
A Cloud Native Management and Orchestration
Framework for 5G End-to-End Network Slicing

Yi-Sung Chiu∗, Li-Hsing Yen∗, Tse-Han Wang∗†, and Chien-Chao Tseng∗
∗Department of Computer Science, College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Email: steven30801@gmail.com, {lhyen, wangth, cctseng}@cs.nctu.edu.tw
†Network Management Laboratory, Chunghwa Telecom Laboratories, Taoyuan, Taiwan.

Abstract—The 3rd Generation Partnership Project (3GPP)
introduces network slicing for the provisioning of diverse network
services in 5G. Additionally, boosted by cloud-based virtualiza-
tion technologies, Network Function Virtualization (NFV) is also
adopted in 5G to enhance scalability and elasticity. 5G network
elements are evolving to cloud-native deployment. However, exist-
ing end-to-end (E2E) network slicing frameworks do not embrace
cloud native yet. In this paper, we present a MANagement and
Orchestration (MANO) framework for the automation of end-to-
end (E2E) network slicing with the implementations of the core
network (CN) and transport network (TN) slices. The framework
is a showcase that follows 3GPP network slice management and
5G core network slicing mechanism, integrates novel bandwidth
management techniques, and exploits all open-source approaches
with state-of-the-art cloud native technologies. We evaluate the
resource overhead of the framework and service throughput
under bandwidth policies.

I. INTRODUCTION

The fifth-generation (5G) network aims to provide diver-
sified network services to various applications such as high-
quality video streaming, smart vehicles, and Internet of Things
(IoT). To this end, the 5G network requires elasticity to
allow service customization and programmability, which are
different from one-size-fits-all architecture targeting mobiles
only in the 4G network. A key enabling technology to meet
these requirements is network slicing. Network slicing enables
the sharing of a common 5G network infrastructure by one
or more independent logical networks called network slices
(NSs). Each NS is provided with customized network re-
sources [1] to support a specific type of service with diverse
service demands in terms of bandwidth, latency, and availabil-
ity.

Network function virtualization (NFV) is a network ar-
chitecture concept that leverages virtualization technology to
decouple software-based network functions (NFs) from sup-
portive hardware. The decoupling enables virtualized network
functions (VNFs) to run on top of general-purpose hardware
and commercial off-the-shelf (COTS) equipment. With NFV,
network operators can get rid of proprietary equipment and
rigid network architecture without affecting functionality. Ad-
ditionally, softwarization on network functions enables ag-
ile deployment, structure evolution, and platform innovation.
Consequently, network operators can enhance flexibility and
scalability as well as reduce capital expenditures (CAPEX)
and operating expenditures (OPEX) investments.

NFV has been identified as a key enabler for 5G infras-
tructure deployment [2]. With NFV, the evolving 5G network
can be deployed and executed in an agile way, which provides
high scalability and reliability on network services. Similarly,
network slicing in 5G can leverage NFV features to operate
in a dynamic manner. In particular, NFV enables managing
network slices in an automated manner because it is simple
to schedule, partition, and distribute resources of decoupled
hardware in the NFV paradigm.

5G network elements are evolving to cloud-native deploy-
ment [3], where applications and services are designed for
modern cloud infrastructure. Cloud-native network functions
are fine-grained and decomposed into service-oriented com-
ponents. Compared with the traditional monolithic architec-
ture, the component-based style provides efficient use of
resources, fast restoration under failure without interruption
to other services, and interoperability across heterogeneous
systems. Cloud native components are mostly implemented
with lightweight virtualization technologies such as containers
(instead of virtual machines) to realize rapid instantiation and
migration.

There have been some end-to-end (E2E) network slicing
frameworks proposed for 5G [4], [5], [6], [7], [8]. However,
these frameworks are not cloud native. Specifically, one 4G
evolved packet core (EPC) or virtual EPC (vEPC) is cre-
ated for each network slice, which is not compliant with
the service-based architecture in 5G [1]. Furthermore, most
existing proposals or testbeds either do not address transport
network aspects at all [4] or consider only connectivity (rout-
ing) services [5], [7], [8]. Important transport network issues
such as Quality of Service (QoS) and bandwidth management
have not been well addressed.

In this paper, we present a MANagement and Orchestration
(MANO) framework for the automation of E2E network
slicing and showcase a proof of concept (PoC) of network
slicing selection and orchestration that follows the 3rd Gener-
ation Partnership Project (3GPP) specifications [9], [10]. The
framework adopts state-of-the-art cloud-native technologies
and all open-source approaches. We particularly address how
to enforce QoS for different network slices coexisting in a
transport network. We also demonstrate the efficiency of this
framework under the containerized environment.

We summarize the contributions of this work as follows.

1

• We have implemented a service-based 5G architecture
by containerizing both MANO components and network
functions.

• We have demonstrated the slice selection and configura-
tion mechanism with the 3GPP-compliant core networks.

• We have integrated bandwidth control to exercise E2E
network orchestration and to enable QoS-aware network
services.

The rest of this paper is organized in the following fashion.
The next section briefs network slicing in 5G. We then present
our design for the slicing of core and transport networks.
Sec. IV briefs our E2E NS MANO and the detailed orches-
tration of slices. The last session concludes this paper.

II. NETWORK SLICING IN 5G

A. Network Slice Instance (NSI)

5G introduces three standard slice categories for different
application scenarios: enhanced mobile broadband (eMBB),
ultra-reliable and low-latency communication (URLLC), and
massive Internet of things (mIoT). A network slice instance
(NSI) is the realization of a certain category of NS. It consists
of a set of network functions and the required compute,
storage, and networking resources.

We may view the management of NSI from time and space
perspectives. From the time perspective, the management of an
NSI consists of four phases: preparation, commissioning, oper-
ation, and decommissioning [11]. From the space perspective,
an E2E network slice in 5G mobile networks spans over three
domains: the radio access network (RAN), the core network
(CN), and the transport network (TN). Accordingly, an NS
is divided into several network slice subnets (NSSs), one for
each domain [10]. Network slice subnet instances (NSSIs) are
instantiations of NSSs and can be interconnected to form a
complete E2E NSI.

B. Radio Access Network (RAN) Domain

Network slicing on the RAN domain has been widely stud-
ied in academics and industries. According to the level of RAN
resource isolation, RAN slicing may be roughly classified
into three possible architectures [4]. In slice-aware shared
RAN (e.g., [4]), the complete RAN is shared among slices
with relatively little functional and performance isolation. In
slice-specific radio bearer, network slices share only Physical
(PHY) and Medium Access Control (MAC) layers in the user
plane and the radio resource control (RRC) in the control
plane. Some researchers proposed a two-level MAC scheduler
for RAN slicing [12], [8]. Many other works also applied
resource sharing polices at the MAC layer [5], [13]. In slice-
specific RAN, only the air interface is shared among network
slices. Either the spectrum is shared among slices or each slice
is assigned dedicated frequency bands [14]. In this case, each
slice can have a customized PHY and MAC.

Another aspect is the control and management of virtualized
RAN resource. 5G-EmPOWER [13] provides a hypervisor for
the isolation and sharing of virtulalizes RAN resource. It sep-
arates the control plane from user plane and supports multiple

radio access technologies. 5G-EmPOWER is integrated in [7]
as a RAN slicing solution.

C. Core Network (CN) Domain

The mobile core network serves as an operation and
business system for network operators. It provides service
connection, device authentication, and accounting. For the
user equipment (UE) requesting network service in CN, the
main task on the CN domain is to designate a network
slice for directing, isolating, and shaping the UE traffic. For
this, the MANO should create and configure an NSSI and
allocate associated resources. A main consideration for the
slice management is how to strike a balance between resource
utilization and performance.

The creation of a CN NSSI entails the instantiation and
configuration of all supporting network functions. As a cloud
native design, 3GPP restructures the mobile core network from
4G EPC to 5G service-based architecture (SBA) [1] (Fig. 1).
SBA decomposes control-plane network functions into mi-
croservices, which interact with each other through stateless
HTTP. To facilitate the exploration of active network services,
3GPP uses a dedicated function, Network Repository Function
(NRF), to maintain service profiles of network functions on the
5G control plane. Before a control-plane function (e.g., SMF
in Fig. 1) starts operating on SBA, the function will register its
service profiles to NRF (Step 0 in Fig. 1). Afterward, any other
control-plane function (e.g., AMF in Fig. 1) pursuing such
services will ask NRF for the service location with desired
profiles (Step 3 in Fig. 1) and then send its request to the
target function (Step 4 in Fig. 1).

NSSF NRF

SMFAMF

N6UPFN3

N2

RANUE DN

N9

N4
N1

PCF UDM

AUSF

Service-Based

Interfaces

Control

Plane

Data

Plane

1

02 3

4

5

6

Fig. 1. Simplified UE Requested PDU Session Establishment Procedures in
3GPP Core Network Architecture

The procedure for CN to handle a network service request
from a UE can be outlined as follows [9]. First, the UE initiates
a Packet Data Unit (PDU) session establishment request to
the core network. The request is handled by Access and
Mobility Management Function (AMF) (Step 1 in Fig. 1). It
contacts Network Slice Selection Function (NSSF) to identify
the network slice of the UE (Step 2). AMF then selects an
active Session Management Function (SMF) (Step 4 in Fig. 1)
and delegates the management of the UE’s PDU session to
the SMF. The SMF then establishes a PDU session on an

2

appropriate User Plane Function (UPF) (Step 5 in Fig. 1).
After completing the PDU session establishment, the UE can
access network services through the given UPF (Step 6 in
Fig. 1).

SBA provides a finer granularity of function sharing among
multiple network slices: instead of sharing an entire core
network or not, we can share some but not all microservices
among network slices. Sharing a microservice among network
slices increases resource utilization in the infrastructure but
may increase signaling processing latency and thus cause
performance interference among slices. On the other hand,
creating a microservice instance for each slice may consume
considerable computing resources but provides functional iso-
lation. We shall present our design choices in the next section.

D. Transport Network (TN) Domain

The transport network domain includes inter-RAN, RAN-
CN, and inter-CN networks. Network slicing on the TN do-
main often aims at RAN-CN networks related to the fronthaul
and backhaul. The main tasks in TN slicing are to differentiate
and isolate traffic flows among network slices and apply
desired processing rules accordingly to meet slice-specific
QoS requirements. A key technology to this goal is software-
defined networking (SDN).

The QoS requirements under consideration include band-
width, latency, and packet loss. SDN supports QoS in two
primary ways. The first one exploits the global view to plan
QoS-aware network resources allocations. The study in [15]
calculates forwarding paths according to bandwidth and la-
tency requirements of different network slices. However, the
scheduling process requires significant computing resources
on the control plane as the network topology becomes com-
plicated and may not utilize networking resources efficiently
with path allocation. The other way adopts the data-plane
programmability and applies the precedence on outputting
data. The work in [6] and [16] classifies and schedules
traffic to several levels of priority queues. Ref. [16] further
disaggregates packets from the same traffic flow into specific
categories based on QoS demands and thus can achieve strict
bandwidth limitation and guarantee.

E. MANagement and Orchestration (MANO) for E2E NS

MANO for E2E network slicing essentially involves the
design of NSIs in accordance with service demands, or-
chestration of constituent NSSIs, and physical and logical
resource isolation between network slices. The work in [6]
proposes MANO with 5G Public-Private Partnership (5G PPP)
SliceNet project. It also realizes QoS-aware network slicing on
the prototyping programmable data plane. The work isolates
resources by running multiple vEPC instances on CN but does
not further discuss slice selection and orchestration. Besides,
the virtualization management is not in line with the 3GPP and
ETSI framework. The work in [5] implements E2E network
slicing MANO in compliance with the 3GPP management
systems, which operates virtualized functions on the cloud
infrastructure. However, the use of EPC needs to realize the

network slice selection function on the MANO framework,
which is not compliant with the 3GPP specifications. The work
in [8] mainly focuses on the implementation of RAN slicing.
Although it also designs CN and TN slices to demonstrate
eMBB, URLLC, and mIoT scenarios, it hardly discusses
MANO and slice selection mechanisms.

III. SLICING OF CORE AND TRANSPORT NETWORKS

RAN Slicing CN Slicing

E2E NS MANO

TN Slicing

Fig. 2. MANO Framework for E2E Network Slicing

The following two sections present our design and im-
plementation of a cloud-native MANO framework for E2E
network slicing. The design consists of two major parts: E2E
NS MANO and slicing of each domain (Fig. 2). This section
first discusses the slicing of CN and TN networks. In the next
section, we shall brief our E2E NS MANO and the detailed
orchestration of CN and TN slices.

A. Core Network Slicing

We classify core network functions into two categories
based on whether the function is shared among E2E NSs.
Shared network functions, such as AMF and NSSF, in a
common NSSI, are instantiated only once and are common
to and serve requests from all UEs. These functions should
have low processing loads, which are invoked only upon a
new UE attachment, handover or other signaling procedures.
Shared network functions may have independent scaling mech-
anisms based on the frequency of UE requests. On the other
hand, dedicated network functions, or session NSSI, are slice-
specific and instantiated once for each CN slice. Because
different slices may have specific session management policies
for their service types, we take SMF as a dedicated control-
plane network function in our design. Unlike control-plane
functions, data-plane functions (e.g., UPF) are supposed to
handle every user PDU and are thus expected to be heavy-
loaded. Therefore, we also take UPF as a dedicated network
function.

When network functions are slice-specific, targeting the
right instance for session setup becomes crucial. In Fig. 1,
after AMF acquires the slice identifier associated with the
UE from NSSF (Step 2), it queries the NRF for the SMF
instance that corresponds to the identified CN slice (Step 3).
After discovering an appropriate SMF, the AMF then requests
the SMF to create a PDU session on the associated UPF, which
is dedicated to the CN slice as well (Steps 4 and 5 in Fig. 1).

B. Transport Network Slicing

1) Traffic Types Classification: Two main tasks in TN slic-
ing are classifying TN traffic into different types and enforcing
respective management policies. The first task is essential

3

TABLE I
TRAFFIC ON INTERFACES ACROSS ACCESS AND CORE NETWORKS

Interface N1/N2 N3

Crossing NFs UE/RAN, AMF RAN, UPF
Traffic Type Control Data
Protocol Stack NGAP/SCTP GTP-U/UDP
Characteristics Mice but should not be

starved
Large volume but toler-
ant to congestion and even
loss

because traffic from all the interfaces across access and core
network functions (N1, N2, and N3 in Fig. 1) is intermixed in
TN. Table I compares traffic on those interfaces. Traffic on the
N1/N2 interfaces between UE/RAN and the AMF is identified
as control messages related to UE connection, registration,
and mobility management, such as PDU session establishment
requests. The control messages, in the NGAP/SCTP protocol,
are mice traffic but should not be starved under congestion.
By contrast, traffic on the N3 interface between RAN and the
UPF is UE’s data traffic in the GTP-U/UDP protocol, which
is a large volume but more tolerant to network congestion in
most scenarios. Additionally, the data traffic is expected to
be sliced under the allocation of network resources based on
service requirements.

2) Bandwidth Slicing Model: We classify TN traffic into
control and slice-specific data traffic and enforce specific
bandwidth policies with the help of SDN and programmable
data plane. SDN switch distinguishes control traffic from data
traffic by the following matching fields:

• Source-destination IP address pair: The pair is (AMF,
gNodeB) or (gNodeB, AMF) in case of control traffic
and (UPF, gNodeB) or (gNodeB, UPF) in case of data
traffic. For bandwidth slicing on an inter-CN network
with intermediate UPFs (I-UPFs), SDN switches need
to identify the IP addresses of I-UPFs besides those of
gNodeB and the local UPF.

• IP protocol: It has the value of 132 (SCTP) for control
traffic and the value of 17 (UDP) for data traffic.

All control traffic is assigned to the TN slice with the
highest priority. On the other hand, data traffic is scheduled
to a bandwidth slice based on service demands.

Source-destination IP address pair also allows SDN switches
to distinguish uplink from downlink data flows and apply
separated bandwidth management rules. For instance, mIoT
use cases may have a significant amount of uplink traffic, while
eMBB use cases may occupy large downlink bandwidth.

3) QoS Enforcement: We integrated [16] into our transport
network to enforce the QoS requirements on the programmable
data plane. Our work extends the ONOS built-in Basic.p4
pipeline [17] by appending a Meter.p4 pipeline to it for slice
identification and bandwidth control. The Meter.p4 pipeline
consists of three pipeline stages (Fig. 3). In the first stage,
traffic is classified with matching fields and differentiated into
TN slices. Afterward, the next stage categorizes packets in
the same TN slice into different priority levels (each with a

metadata.sliceid metadata.color
slice
identification

Fig. 3. Three pipeline stages to enforce bandwidth requirement

distinct “color”) based on the rate-based policies. It is noted
that all control traffic is assigned to the highest priority level
in this stage. Finally, the last stage schedules the packets into
output queues according to the previous priority levels and
hence achieves differential bandwidth requirements (Fig. 4).

Pipeline
in out

high priority (green)

low priority (yellow)
P4 switch

dropped (red)

Fig. 4. Priority forwarding using two-level queues

4) Bandwidth Management: We implemented a Bandwidth
Management application on the SDN controller to manage
available bandwidth and apply TN slicing (Fig. 5). When
the application receives the bandwidth slicing request, it first
verifies that network resources along the routing path are
available. If the requested bandwidth is granted, the application
then installs the corresponding flow rules on programmable
switches.

proxyarp fwd basic
Bandwidth

management

ONOS controller

Basic.p4 Meter.p4
Priority

forwarding

P4 Switch

P4Runtime

External Request &

Configuration

Fig. 5. The Bandwidth Management application

IV. CLOUD-NATIVE E2E NETWORK SLICING MANO

A. Infrastructure and Architecture

European Telecommunications Standards Institute (ETSI)
proposes NFV-MANO framework [18] for mobile network

4

management. The framework consists of the following com-
ponents:

• NFV Orchestrator (NFVO), which has two responsi-
bilities; one is the orchestration of NFV infrastructure
(NFVI) resources in an abstracted manner through Vir-
tualized Infrastructure Manager (VIM), and the other is
the lifecycle management of network services.

• VNF Manager (VNFM), which is responsible for the
lifecycle management of VNF instances, including VNF
instantiation, modification, scale in/out, and termination.

• Virtualized Infrastructure Manager (VIM), which is re-
sponsible for controlling and managing NFVI, including
virtualized compute, storage, and network resources.

For network slicing management, 3GPP proposes three
network slice management functions [10]:

• Communication Service Management Function (CSMF),
which translates communication service requirements
into network slice requirements.

• Network Slice Management Function (NSMF), which
manages the lifecycle of NSIs and derives constituent
network slice subnets from network slices.

• Network Slice Subnet Management Function (NSSMF),
which manages the lifecycle of NSSIs.

Fig. 6 shows our infrastructure and MANO architecture,
which follows the design principles of 3GPP management and
ETSI NFV-MANO framework. In the infrastructure part, we
containerize free5GC [19], an open-source core network in
line with 3GPP Release 15 specifications, and run with Docker
virtualization on the top of COTS servers. Kubernetes [20], a
production-grade orchestrator for containerized applications,
controls our virtualization resources and provides plentiful
cloud management features, such as self-healing, service
discovery, etc. To enforce bandwidth-aware flows with QoS
requirements on TN, we deploy programmable switches and
interconnect NSSIs with the programmable forwarding planes
in P4 language. ONOS [21] is used as the SDN controller to
forward traffic with centralized logic and expose bandwidth
management interfaces to other MANO components for TN
slicing. The placement of our MANO components within the
3GPP and ETSI framework is based on the major functionality,
but in some cases would be vague. For instance, Kubernetes
serves as VIM for orchestration of computing resources and
however, it also plays the role of container orchestrator which
can be treated as VNFM due to the lifecycle management of
VNFs.

B. MANO Implementation
We implemented the slice management components in the

proposed framework using the Kubernetes software extension,
Operator pattern [22]. An Operator is to automate the deploy-
ment and management of a set of resources and applications
beyond what Kubernetes originally provides. We use Operators
to customize slice resources on Kubernetes and undertake
automation tasks.

We did not implement CSMF, while the implemented
E2E Network Slice Operator serves as NSMF and NSSMF

NSMF / NSSMF NFVO / VNFM

VIM

VNF

free5GC

ONOS Kubernetes

TN

Operator

CN

Operator

E2E NS Operator

3
G

P
P

 N
S

M
In

fr
a
s
tr

u
c
tu

re

NFVI

P4 Switch
COTS

Server

E
T

S
I
N

F
V

-M
A

N
O

Fig. 6. Infrastructure and MANO Architecture

components. The E2E NS Operator controls the lifecycle of
NSIs and NSSIs via the management services provided by
NFVOs. It also handles network slice requests and slice-
related information as well as activates and deactivates E2E
network slices. As for the ETSI NFV-MANO framework, we
implemented two special Operators, namely CN Operator and
TN Operator, for the management of NSSIs in the CN and
TN domains, respectively. The CN and the TN Operators
play the roles of NFVO/VNFM for the CN and TN domains,
respectively. Both Operators orchestrate the corresponding
NSSIs when receiving management requests from the E2E NS
Operator.

Fig. 7 shows the interaction between the E2E NS Operator
and the CN and TN Operators. The E2E NS Operator receives
and validates E2E slice requests with associated specifications
submitted by an administrator or service consumer. If an
E2E NS request is approved, the E2E NS Operator sends
a request with CN slice specification to the CN Operator.
After the CN Operator creates a CN slice, it returns the
address information of AMF and UPF to the E2E NS Operator.
With this information and other parameters such as bandwidth
requirement, the E2E NS Operator then requests the TN
Operator to create a TN slice.

E2E NS
Operator

CN
Operator

TN
Operator

5G CN Slice Spec.
(S-NSSAI list, etc.)

Status (AMF and
UPF address, etc.)

TN Slice Spec.
(matching flows,

policies, etc.)

Status

E2E Slice Spec.
(S-NSSAI list, bandwidth

policy, etc.)

1

2

3 5

4

NSSF

6 Network Slice
Information

Fig. 7. Interaction between the E2E NS Operator and the CN and TN
Operators

For CN slicing, the CN Operator deploys shared NFs and
dedicated NFs of free5GC on the Kubernetes platform. For
TN slicing, ONOS controller is the VIM that manages the
virtualized infrastructure (i.e., virtual networks) in TN. The
TN Operator configures the ONOS controller with matching
rules and bandwidth requirements to create a virtual network.

5

All Operators and the ONOS controller are running in con-
tainers on Kubernetes to benefit from the elastic and reliable
environment.

We implemented the proposed MANO framework with
all open-source approaches to leverage the support of the
collaborative public community. In addition, the separation
of Operators in different slice subnets enables the MANO
framework to easily support the orchestration for other NSSIs.
Namely, for industrial and commercial demands, we can
extend the E2E network slices to RAN and MEC domains by
implementing the RAN and MEC Operators, respectively, and
applying the proposed orchestrating fashions. For instance, the
work in [23] demonstrated the automation of RAN slicing with
the implementation of a top-level RAN Slicing Management
Function (RSMF). RSMF has exactly the same functionality as
the RAN Operator and partial E2E NS Operator in our design
and can complement the proposed E2E slicing solution.

C. Network Slice Instance (NSI) Allocation

In this subsection, we detail the procedures of allocating an
E2E NSI and compare the difference between on-boarding of
the first and subsequent network slices.

1) Allocating the First NS: Fig. 8 shows the deployment
details when administrators or other slicing management com-
ponents request the first E2E network slice. The E2E NS
Operator validates the received allocation request and checks
if it needs to create a new E2E NSI for the request. Since there
is no NSI initially, the E2E NS Operator will query the CN
Operator for the creation of the common NSSI and a session
NSSI. The CN Operator will build the free5GC shared NFs,
e.g., AMF and NSSF, for the common NSSI. After that, the
CN Operator creates dedicated NFs, namely SMF and UPF, for
the session NSSI. We provide the common NSSI with a high-
priority TN slice and the session NSSI with an on-demand TN
service. The E2E NS Operator then queries the TN Operator
for configuring the ONOS controller to create two TN slices,
one for each NSSI. ONOS further installs bandwidth-aware
flows on the P4 fabric. So far both the shared E2E NSI and
the first E2E NSI for UE are ready to provide network services.
Finally, the E2E NS Operator will activate the E2E NSI by
updating network slice selection information on the NSSF
through the management interface. The control traffic now
can reach the AMF through the TN slice with the highest
priority and establish PDU sessions for UEs, whereas the data
traffic is forwarded to the dedicated UPF with specified QoS
requirements.

2) Allocating Subsequent NS: For subsequent E2E network
slices, our MANO framework deploys E2E NSIs as shown in
Fig. 8, with a slight difference from the allocation of the first
NSI. When the E2E NS Operator receives an NS allocation
request, it will first query the CN Operator to create a CN
slice as well. Since the shared NFs are already activated, the
CN Operator will not create the common NSSI but proceed
into the creation of a new session NSSI. After the CN slice
is ready, the configuration of the TN slice is performed in the
same way, and so is the following activation with the NSSF.

V. PERFORMANCE EVALUATION

A. Environment Setup

We modified the free5GC test framework and implemented
a RAN simulation (RANSIM) to emulate all signaling mes-
sages for UE to register and set up PDU sessions on 5G
core networks. RANSIM runs on a white box server and
connects to P4 fabric, as shown in Fig. 8. On the other
side of the P4 fabric, we deploy Kubernetes along with
the MANO framework (including Operators and ONOS) on
another white box server. To accelerate packet processing in
the virtualization environment, we adopt SR-IOV techniques
on the interfaces connecting the AMF and UPFs to the P4
fabric. In the P4 fabric, the Meter.p4 pipeline is used for slice
identification and bandwidth control.

B. Results and Discussion

1) Deployment Time: Deployment time is crucial to build-
ing a resilient network that can mitigate service disruption
under failure and scale out rapidly when overloading. The
deployment of the MANO framework took 71.02 seconds. The
instantiation of E2E network slices took 52.15 seconds for
the first one but only 33.21 seconds for the subsequent one,
which is relatively short. The deployment time of the first E2E
network slice was longer due to the additional creation of the
common NSSI.

However, the performance result should not be overempha-
sized because free5GC currently only implements essential
functionalities, lacking some features (such as charging or QoS
policies) that could be crucial in some scenarios. Also, a real
RAN slicing may have a significant impact on performance
metrics. Therefore, the current result only serves the purpose
to see how well an all open-source approach with limit but
indispensable functionalities can perform.

2) Resource Overhead and Scalability Concern: Fig. 9 de-
picts CPU and memory usages when deploying our framework
on a white box server with 40 cores of Intel E5-2630 processor
and 128 GB memory. We built the MANO framework at the
fifth second, and the first and the second E2E network slices
at the 85-th and the 145-th seconds, respectively.

The CPU utilization increased sharply during the deploy-
ment of the MANO components, i.e., the Operators and
ONOS controller, and during instantiations of the shared and
dedicated NFs. Afterward, the CPU utilization decreased and
remained relatively low. However, the utilization continuously
increased by about 3% more after each instantiation of the
E2E NSIs. This increase of the CPU utilization is because the
UPF was actively expecting traffic from UE.

As for memory usages, it highly depends on the applications
we containerize. Specifically, ONOS is a production-grade
SDN controller with a highly abstracted and modular network-
ing core, which consumes considerable memory resources
after startup. Besides, a short sharp peak of memory usage
appeared at the 104-th second due to the simultaneous initial-
izations of free5GC shared NFs and the release of memory
resources afterward.

6

RANSIM

NS

 Allocation
AMF NSSF

E2E NS

Operator

CN

Operator

TN

Operator

ONOS

UPF SMF

SMFUPF

Shared NFs

Slice 1

Slice 2

Kubernetes Node

1

2 4

3a

3b

3c

5

7

P4 Fabric

First E2E NS

Subsequent E2E NS

1 2 3a 3b 4 5 6

1 2 3c 4 5 6

Control

Traf�c

Data Traf�c

(Slice 1)

Data Traf�c

(Slice 2)

AMF
Other

NFs

6

7

7

Fig. 8. Deploying Details of the First and Subsequent Network Slices

Fig. 9. CPU Load and Memory Usage of Deploying the MANO Framework and E2E Network Slices

Overall, the resource overhead of the proposed framework
is satisfactory. However, the current implementation puts all
virtualized CN functions and the MANO components in a
single white box, which may perform unsatisfactorily when
considerable slices are to be created. A feasible solution to this
scalability problem is to distribute session-specific functions
(UPF and SMF) to a Kubernetes cluster rather than a single
server.

3) Traffic Throughput under TN Slicing: In our design, the
TN slicing integrates bandwidth management to provide QoS-
aware network slices. We evaluated UE traffic with specified
bandwidth policies to verify slicing effects on networking
resource isolation under the orchestration. We enforced band-
width slices on downlink data of two E2E network slices,
namely Slice X and Slice Y, with the maximum rates limited
to 5 Mbps and 10 Mbps, respectively. Then we imposed
the downlink traffic of 15 Mbps on Slice X at the sixth
second and Slice Y at the tenth second. Fig. 10 shows the

downlink throughputs on the core and access sides of TN. The
throughput at the core side fluctuated around 15 Mbps, while
the access side received only the corresponding limited rates
of data traffic. The results demonstrate not only the effective
bandwidth control on TN slicing but also the practical E2E
network slicing through orchestration.

VI. CONCLUSIONS

This paper shows the design and implementation of a
MANO framework for the management automation of 5G
E2E network slicing with state-of-the-art cloud-native prin-
ciples and open-source approaches. The MANO framework
follows the slice management architecture and orchestration
procedures introduced by 3GPP and ETSI. We containerized
both MANO components and network functions, which were
deployed in virtualization environments to realize high flexibil-
ity and scalability. In the CN slicing, we have demonstrated the
slice selection and configuration mechanism with the 3GPP-

7

Slice X:

Slice Y:

Fig. 10. Downlink Throughput of Two Network Slices with Distinct Band-
width Policies

compliant core networks. In the TN slicing, we have integrated
bandwidth control to exercise E2E network orchestration and
to enable QoS-aware network services for tenants with E2E
network slicing. Experimental results show that the framework
performs well in terms of deployment time and resource over-
head. The resulting MANO framework, together with the E2E
network slicing mechanism, provides a PoC implementation
of the 5G virtualization infrastructure.

ACKNOWLEDGMENT

This work was supported in part by The Featured Areas
Research Center Program within the Framework of the Higher
Education Sprout Project by the Ministry of Education, Tai-
wan; in part by the Ministry of Science and Technology,
Taiwan, under Grants 110-2221-E-A49-044-MY3, 110-2221-
E-A49-064-MY3 and 111-2218-E-011-014, and in part by the
Ministry of Economic Affairs, Taiwan, under Grant 107-EC-
17-A-02-S5-007.

REFERENCES

[1] “System architecture for the 5G system (5GS),” 3GPP, TS 23.501,
V16.4.0, Release 16, Mar. 2020.

[2] P. Rost, A. Banchs, I. Berberana, M. Breitbach, M. Doll, H. Droste,
C. Mannweiler, M. A. Puente, K. Samdanis, and B. Sayadi, “Mobile
network architecture evolution toward 5G,” IEEE Commun. Mag., pp.
84–91, May 2016.

[3] “CNCF cloud native definition v1.0,” Jun. 2018.
[4] G. Garcia-Aviles, M. Gramaglia, P. Serrano, and A. Banchs, “POSENS:

A practical open source solution for end-to-end network slicing,” IEEE
Wireless Communications, vol. 25, no. 5, pp. 30–37, Oct. 2018.

[5] I. Afolabi, T. Taleb, P. A. Frangoudis, M. Bagaa, and A. Ksentini,
“Network slicing-based customization of 5G mobile services,” IEEE
Network, vol. 33, no. 5, pp. 134–141, 2019.

[6] Q. Wang, J. Alcaraz-Calero, R. Ricart-Sanchez, M. B. Weiss, A. Gavras,
N. Nikaein, X. Vasilakos, B. Giacomo, G. Pietro, M. H. Mark Roddy,
P. Walsh, T. Truong, Z. Bozakov, K. Koutsopoulos, P. Neves,
C. Patachia-Sultanoiu, M. Iordache, E. Oproiu, I. G. B. Yahia, C. Angelo,
C. Zotti, G. Celozzi, D. Morris, R. Figueiredo, D. Lorenz, S. Spadaro,
G. Agapiou, A. Aleixo, and C. Lomba, “Enable advanced QoS-aware
network slicing in 5G networks for slice-based media use cases,” IEEE
Trans. on Broadcasting, vol. 65, no. 2, pp. 444–453, Jun. 2019.

[7] A. Esmaeily, K. Kralevska, and D. Gligoroski, “A cloud-based
SDN/NFV testbed for end-to-end network slicing in 4G/5G,” in Proc.
6th IEEE Conf. on Network Softwarization, Ghent, Belgium, 2020, pp.
29–35.

[8] X. Li, R. Ni, J. Chen, Y. Lyu, Z. Rong, and R. Du, “End-to-end network
slicing in radio access network, transport network and core network
domains,” IEEE Access, vol. 21, no. 8, pp. 29 525–29 537, 2020.

[9] “Procedures for the 5G system (5GS),” 3GPP, TS 23.502, V16.4.0,
Release 16, Mar. 2020.

[10] “Telecommunication management; study on management and orchestra-
tion of network slicing for next generation network,” 3GPP, TR 28.801,
V15.1.0, Release 15, Jan. 2018.

[11] “Management and orchestration; concepts, use cases and requirements,”
3GPP, TS 28.530, V16.1.0, Release 16, Dec. 2019.

[12] A. Ksentini and N. Nikaein, “Toward enforcing network slicing on RAN:
Flexibility and resources abstraction,” IEEE Commun. Mag., vol. 55,
no. 6, pp. 102–108, Jun. 2017.

[13] E. Coronado, S. N. Khan, and R. Riggio, “5G-EmPOWER: A software-
defined networking platform for 5G radio access networks,” IEEE Trans.
on Network and Service Management, vol. 16, no. 2, pp. 715–728, Jun.
2019.

[14] “Network sharing; architecture and functional description,” 3GPP, TR
23.251, 2018.

[15] Z. Shu and T. Taleb, “A novel QoS framework for network slicing in 5G
and beyond networks based on SDN and NFV,” IEEE Network, vol. 34,
no. 3, pp. 256–263, 2020.

[16] Y.-W. Chen, L.-H. Yen, W.-C. Wang, C.-A. Chuang, Y.-S. Liu, and C.-C.
Tseng, “P4-enabled bandwidth management,” in Proc. The 20th Asia-
Pacific Network Operations and Management Symp., Matsue, Japan,
Sep. 2019.

[17] “ONOS basic pipeline,” https://github.com/opennetworkinglab/onos/tree/
master/pipelines/basic, accessed: 2021-06-14.

[18] “Network functions virtualisation (NFV); management and orchestra-
tion,” ETSI, GS NFV-MAN 001, V1.1.1, Dec. 2014.

[19] “free5gc,” https://www.free5gc.org, accessed: 2021-06-14.
[20] “kubernetes: Production-grade container orchestration,”

https://kubernetes.io, accessed: 2021-06-14.
[21] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,

B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an open, distributed SDN OS,” in Proc. 3rd Workshop
on Hot Topics in Software Defined Networking, Chicago, IL, USA, Aug.
2014.

[22] “Operator framework,” https://github.com/operator-framework,
accessed: 2021-06-14.

[23] R. Ferrús, O. Sallent, J. Pérez-Romero, and R. Agustı́, “On the automa-
tion of RAN slicing provisioning: solution framework and applicability
examples,” EURASIP Journal on Wireless Communications and Net-
working, 2019.

8

