set for a particular expected 1-coverage ratio, the expected number of

communication links per node has a upper bound that depends only on the

desired expected 1-coverage ratio, not on any specific values of n and r. Our

results have been exploited to design a stochastic node scheduling algorithm

that conserves energy yet preserves network coverage. Additionally, simulation

results have demonstrated the accuracy of our theoretical findings. We hope

that our finding can be a step stone to the ultimate goal of characterizing

other related network properties.
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