
Game-Theoretic Approach to Self-Stabilizing
Minimal Independent Dominating Sets

Li-Hsing Yen and Guang-Hong Sun

Department of Computer Science, National Chiao Tung University, Taiwan
lhyen@nctu.edu.tw, martian206@gmail.com

Abstract. An independent dominating set (IDS) is a set of vertices in
a graph that ensures both independence and domination. The former
property asserts that no vertices in the set are adjacent to each other
while the latter demands that every vertex not in the set is adjacent to
at least one vertex in the IDS. We extended two prior game designs, one
for independent set and the other for dominating set, to three IDS game
designs where players independently determine whether they should be
in or out of the set based on their own interests. Regardless of the game
play sequence, the result is a minimal IDS (i.e., no proper subset of the
result is also an IDS). We turned the designs into three self-stabilizing
distributed algorithms that always end up with an IDS regardless of the
initial configurations. Simulation results show that all the game designs
produce relatively small IDSs with reasonable convergence rate in repre-
sentative network topologies.

Keywords: Independent dominating set · Self-stabilization ·Distributed
algorithm · Game theory.

1 Introduction

Given an undirected graph G = (V,E), where V is the vertex set and E is the
edge set, S ⊆ V is an independent set if no vertices in S are adjacent to one
another. Vertex set S ⊆ V is a dominating set if every vertex in V \S is adjacent
to at least one vertex in S. Vertex set S ⊆ V is an independent dominating set
(IDS) if S is both independent and dominating. Fig. 1 shows an example of IDS.

1

2

3

4

5

6

7

Fig. 1. Both vertex sets {3, 6} and {3, 7} are IDSs. Vertex set {3, 5} is not an IDS
because it is not independent.

2 Li-Hsing Yen and Guang-Hong Sun

A dominating set (independent or not) is said to be minimal if it contains
no proper subset that is also a dominating set. A dominating set (independent
or not) is said to be minimum if it is of the minimum cardinality. Finding
a minimum dominating set is NP-hard [6] for which many heuristics and ap-
proximations have been proposed. In this paper, we focus on minimal (rather
than minimum) IDS identification in a distributed system. A distributed sys-
tem consisting of multiple processes interconnected by communication links can
be modeled as a connected undirected graph where vertices represent processes
and edges represent communication links between processes. A dominating set
in a distributed system may represent a collection of servers that provide some
type of service or resource to adjacent non-server processes. An example is a
set of cluster heads in a wireless sensor network that collect sensory data from
nearby non-head sensor nodes and transmit the data to a remote base station.
Here cluster heads should not hear each other’s signal (i.e., independent to each
other) to avoid potential transmission collisions and bandwidth contentions.

In this paper, we are interested in the design of self-stabilizing distributed al-
gorithms for IDS identification. After a transient fault, a system is still alive but
could be in an arbitrary, possibly illegitimate state. Starting from an arbitrary
state, a self-stabilizing distributed algorithm takes actions step by step bringing
the system back to legitimate states in finite time [3]. Self-stabilization provides
a paradigm for designing distributed algorithm that autonomously resolves tran-
sient faults without external intervention. There have been some self-stabilizing
distributed algorithms that identify minimal dominating sets [10, 17, 12, 15, 7]
and maximal independent sets [14, 11, 8, 15]. However, to the best knowledge of
the authors, there has been no self-stabilizing algorithms for IDS in the litera-
ture.

We have designed self-stabilizing distributed algorithms under the framework
of game theory [18, 19]. Game theory helps us derive stability, correctness, and
efficiency properties of the corresponding design. We follow the same thread to
derive the solutions, which include three games and associated self-distributed
algorithms. One of the games is a modification on the maximal independent set
(MIS) game we proposed in [19] and the others are extensions to our previously-
proposed minimal dominating set (MDS) game [18].

We conducted simulations to evaluate the proposed approach. Various types
of network topologies were considered, including Erdös-Rényi (ER) [5], Watts-
Strogatz (WS) [16], and Barabási-Albert (BA) [1] graphs. Simulation results
indicate that the approach based on MIS game outperforms the other twos in
the size of dominating sets and also the time to stabilization.

The rest of this paper is organized as follows. Section 2 presents background
knowledge and related work. The proposed game-theoretic approaches to the
minimal IDS are presented in Section 3. Section 4 compares the three proposed
approaches in terms of the cardinality of IDS and the time to stabilization.
Section 5 concludes this paper.

Self-Stabilizing Minimal Independent Dominating Sets 3

2 Background and Related Work

To clearly define self-stabilization for a system, we need a predicate over all states
of the system [13] that differentiates correct or legitimate states from incorrect
or illegitimate states. Concerning our problem, a system state is legitimate if all
processes that claim themselves as dominators indeed form a minimal IDS. A
distributed algorithm is self-stabilizing with respect to the predicate if, starting
from any system state, any sequence of state transitions leads to a legitimate
state and all states following it (if any) are also legitimate. The proposed ap-
proach corresponds to silent stabilizing [4], meaning that all legitimate states
are quiescent states for which no further state transition is possible. Some ap-
proaches do not achieve self-stabilization but weak stabilization, which implies
the existence of at least one sequence of state transitions that leads the sys-
tem to a legitimate state. Weak stabilization implies stabilization under some
reasonable conditions [9].

We assume an asynchronous system, where processes perform computations
at arbitrary relative speeds and interleave one another in an arbitrary order. We
also assume a central daemon, which is a conceptual scheduler that allows only
one process to execute at a time. Note this scheduler is not needed at run time.
We need this daemon only for analysis and verification purpose.

All the games considered here are dynamic non-cooperative games, where
players make decisions by turns (asynchronously) only for their own good. This
abstracts the asynchronous nature of process’s execution and communication
speeds. However, the game model assumes that a player knows the current deci-
sions of all other’s when making a decision. This assumption demands some state
or communication synchronization facility among processes. Most self-stabilizing
approaches assume shared-variable inter-process communication model, where a
process can update its own variables but not other’s. A process can only read
variables of its own and all its neighbor’s. Therefore, if a process need access some
process’s variable value to make its decision and that process is not its neighbor,
it is possible that the value is not the latest. This limitation may cause problem,
as we shall explain later.

Designing self-stabilizing approaches in the framework of game theory is still
a new concept with a very few studies in the literature. In [2], selfish processes
seeking their own payoffs will form a spanning tree. This approach is weakly sta-
bilizing. We proposed a game-theoretical approach to minimal multi-dominating
set in [18], which is a generalization of dominating set by allowing each vertex
to demand a specific number of adjacent dominators. Though the game design
itself guarantees stability (Nash equilibrium), the corresponding distributed algo-
rithms are weakly stabilizing. The gap comes from the memory access constraint
imposed by the shared-variable inter-process communication model.

We also proposed another game-theoretical approach to maximal weighted
independent sets [19]. An independent set is maximal if there is no proper su-
perset of it that is also an independent set. A weighted independent set aims to
maximize the total vertex weight in an independent set. The game designs guar-

4 Li-Hsing Yen and Guang-Hong Sun

antee stability and are Pareto optimal. The distributed algorithms transformed
from the game designs are self-stabilizing.

Theoretically speaking, there are two possible approaches to identifying a
minimal IDS in a graph. One is to find a minimal dominating set that is also in-
dependent. However, no self-stabilizing dominating set approach ever considers
the constraint of independence. The other is to identify a maximal indepen-
dent set because maximal independent sets are also minimal dominating sets.
However, existing approaches to maximal independent sets normally seek large
cardinalities. In contrast, when finding a minimal IDS, we usually want to min-
imize the cardinality of the IDS as much as we can. Existing approaches to
maximal independent set thus do not perform well.

3 IDS Games

This section presents three game designs and associated self-stabilizing algo-
rithms as distributed approaches to the IDS problem. The game-theoretic ap-
proaches here are extensions to our previous work in [18, 19]. We assume a dis-
tributed system consisting of n processes (vertices) interconnected by communi-
cation links. Each process is a player in the IDS game. Let P = {p1, p2, . . . , pn}
be the player set that represents all processes in the system. For each pi ∈ P ,
pi’s strategy set Si is the collection of all pi’s feasible decisions. Each player pi
has a strategy variable ci ∈ Si = {0, 1}, which indicates whether pi is a member
of IDS. The strategy space of the game Σ = S1 × S2 × · · · × Sn is the Cartesian
product of all strategy sets. A strategy profile C = (c1, c2, . . . , cn) ∈ Σ is a tuple
of n strategies, where ci ∈ Si. For a specific pi, we may express C as C = (ci, c−i),
where c−i = (c1, c2, . . . , ci−1, ci+1, . . . , cn) denotes the set of all player’s strate-
gies excluding ci. pi’s payoff with respect to a strategy profile C is given by pi’s
utility function ui(C). We define IDS game as Γ = [P ; {Si}ni=1; {ui(·)}ni=1]. The
objective of each player pi ∈ P in Γ is maxci∈Si ui(ci, c−i).

We do not presume any action sequence among players to reflect the non-
deterministic nature of process’s executions in an asynchronous distributed sys-
tem. Due to numerous potential state transition sequences, players do not per-
form backward induction but are rather myopic in the sense that a player chooses
a best response that maximizes its utility with respect to the current strategy
profile. Formally, the best response for player pi is a function

ri(c−i) = {ci ∈ Si|∀c′i ∈ Si : ui(ci, c−i) ≥ ui(c′i, c−i)}. (1)

Players can change their strategies whenever their current strategies are not
their best responses. It is theoretically possible that such strategy changes never
stop and the game does not end up with a stable solution. A strategy profile
is said to be a Nash equilibrium if every player’s current strategy is already his
best response. A Nash equilibrium corresponds to silent stabilization of a self-
stabilizing distributed algorithm. Our goal is to define ui(·) for every pi ∈ P
such that Γ always ends up with a Nash equilibrium regardless of game play
sequence, which renders a self-stabilizing distributed approach to minimal IDS.

Self-Stabilizing Minimal Independent Dominating Sets 5

In all the game designs, Ni is the set of players adjacent to pi. We assume
no isolated vertices so |Ni| ≥ 1 for all pi.

3.1 MIS-based IDS Game

The first game modifies the MIS game proposed in [19]. We define the utility of
pi associated with a strategy profile C = (ci, c−i) as

ui(C) = ci

1− α
∑

pj∈Li

cj

 , (2)

where α is constant greater than 1 and Li = {pj |pj ∈ Ni,deg(pj) ≥ deg(pi)}.
The game here differs from the prior MIS game in that this game aims to identify
an MIS with small cardinality (rather than large cardinality as the prior MIS
game does.) This can been seen from that fact that any neighboring vertex of
pi in Li, which has equal or higher node degree than pi, can prevent pi from
declaring itself as a member of the IDS. The stability of the game can be proved
in a way analogous to that for the asymmetric weighted MIS game [19]. In fact,
the MIS-based IDS game is a variant of the asymmetric weighted MIS game.

The best response of pi is ci = 0 if cj = 1 for any pj ∈ Li. It would rather
choose ci = 1 if cj = 0 for all pj ∈ Li. By the guidelines proposed in [19], the
game design can be transformed into the following guarded commands:

R1 ci 6= 0 ∧ ∃pj ∈ Li, cj = 1 →
ci := 0

R2 ci 6= 1∧ 6 ∃pj ∈ Li, cj = 1 →
ci := 1

A guarded command is a condition (i.e., a Boolean expression) followed by
a statement. The condition and statement are separated by →. The statement
of a command can be executed only when the preceding condition is evaluated
true.

Table 1 shows a possible game play sequence of the MIS-based IDS game
for the network topology shown in Fig. 1. Observe that the game ends up with
an IDS {3, 7}, at which time no player has the incentive to further change his
strategy.

3.2 Symmetric MDS-based IDS Game

The second game is a modification of the MDS game proposed in [18]. Formally,
given C = (c1, c2, . . . , cn), define

vi(C) =
∑

pj∈Mi

cj (3)

6 Li-Hsing Yen and Guang-Hong Sun

Table 1. A possible game play sequence of the MIS-based IDS game

Step c1 c2 c3 c4 c5 c6 c7
0 1 1 0 0 0 1 0
1 1 1 0 0 1 1 0
2 1 1 1 0 1 1 0
3 1 0 1 0 1 1 0
4 1 0 1 0 1 0 0
5 1 0 1 0 0 0 0
6 1 0 1 0 0 0 1
7 0 0 1 0 0 0 1

for each player pi, where Mi = Ni ∪ {pi}. Also define gi(C) as

gi(C) =

{
α if vi(C) = 1
0 otherwise,

(4)

where α > 0 is a constant. Define

wi(C) =
∑

pj∈Ni

cicjγ, (5)

where γ > nα is a constant. The utility function of pi is defined as

ui(C) =

{(∑
pj∈Mi

gj(C)
)
− β − wi(C) if ci = 1

0 otherwise,
(6)

where β is another constant such that 0 < β < α.
When two neighboring players are both in the set, both players will have

negative utilities because γ > nα. Any of them can get a positive gain by leaving
the set. However, none of them has the priority over the other to stay in the set.
Which one will stay is pure stochastic. This is why this game is referred to as
symmetric game. Later we will present an asymmetric design.

The stability of the symmetric MDS-based IDS game can be proved by show-
ing that this game is an exact potential game, i.e., there exists an exact potential
function π(C) such that π(c∗i , c−i)−π(ci, c−i) = ui(c

∗
i , c−i)−ui(ci, c−i) whenever

an player pi changes its strategy from ci to c∗i .

Theorem 1. The symmetric MDS-based IDS game is an exact potential game.

Proof. The function

π(C) =

 n∑
j=1

vj(C)∑
k=0

hj(k)

− η(C), (7)

where

hi(k) =

{
α if k = 1
0 otherwise

(8)

Self-Stabilizing Minimal Independent Dominating Sets 7

and

η(C) = β

n∑
j=1

cj +
1

2

n∑
j=1

wj(C), (9)

is an exact function. If (ci, c
∗
i) = (0, 1),

π(C∗)− π(C) =
∑

pj∈Mi

gj(C
∗)− β

= ui(C
∗)− ui(C). (10)

If (ci, c
∗
i) = (1, 0),

π(C∗)− π(C) = −
∑

pj∈Mi

gj(C) + β + |Ωi|γ

= ui(C
∗)− ui(C). (11)

ut

In an exact potential game, Nash equilibrium always exists and can be found
by player’s individual movements. In fact, exact potential games enjoy the finite
improvement property, which means every game play sequence is finite.

Table 2. A possible game play sequence of the Symmetric MDS-based IDS game

Step c1 c2 c3 c4 c5 c6 c7
0 1 1 0 0 0 1 0
1 1 1 0 1 0 1 0
2 0 1 0 1 0 1 0

Table 2 shows a possible game play sequence of the symmetric MDS-based
IDS game running on the network topology shown in Fig. 1. Here no node has a
priority other any others. Therefore, p3 cannot become an MIDS member when
some of its neighbors (i.e. p4) is already in the set.

There are extra considerations when transforming the game design into guarded
commands. When making decisions, pi has to know the value of vj(C) for all
pj ∈ Mi. This involves the access of ck for pk ∈ Mj . However, with the shared-
variable inter-process communication model, pi cannot read the value of ck for all
pk ∈Mj\Mi. To overcome this limitation, each process pi maintains an auxiliary
variable di to denote the current domination status of pi. More explicitly,

di =

UNDER if |{pj |pj ∈Mi, cj = 1}| < 1,
EQUAL if |{pj |pj ∈Mi, cj = 1}| = 1,
OVER if |{pj |pj ∈Mi, cj = 1}| > 1.

(12)

However, when pj ∈Mi changes cj , pj cannot update di as a constraint imposed
by the shared-variable inter-process communication model. It is pi itself that
should update di. The result is a distributed algorithm consisting of six rules
(R1 - R6) in each process pi as shown below.

8 Li-Hsing Yen and Guang-Hong Sun

R1 |{pj |pj ∈Mi, cj = 1}| < 1 ∧ di 6= UNDER
→ di := UNDER

R2 |{pj |pj ∈Mi, cj = 1}| = 1 ∧ di 6= EQUAL
→ di := EQUAL

R3 |{pj |pj ∈Mi, cj = 1}| > 1 ∧ di 6= OVER
→ di := OVER

R4 ∃pj ∈ Ni, cj = 1 ∧ ci 6= 0
→ ci := 0

R5 6 ∃pj ∈ Ni, cj = 1 ∧ ∃pj ∈Mi, dj = UNDER∧ ci 6= 1
→ ci := 1

R6 6 ∃pj ∈ Ni, cj = 1 ∧ ∀pj ∈Mi, dj = OVER∧ ci 6= 0
→ ci := 0

The first three commands are for the maintenance of di. The last three com-
mands implement player’s best response. It is possible that the conditions of
two commands are both true at the same time. In that case, we assume that
any one of them and only one of them can be executed. As a consequence, the
value of ci and di may be inconsistent at some instant. An example is ci = 1 but
di = UNDER. Note that the problem remains even if pi updates di whenever
it updates ci because the value of di also depends on cj of another neighbor
pj ∈ Ni. Though the game design itself ensures stability, this memory access
constraint makes the game implementation weakly-stabilizing [18].

3.3 Asymmetric MDS-based IDS Game

The symmetric MDS-based IDS game does not give priority to any vertex to stay
in the set when one of two neighboring vertices should leave the set to preserve
independence. However, giving priority to the vertex with higher degree, which
is also used in the design of the MIS-based IDS game, may hopefully yield fewer
set members. For this reason, we modified the symmetric MDS-based IDS game
to incorporate the degree-based priority scheme. The result is referred to as
asymmetric MDS-based IDS game.

The only difference with the symmetric MDS-based game is the definition of
wi(·) function. When determining whether pi should leave the set, pi only cares
those that has a degree higher than pi. Therefore,

wi(C) =
∑

pj∈Li

cicjγ. (13)

Table 3 shows a possible game play sequence of the asymmetric MDS-based
IDS game with the network topology shown in Fig. 1. Here high-degree vertices
like p5 and p3 can join the set even if some of their neighbors is already in the
set.

Concerning the corresponding distributed algorithm, R1 to R3 remain un-
changed. R4 to R6 are changed to

Self-Stabilizing Minimal Independent Dominating Sets 9

Table 3. A possible game play sequence of the asymmetric MDS-based IDS game

Step c1 c2 c3 c4 c5 c6 c7
0 1 1 0 0 0 1 0
1 1 1 0 0 1 1 0
2 1 1 1 0 1 1 0
3 0 1 1 0 1 1 0
4 0 1 1 0 1 0 0
5 0 1 1 0 0 0 0
6 0 1 1 0 0 1 0
7 0 0 1 0 0 1 0

R4 ∃pj ∈ Li, cj = 1 ∧ ci 6= 0
→ ci := 0

R5 6 ∃pj ∈ Li, cj = 1 ∧ ∃pj ∈Mi, dj = UNDER∧ ci 6= 1
→ ci := 1

R6 6 ∃pj ∈ Li, cj = 1 ∧ ∀pj ∈Mi, dj = OVER∧ ci 6= 0
→ ci := 0

To see the stability of the asymmetric MDS-based IDS game, observe that
the degree-based priority together with some tie-breaking information such as
node identifier is transitive and asymmetric. Therefore, it is impossible to find
any game play sequence that contains cycles. Since the strategy space Σ is finite,
the acyclic property ensures stability.

4 Simulation Results

We measured the quality of IDS by its size and the time efficiency of self-
stabilizing algorithms by the number of moves they take to reach stability.
We conducted simulations to study the performance of all the proposed game-
theoretic approaches. The quality results are compared with the optimum that
was found by brute force. We considered representative network topologies gener-
ated by three models in the simulations: ER, WS, and BA. We fixed the number
of vertices to be 30. Since self-stabilizing algorithms are supposed to start from
arbitrary states, we assigned randomly generated values to variables (ci’s were
randomly assigned either 0 or 1 and di’s were either UNDER, EQUAL, or OVER
with equal probability). Each average was obtained over 1000 runs.

The ER model [5] generates random graphs. In a random graph, whether an
edge exists between a pair of vertices is an independent event with probability
pe. We varied the value of pe from 0.1 to 0.5. The result is shown in Fig. 2. As
pe increases, the expected number of edge also increases and the graph become
denser. As a result, smaller IDS can be found with larger pe value.

The comparisons among the three proposed approaches reveal that the MIS-
based IDS game (denoted by ‘MIS’) and the asymmetric MDS-based IDS game
(denoted by ‘Asym MDS’) performed nearly the same. The symmetric MDS-
based IDS game (denoted by ‘Symm MDS’) was inferior to the others. This is

10 Li-Hsing Yen and Guang-Hong Sun

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

Edge Probability

C
a

rd
in

a
lit

y
 o

f
ID

S

MIS

Symm MDS

Asym MDS

Optimum

(a) Average size of IDS

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Edge Probability

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

o
v
e

s
 p

e
r

n
o

d
e

MIS

Symm MDS

Asym MDS

(b) Average number of moves per process

Fig. 2. Performance in ER graphs (30 vertices)

justifiable because Symm MDS does not favor vertices with higher node degree.
In terms of convergence time, MIS performs the best, followed by Symm MDS
and then Asym MDS. This is because the latter two need extra moves to update
di’s.

The WS model [16] builds a small-world network by first creating a regular
network, where each vertex has exactly nk links connecting to its nk nearest
neighbors. The regular network is then converted to a small-world network by
rewiring each link with a probability pr to a randomly chosen vertex. We varied
the value of pr from 0 to 0.8. The result is shown in Fig. 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

Link Rewiring Probability

C
a

rd
in

a
lit

y
 o

f
ID

S

MIS

Symm MDS

Asym MDS

Optimum

(a) Average size of IDS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

Link Rewiring Probability

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

o
v
e

s
 p

e
r

n
o

d
e

MIS

Symm MDS

Asym MDS

(b) Average number of moves per process

Fig. 3. Performance in WS graphs (30 vertices)

When pr increases, the variance of node degree increases. As a result, the
size of IDS also increases. We found that Asym MDS performed slightly better
than MIS while Symm MDS still performed the worst. In terms of convergence
time, MIS performed the best, followed by Symm MDS and then Asym MDS.

Self-Stabilizing Minimal Independent Dominating Sets 11

The BA model [1] generates a scale-free network that exhibits a power-law
distribution of node degrees. It starts with a small number (m0) of connected
vertices. At every round, a new vertex x with m (m ≤ m0) incident edges are
added to the network. The probability of a new edge connecting x and an existing
vertex y is proportional to the node degree of y.

1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

Value of m

C
a

rd
in

a
lit

y
 o

f
ID

S

MIS

Symm MDS

Asym MDS

Optimum

(a) Average size of IDS

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Edge Probability
A

v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

o
v
e

s
 p

e
r

n
o

d
e

MIS

Symm MDS

Asym MDS

(b) Average number of moves per process

Fig. 4. Performance in BA graphs (30 vertices)

Figure 4 shows the performance of the proposed approaches with respect to
m. As m increases, the average node degree also increases. Consequently, smaller
IDS can be identified. In general, the result here is similar to that in Fig. 3.
MIS performed nearly the same as Asym MDS in terms of IDS cardinality, but
outperformed the counterparts in terms of the time to convergence.

5 Conclusions

We have proposed three self-stabilizing distributed algorithms for minimal IDS
in the framework of game theory. The first one based on MIS game is simple and
guarantees self-stabilization. The second and the third ones based on MDS game
are more complicated and can only guarantee weak stabilization. Simulation
results show that the MIS-based approach is not inferior to any others in terms
of the cardinality of IDS and outperforms all others in terms of the time to
stabilization.

Possible extensions to the proposed approaches include 1) independent multi-
dominating sets, where different nodes may demand different degrees of domina-
tion, and 2) weighted IDS, where nodes have weights and we want to minimize
total weight of the IDS. Anotehr way is to extend the self-stabilizing algorithms
to run under distributed and synchronous daemons.

12 Li-Hsing Yen and Guang-Hong Sun

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (Oct 1999)

2. Cohen, J., Dasgupta, A., Ghosh, S., Tixeuil, S.: An exercise in selfish stabilization.
ACM Trans. on Autonomous and Adaptive Systems 3(4) (Nov 2008)

3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Comm. ACM
17(11), 643–644 (Nov 1974)

4. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabiliza-
tion. Acta Informatica 36, 447–462 (1999)

5. Erdös, P., Rényi, A.: On random graphs I. Publications Mathematicae, Debrecen
6, 290–297 (1959)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

7. Goddard, W., Hededtniemi, S.T., Jacobs, D.P., Srimani, P.K., Xu, Z.: Self-
stabilizing graph protocols. Parallel Process. Lett. 18(1), 189–199 (2008)

8. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: A self-stabilizing
distributed algorithm for minimal total domination in an arbitrary system graph.
In: Proc. 17th Int’l Parallel and Distributed Processing Symp. (Apr 2003)

9. Gouda, M.G.: The theory of weak stabilization. In: Datta, A., Herman, T. (eds.)
Lecture Notes in Computer Science 2194, pp. 114–123. Springer-Verlag (2001)

10. Hedetniemi, S.M., Hedetniemi, S., Jacobs, D.P., Srimani, P.K.: Self-stabilizing al-
gorithms for minimal dominating sets and maximal independent sets. Computers
& Mathematics with Applications 46(5-6), 805–811 (Sep 2003)

11. Ikeda, M., Kamei, S., Kakugawa, H.: A space-optimal self-stabilizing algorithm for
the maximal independent set problem. In: Proc. 3rd Int’l Conf. on Parallel and
Distributed Computing, Applications and Technologies (2002)

12. Kakugawa, H., Masuzawa, T.: A self-stabilizing minimal dominating set algorithm
with safe convergence. In: Int’l Parallel and Distributed Processing Symposium
(Apr 2006)

13. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems, p. 634. Cambridge University Press, Cambridge, UK (2008)

14. Shukla, S.K., Rosenkrantz, D.J., Ravi, S.S.: Observations on self-stabilizing graph
algorithms for anonymous networks. In: Proc. 2nd Workshop on Self-Stabilizing
Systems (1995)

15. Turau, V.: Linear self-stabilizing algorithms for the independent and dominating
set problems using an unfair distributed scheduler. Inform. Process. Lett. 103(3),
88–93 (2007)

16. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393, 440–442 (Jun 1998)

17. Xu, Z., Hedetniemi, S.T., Goddard, W., Srimani, P.K.: A synchronous self-
stabilizing minimal domination protocol in an arbitrary network graph. In: Lecture
Notes in Computer Science 2918, pp. 26–32. Springer-Verlag (2003)

18. Yen, L.H., Chen, Z.L.: Game-theoretic approach to self-stabilizing distributed for-
mation of minimal multi-dominating sets. IEEE Trans. Parallel Distrib. Syst.
25(12), 3201–3210 (Dec 2014)

19. Yen, L.H., Huang, J.Y., Turau, V.: Designing self-stabilizing systems using game
theory. ACM Trans. on Autonomous and Adaptive Systems 11(3) (Sep 2016)

