
MEC Implementation in NFV Architecture
Supporting 5G End-to-End Network Slicing

Yao-Chia Chan∗, Li-Hsing Yen∗, Tse-Han Wang∗†, and Chien-Chao Tseng∗
∗Department of Computer Science, College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Email: josh0408tw@gmail.com, {lhyen, wangth, cctseng}@cs.nycu.edu.tw
†Network Management Laboratory, Chunghwa Telecom Laboratories, Taoyuan, Taiwan.

Abstract—Multi-access Edge Computing (MEC) utilizes com-
puting platforms in the proximity of end users to provide cloud-
based services with low latency and high reliability. The 3rd
Generation Partnership Project (3GPP) introduces network slic-
ing to provide diverse network services in 5G networks and has
been working with European Telecommunications Standards
Institute (ETSI) to standardize the integration of MEC with 5G
to support network slicing. However, the realization of network
slicing in MEC is still in early stage. All the existing studies
on network slicing in MEC were based on 4G Evolved Packet
Core (EPC), which do not conform to the network slicing
standard developed by 3GPP. This work extends our prior
work on management and orchestration (MANO) framework
for 5G end-to-end (E2E) network slicing by incorporating the
support for MEC. Our contribution is twofold. We report our
MEC implementation in NFV architecture using all open-source
software. We also make the MEC support network slicing and
integrate it into an E2E networking slicing framework. The
experimental results show that our MANO framework efficiently
deploys k8s clusters, MEC platforms, and E2E network slices
with short deployment time and low CPU and memory usage.
Furthermore, the round-trip time to access services provided by
MEC is much shorter than that of core networks.

I. INTRODUCTION

The fifth-generation (5G) network aims to provide diverse
network services to various applications. To this end, the
5G network requires elasticity to allow service customization
and programmability, which differs from the one-size-fits-all
architecture targeting mobiles only in the 4G networks. A key
enabling technology to meet these requirements is network
slicing [1]. Network slicing enables sharing a common 5G
network infrastructure by more independent logical networks
called network slices (NSs). Each NS is provided with cus-
tomized network resources [2] regarding bandwidth, latency,
and availability to support a specific type of network service.

Network function virtualization (NFV) is a network ar-
chitecture concept that leverages virtualization technology to
decouple software-based network functions (NFs) from the
underlying hardware. The decoupling enables virtualized net-
work functions (VNFs) to run on top of commercial off-the-
shelf (COTS) equipment. NFV liberates network operators
from proprietary equipment and rigid network architecture
without sacrificing functionality. Furthermore, softwarized
network functions facilitate agile deployment, structure evo-
lution, and platform innovation. Consequently, network oper-
ators can increase flexibility and scalability while improving
user experience and speeding time to market.

Multi-access edge computing (MEC) [3] provides low-
latency cloud services by deploying cloud infrastructure to

the proximity of mobile users. With less than 1 ms standard
latency in 5G, MEC could meet strict delay constraints of
most time-sensitive applications. European Telecommunica-
tions Standards Institute (ETSI) published a white paper on
integrating 5G and MEC in 2018, describing the location
of MEC in the 5G architecture, how to direct user traffic
to MEC, etc. However, the realization of network slicing in
MEC is still in its infancy. All the existing studies on network
slicing in MEC [4] were based on 4G Evolved Packet Core
(EPC), which are not aligned with the requirements proposed
by 3rd Generation Partnership Project (3GPP).

Our prior work in [5] proposed a cloud-native management
and orchestration (MANO) framework for end-to-end (E2E)
network slicing. The framework divides an E2E network
slice into sub-slices of radio access network (RAN), transport
network (TN), and core network (CN) and proposes a MANO
for each sub-slice. All the sub-slice MANOs are coordinated
by an E2E MANO. Our work in this paper complements
the prior work by integrating a MANO for MEC into the
framework. The proposed MEC MANO conforms to the rec-
ommendation of ETSI. Furthermore, our implementations of
the whole framework and all associated sub-slices (including
the MEC MANO) are based on open-source solutions, and
can be deployed across Kubernetes (k8s) clusters.

The remainder of this paper is structured as follows. Sec. II
briefs the backgrounds and related work. Sec. III presents the
proposed scheme. Sec. IV presents the experimental results
and the last section concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Multi-access Edge Computing (MEC)

MEC is a technology that deploys cloud service in the edge
of network. As the service access point is to the proximity
of end users, MEC provides cloud services with low latency.
A MEC framework consists of system-level, host-level, and
network-level entities (Fig. 1). The system-level entities are
all for management and interworking purposes, which include
Operations Support System (OSS) and Multi-access Edge
Orchestrator (MEO). The network level entities (not shown
in Fig. 1) such as access network (AN) are external to the
MEC system. The host-level entities include MEC hosts
and associated host-level management entities. An MEC
host is a physical machine which hosts and supports the
executions of cloud-enabled MEC applications (MEC Apps).
Executing a MEC App demands several functionalities from
the MEC host. First, a virtualization infrastructure which



Host

Operations Support System (OSS)

MEC Platform Manager 
MEC Host MEC Platform

MEC

App

Virtualization Infrastructure

MEC host level management

Multi-access Edge 

Orchestrator (MEO)

Virtualization Infrastructure

Manager (VIM)

Data plane

MEC platform element mgmt

MEC app rules & reqts mgmt

MEC app lifecycle mgmt

Service 

Registry
MEC 

Service

Traffic rules 

control

DNS 

handling

Fig. 1: MEC framework

Operations Support System (OSS)

MEC Platform 

Manager -

NFV 

MEC 

Platform

(VNF)
MEC App

(VNF)

MEC

Application 

Orchestrator

(MEAO)

VIMNFVI

Service

NFVO

VNFM 

(MEC 

app)

VNFM

(MEC

platform)

Data plane 

(VNF/PNF)

MEC reference points

MEC-NFV reference points

NFV reference points

Fig. 2: MEC in NFV Architecture Variant

provides compute, storage, and network resources to MEC
Apps running on top of it. Second, a set of functionalities
called MEC services that are essential for MEC Apps to run
on a particular virtualization infrastructure. An MEC platform
hosts MEC services and offers an environment for MEC Apps
in the same MEC host to discover, advertise, and consume
these MEC services. Third, a data plane that enforces the
traffic rules demanded by the MEC platform and routes the
traffic among MEC Apps, MEC services, DNS server/proxy,
access networks, and external networks. The MEC platform
also receives traffic rule requests from the MEC platform
manager, MEC Apps, or MEC services and configures and
manages the data plane accordingly.

The MEC host-level management comprises MEC Plat-
form Manager and Virtualization Infrastructure Manager
(VIM). The former manages MEC-specific functionality of
a particular MEC host and the MEC Apps running on it. The
latter manages resources in the virtualized infrastructure.

B. MEC in NFV Architecture

ETSI proposed MEC in NFV architecture variant [6]
(Fig. 2) as a way to softwarerize MEC. In this variant,
both MEC platforms and MEC Apps are VNFs running on
Network Function Virtualization Infrastructure (NFVI). The
NFVI comprises both virtualized computing and networking
platforms. In addition, a virtualized MEC platform also needs
supports for its data plane service. The supports could come
from virtualized or physical network function (PNF).

NSSF NRF PCF UDM

AMF SMF AUSF

UE AN
UPF

Uplink Classifier

DN

Data 

Plane

Service-Based 

Interfaces (SBIs)

Control 

Plane

UPF

PDU session 

anchor 1

DN
UPF

PDU session 

anchor 2

Fig. 3: 5G Core Network Architecture

The variant also differs from the original framework in the
following ways.

• The MEO is replaced by MEC Application Orchestrator
(MEAO) and an NFV Orchestrator (NFVO). The MEAO
will send a request to the NFVO after it completes
requests related to MEC platform or MEC App.

• The MEC Platform Manager becomes MEC Platform
Manager-NFV, where the life-cycle management of
MEC platforms, now VNF instances, has been delegated
to a VNF manager (VNFM).

• One or more instances of VNFM are created to manage
the life cycle of MEC Apps as VNFs.

C. 5G Core Network
Fig. 3 shows the 5G core network architecture proposed by

3GPP [2], which decomposes control-plane applications and
services into service-oriented components realized as fine-
grained cloud-native network functions. These components
communicate with one another through service-based inter-
faces (SBIs). In control plane, network slices are managed by
NSSF, AMF, and SMF. In data plane, user equipment (UE)
can send packets to and receive packets from data network
(DN) through AN and user plane function (UPF).

3GPP defines one particular type of UPF called uplink
classifier (ULCL). ULCL classifies uplink user traffic by the
destined DN and accordingly dispatches traffic to different
PDU session anchors (PSAs). Note that all downlink traffic
also flows over ULCL. Therefore, ULCL can be used for
traffic steering in 5G with the existence of MEC.

III. OUR DESIGN AND IMPLEMENTATION

Our contribution is twofold. We report our MEC imple-
mentation in NFV architecture using all open-source soft-
ware. We also make the MEC support network slicing and
integrate it into our E2E networking slicing framework.

A. Softwarized MEC
Fig. 4 shows the proposed MEC scheme in NFV archi-

tecture. For implementing NFVI, we used Docker and Open
vSwitch (OVS) [7] for compute and network virtualizations,
respectively. We used k8s [8] to control and manage Docker
containers. For the management of OVS, we used Open
Network Operating System (ONOS) controller.

We used Smart Edge Open together with ONOS controller
to implement MEC Platform. Smart Edge Open [9] developed
by Intel provides an edge application agent (EAA) for cus-
tomer applications to receive notifications from producer ap-
plications. EAA enables MEC App to access MEC services.



Operations Support System (OSS)

MEC Platform 
Manager -

NFV 

MEC 
Platform

(VNF)

MEC App
(VNF)

MEC
application 

orchestrator

VIMNFVI

Service

NFVO

VNFM 
(MEC 
app)

VNFM
(MEC

platform)

Data plane 
(VNF/PNF)

MEC reference points

MEC-NFV reference points

NFV reference points

E2E SMO

MEC SMO

EMCO

ONOS + K8Sfree5GC + P4

Intel Smart 
Edge Open

Traffic 
Rules 

Control

ONOS

Data plane

OVS

Fig. 4: Proposed design and implementation of MEC in NFV architecture

ONOS controller, on the other hand, handles traffic rules. We
also used free5GC together with P4 switches to implement
user data plane for MEC platform. free5GC [10] is an open-
source project for 5G core networks based on 3GPP Release
15. We took free5GC V3.0.6 as 5G core network component
and modified it to support network slicing and ULCL.

We used Intel Edge Multi-Cluster Orchestrator (EMCO)
[11] as the VNFM for MEC App. EMCO is able to deploy
cloud-native applications to a set of k8s clusters. It provides
a Cluster Registration Controller for the inclusion of k8s
clusters under its management. Users can instruct EMCO to
do application deployment via a command line interface.

B. MEC With Network Slicing Capability

We design a network slice subnet for MEC called MEC
App slice (MEA slice). Each MEA slice consists of a MEC
App, a collection of MEC services that supports the MEC
App, and a configurable data plane with QoS rules for the
MEC App to access the MEC services. For privacy concerns,
MEA slices are isolated from one another such that a MEC
App cannot access MEC services of other MEA slices.

We took an integrated design that combines MEC host
level management with MANO for MEA slices. The design
consists of two modules (Fig. 4). One named E2E Slice Man-
agement and Orchestrator (E2E SMO) is the OSS in NFV
architecture as well as Network Slice Management Function
(NSMF) in the framework proposed by 3GPP [12]. As an NS
MANO, E2E SMO handles network slice requests and slice-
related information and activates and deactivates E2E network
slices. The other module named MEC Slice Management and
Orchestrator (MEC SMO) collectively implements MEAO,
NFVO, MEPM, and VNFM for MEC platform. In particular,
MEC SMO performs the following tasks:

• Deployment of MEC platform, including the creation of
k8s clusters

• Deployment of MEA slices, including the creation of
MEC App and MEC services

• Storage of information specific to MEA slice
• Flow and request management for MEC App and MEC

services
E2E SMO and MEC SMO collaboratively handle requests
to deploy MEA slice, initiate the deployment, notify EMCO
(as a VNFM for MEC Apps) to deploy MEC Apps across
clusters, life-cycle management of MEC platform, etc.

In the framework proposed by 3GPP [12], Network Slice
Subnet Management Function (NSSMF) manages the life

ME Cluster

Smart 
Edge Open

MEC 
App

UERANSIM

SR-IOV

MEC 
ServicesOVS

ME ONOS

Slice 1

MEC 
App

MEC 
Services

Slice 2

Edge Node

Core Node

ULCL

PSA-C SMF

Core
NFs

SR-IO
V

SR-IO
V

Operators

TN ONOS

EMCO

Central 
Cluster

:

Fig. 5: Experiment Environment

cycle of NSSIs. We realized NSSMF by designing four
specific SMOs, namely, RAN, CN, TN, and MEC SMOs, for
the life cycle management of NSSIs in the RAN, CN, TN, and
MEC domains, respectively. Each SMO orchestrates the cor-
responding NSSI when receiving management requests from
the E2E SMO. In particular, the CN and MEC SMOs play the
roles of NFVO/VNFM for their corresponding domains. For
the implementation of MEC SMO, we used a k8s software
extension called Operator pattern [13]. We used Operators to
customize and automate the deployment and management of
slice resources on k8s and undertake automation tasks.

IV. EXPERIMENTAL RESULTS

We conducted experiments to measure the time perfor-
mance of the proposed framework. We used SR-IOV [14]
to allow containers to directly access the network interface
card of the host, which is a way to accelerate the transmission
rate. We also changed UPF in the CN slice to a ULCL with
PDU Session Anchor-Core (PSA-C) mode. We physically
deployed four hosts. One was used as UE plus RAN simulator
(UERANSIM). Another was used as MEC cluster. The other
two hosts were used as central cluster consisting of a core
node and an edge node. We used k8s to manage containers
for all hosts except the first one.

The experiment environment is shown in Fig. 5. The
experiment environment is shown in Fig. 5. The detailed de-
ployment procedure is as follows. We first deployed MANO
framework (including four SMOs, TN ONOS, and EMCO) in
the core node. We then created MEC platform in the MEC
cluster, which deployed k8s cluster, Smart Edge Platform,
MEC ONOS, and OVS. After that, the system was ready to
deploy end-to-end network slices. The deployment of an end-
to-end network slice began with the deployment of the CN
slice, including the onboarding of core network components,
PSA-C (in the core node), and ULCL (in the edge node to
facilitate redirecting UE traffic to MEC). The deployment
of MEA slice followed the deployment of the CN slice.
The MANO framework then deployed MEC App and MEC
services spanning across multiple clusters. It also configured
OVS in the MEC cluster through MEC ONOS. After that,
the MANO framework requested TN ONOS to configure P4
switches in the transport network for bandwidth management.

For the deployment of MEC applications, we used
Edgecore SAU5081-2X which ran Ubuntu 16.04 on top of 36
CPU cores and 32 GB memory. We used Inventec D10056 P4
switch for data plane. The deployment of MANO framework



TABLE I: Deployment Time of MANO framework and MEC Slice

Deployment Object Deployment Time (sec.)

MANO Framework 73.4
MEC Cluster Setup 89.6
MEA Slice Creation 10.3

MEC cluster 
setup

1st MEC
slice

2nd MEC
slice

3rd MEC
slice

4th MEC
slice

5th MEC
slice

Fig. 6: CPU load and memory usage of MEC cluster setup and MEC slice
deployment

includes the creation of four SMOs plus EMCO and the
preparations of TN ONOS and P4 switch. The setup of MEC
cluster consists of the initialization of k8s cluster and the
preparations of MEC platform, including the deployments of
Smart Edge Open, MEC ONOS, and OVS. The creation of
a MEC sub-slice includes a MEC App and a MEC service.

A. Deployment Time

Table I shows the deployment time that is averaged over
10 trials. MEC cluster setup time primarily due to Smart
Edge Open platform creation. Kafka deployment in k8s Pod is
time-consuming. Nevertheless, an efficient MEC cluster setup
in 2 minutes demonstrates the effectiveness of our work.

B. Memory Storage & CPU Load

Fig. 6 shows the per-second memory usage. We started the
MEC cluster setup at the fifth second, since then memory
usage increased as the MANO framework created the k8s
cluster, OVS, and MEC ONOS, and deployed Smart Edge
Open. We started the deployment of the first MEA slice
at the 100th second and added a new one after every 20
seconds since then. The memory usage by MEA slices was
not significant compared with the MEC cluster setup, which
indicates that MEA slices are not memory demanding. The
total memory usage did not exceed 3GB.

Fig. 6 also shows the per-second CPU load. The CPU load
increased after the fifth second due to the setup of MEC
cluster (particularly for k8s to deploy containers). It dropped
after the setup completed. Then, after the 100th second and
every 20 seconds after, the CPU increased for a short time
for the deployment of MEA slices. After the deployment of
the last slice, the CPU load returned to 1% to 3%. In short,
the maximum CPU load was below 25% and the minimum
CPU load (without handling any UE traffic) was below 5%.
The result confirms that the impact on CPU load is light.

C. Network Latency

We also studied the difference of network latencies be-
tween two cases: when user traffic was handled by a MEC

App and when user traffic was handled by a server in
the Internet. The round-trip time from a UE to a MEC
App and Internet content were measured 0.79 and 3.46 ms,
respectively. The delay was 4.38 times larger if UE traffic was
not served locally in the MEC. This result demonstrates the
benefit of MEC in reducing network latency of user traffic.

V. CONCLUSIONS

We summarize the design and implementation of MEC
in NFV architecture as follows. First, we used Docker and
OVS for compute and network virtualizations, respectively,
in NFVI. Second, we used k8s and ONOS controller for the
VIMs of Docker and OVS, respectively. Third, we used Smart
Edge Open together with ONOS controller for MEC platform.
Fourth, we used free5GC together with P4 switches for user
plane in MEC platform. Finally, we used Intel Edge Multi-
Cluster Orchestrator (EMCO) as the VNFM for MEC App.

For slice management and orchestrator (SMO) in MEC,
we design a MEC SMO which works together with E2E
SMO for the deployment of a network service involving
MEC sub-slice. We used a k8s software extension for the
implementation of MEC SMO. We conducted experiments
to measure the time performance of the proposed framework.
The results show that a MEC cluster can be deployed within
two minutes, the total memory usage did not exceed 3 GB,
and the impact of the implementation on CPU load is light.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
and Technology Council, Taiwan, under Grants 110-2221-
E-A49-044-MY3, 110-2221-E-A49-064-MY3, NSTC 112-
2218-E-011-004 and NSTC 112-2218-E-011-006.

REFERENCES

[1] “5G; management and orchestration; concepts, use cases and require-
ments,” 3GPP, TS 28.530, V16.2.0, Release 16, Aug. 2020.

[2] “System architecture for the 5G system (5GS),” 3GPP, TS 23.501,
V16.4.0, Release 16, Mar. 2020.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G
network edge cloud architecture and orchestration,” IEEE Communi-
cations Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[4] A. Ksentini and P. A. Frangoudis, “Toward slicing-enabled multi-access
edge computing in 5G,” IEEE Network, vol. 34, pp. 99–105, Apr. 2020.

[5] Y.-S. Chiu, L.-H. Yen, T.-H. Wang, and C.-C. Tseng, “A cloud native
management and orchestration framework for 5G end-to-end network
slicing,” in Proc. 16th IEEE Int’l Conf. on Service-Oriented System
Engineering, CA, USA, Aug. 2022.

[6] “Multi-access Edge Computing (MEC); framework and reference ar-
chitecture,” ETSI, GS MEC 003, V2.2.1, Dec. 2020.

[7] “Open vSwitch,” https://www.openvswitch.org/.
[8] “kubernetes: Production-grade container orchestration,”

https://kubernetes.io, accessed: 2021-06-14.
[9] “Smart Edge Open,” https://github.com/smart-edge-open/specs, ac-

cessed: 2022-05-21.
[10] “free5gc,” https://www.free5gc.org, accessed: 2021-06-14.
[11] “EMCO,” https://github.com/smart-edge-open/EMCO, accessed: 2022-

05-21.
[12] “Telecommunication management; study on management and orches-

tration of network slicing for next generation network,” 3GPP, TR
28.801, V15.1.0, Release 15, Jan. 2018.

[13] “Operator framework,” https://github.com/operator-framework, ac-
cessed: 2021-06-14.

[14] “SR-IOV CNI plugin,” https://github.com/intel/sriov-cni, accessed:
2022-10-21.


