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Abstract— This paper has analyzed link probability, expected
node degree, expected number of links, and expected area
collectively covered by a finite number of nodes in wireless ad
hoc networks. Apart from the formulation of exact mathematical
expressions for these properties, we have disclosed two fundamen-
tal results: (1) Every possible link has an equal probability of
occurrence. (2) It is the border effects that makes two links
probabilistically dependent. Simulation results show that our
analysis predicts related measure with accuracy.

I. I NTRODUCTION

We define an〈n, r, l,m〉-network as a wireless ad hoc
network (MANET) that possesses the following properties: (1)
The network consists ofn nodes placed in anl×m rectangle
area. (2) The position of each node is a random variable
uniformly distributed over the given area. (3) Each node has a
transmission radius ofr unit length, wherer ≤ min(l,m). (4)
Any two nodes that are within the transmission range of each
other will have a link connecting them1. We are concerned
with several fundamental properties in this model.

It was commonly believed that the probability of link
occurrence in MANET cannot be identical. However, we found
that it is not true. The expected node degree and the expected
number of links in a MANET have also been obtained. Pre-
vious work on degree estimate [1], [2], [3] does not take into
accountborder effects[2], which refers to the circumstance
that a node placed near the system border will cover less
area (with its radio signal) than nodes placed midway. Border
effects makes the conventional estimate inaccurate. In contrast,
our results are not subject to border effects.

The next problem to solve is the expected area jointly
covered by a finite number of nodes, which is a form of so-
called coverage problem. Given the expected node coverage,
which can be derived from link probability, the problem at
hand is still complicated by the fact that region covered by
each node may overlap one another in a stochastic way.

We also found that border effects are not only a major
obstacle to precise calculations of many network properties,
but also the reason behind the probabilistic dependency of
two links. This implies that the occurrences of any two links
are independent to each other if border effects disappear.

1This is a simplified model as only path loss is taken into account. In a
practical network, different nodes would experience different shadowing, thus
making the transmission radius different for different nodes.

We conducted experiments for a quantitative analysis of the
impacts of border effects. The numerical results show that our
analysis accurately estimates these network properties.

II. L INK PROBABILITY AND EXPECTEDDEGREE

This section computes analytically the probability that two
arbitrary nodes are within the transmission range of each
other. Let the position of nodei be determined by Cartesian
coordinates(Xi, Yi), where0 ≤ Xi ≤ l and 0 ≤ Yi ≤ m.
Clearly, Xi’s are iid random variables with p.d.f.f(x) = 1/l
over the range[0, l], while Yi’s are iid with p.d.f.f(y) = 1/m
over [0,m].

Lemma 1:For any two distinct nodesi and j in an
〈n, r, l,m〉-network with positions(Xi, Yi) and (Xj , Yj), re-
spectively, letZi = |Xi − Xj | and Wi = |Yi − Yj |. We
have Pr[Zi ≤ z] = (−z2 + 2lz)/l2, 0 ≤ z ≤ l, and
Pr[Wi ≤ w] = (−w2 + 2mw)/m2, 0 ≤ w ≤ m.

Proof: We show only the result forPr[Zi ≤ z]. The result
for Pr[Wi ≤ w] can be derived in a similar way. We know
that Pr[Zi ≤ z] = Pr[Xi < Xj ≤ Xi + z] + Pr[Xj < Xi ≤
Xj +z]. The value ofPr[Xi < Xj ≤ Xi+z] can be calculated
by taking integrals over two non-overlapping intervals and
then adding them up. The first interval corresponds to when
Xi + z ≤ l. We havePr[Xi < Xj ≤ Xi + z ≤ l] =∫ l−z

0

∫ xi+z

xi
f(xi, xj)dxjdxi, wheref(xi, xj) is the joint p.d.f.

of Xi andXj . SinceXi andXj are independent,f(xi, xj) =
f(xj)f(xj) = 1/l2. So Pr[Xi < Xj ≤ Xi + z ≤ l] = z(1 −
z)/l2. The second interval corresponds to whenXi + z > l.
We havePr[l − z < Xi < Xj ≤ l] = z2/2l2. Therefore,
Pr[Xi < Xj ≤ Xi + z] = z

l2 (l − z) + z2

2l2 = −z2+2lz
2l2 .

Similarly, Pr[Xj < Xi ≤ Xj + z] = −z2+2lz
2l2 . It follows

that Pr[Zi ≤ z] = −z2+2lz
l2 .

Lemma 2:For any two distinct nodesi and j in an
〈n, r, l,m〉-network with positions(Xi, Yi) and (Xj , Yj), re-
spectively, letUi = (Xi − Xj)2 and Vi = (Yi − Yj)2. The
p.d.f. of Ui is f(u) = ( l√

u
− 1)/l2, 0 ≤ u ≤ l2, and the p.d.f.

of Vi is g(v) = ( m√
v
− 1)/m2, 0 ≤ v ≤ m2.

Proof: Let F (u) be the probability distribution function
of Ui. We haveF (u) = Pr[Ui ≤ u] = Pr[Zi ≤

√
u], 0 ≤

u ≤ l2, whereZi = |Xi−Xj |. By Lemma 1 we havePr[Zi ≤√
u] = −u + 2l

√
u/l2. Therefore the p.d.f. ofUi is f(u) =

F ′(u) = ( l√
u
− 1)/l2, 0 ≤ u ≤ l2. Similarly, the p.d.f. ofVi

is g(v) = ( m√
v
− 1)/m2, 0 ≤ v ≤ m2.
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Fig. 1. Expected degree forn = 10 to 300 and r = 50 to 350 in a
1000× 1000 rectangle.

Theorem 1:In an〈n, r, l, m〉-network, the occurrence prob-
ability of link 〈i, j〉 between any two distinct nodesi andj is
(1
2r4 − 4

3 lr3 − 4
3mr3 + πr2ml)/m2l2.

Proof: Link 〈i, j〉 forms if and only if the distance
between them is not greater thanr. Thus the probability of

link 〈i, j〉 is Pr[Ui + Vi ≤ r2] =
∫ r2

0

∫ r2−u

0
h(u, v)dvdu,

whereUi = (Xi −Xj)2, Vi = (Yi − Yj)2, andh(u, v) is the
joint p.d.f. for Ui and Vi. SinceUi and Vi are independent,
we haveh(u, v) = f(u)g(v), where f(u) and g(v) are as
defined in Lemma 2. It follows thatPr[Ui + Vi ≤ r2] =
(1
2r4 − 4

3 lr3 − 4
3mr3 + πr2ml)/m2l2.

Theorem 1 indicates that the probability of link〈i, j〉
depends on the values ofm, l, and r but not oni, j, or n,
and all links have equal probability. The result of identical
link probability does not contradict the thought that link
occurrences are correlated.

Givenn random variablesRi, wherei = 1 to n, it is known
[4] that E[R1+R2+· · ·+Rn] = E[R1]+E[R2]+· · ·+E[Rn]
regardless whetherRi’s are independent to each other. Since
each node may haven − 1 links and there are potentially
n(n−1)/2 links betweenn nodes, we have the following two
corollaries.

Corollary 1: The average (expected) node degree in an
〈n, r, l,m〉-network is (n − 1)( 1

2r4 − 4
3 lr3 − 4

3mr3 +
πr2ml)/m2l2.

Corollary 2: The expected number of links in an
〈n, r, l,m〉-network is n(n − 1)( 1

2r4 − 4
3 lr3 − 4

3mr3 +
πr2ml)/2m2l2.
Fig. 1 shows the expected degree estimated by Corollary 1 for
variousn andr.

Theorem 2:In an 〈n, r, l, m〉-network with r ≤
min(l/2,m/2), the expected transmission coverage area
of a single node isφ = ( 1

2r4 − 4
3 lr3 − 4

3mr3 + πr2ml)/ml.
Proof: It is straightforward since link probability derived

in Theorem 1 is equal toφ/lm. The result has also been
confirmed by geometric computation (for details, refer to [5]).

III. E XPECTEDNETWORK COVERAGE

Let Cn be the expected area jointly covered byn randomly
placed nodes, referred to asnetwork coverage. We want to
expressCn in terms of expected node coverageφ.

The deployment of nodes can be thought of as an iterative
process that places nodes one by one. Supposen − 1 nodes
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Fig. 2. Ratios of the theoretical network coverage to the whole system area,
with n ranging from 1 to 99 andr ranging from 1 to 491.

have already been placed. When we add thenth node to the
(n− 1)-node network, the extra coverage area contributed by
this newly placed node is a portion of its node coverage. Letρn

denote the proportion of this portion to the node coverage.Cn

can be expressed as a recurrence relation asCn = Cn−1+ρnφ.
Since nodes are uniformly distributed,ρn is expected to be the
proportion of the uncovered area to the whole target area. Thus
we haveρn = (A−Cn−1)/A, whereA denotes the area of the
target region. It turns out thatCn = Cn−1 + (1−Cn−1/A)φ.
SinceC1 = φ, solving this recurrence relation yields

Cn = [1− (1− φ/A)n]A. (1)

Eq. (1) holds for any shape of target region as well as for any
shape of node’s coverage. Let us focus onl ×m rectangular
whereA = lm and, if border effects are not taken into account,
φ = πr2. Eq. (1) becomes

Cn = [1− (1− πr2/lm)n]lm. (2)

This is a rough estimation for expected network coverage. The
following theorem gives us a precise estimation considering
border effects.

Theorem 3:For an 〈n, r, l, m〉-network with l ≥ 2r and
m ≥ 2r, the expected area collectively covered by all nodes
is

Cn =

[
1−

(
m2l2 − 1

2r4 + 4
3 lr3 + 4

3mr3 − πr2ml

m2l2

)n
]

lm

.
Proof: We haveA = lm for an l × m rectangle. By

Theorem 2 and (1), we obtain the result.
Fig. 2 shows the ratios of the theoretical network coverage

to the whole system area for variousn andr.

IV. L INK DEPENDENCY

Many researchers (e.g., [1]) have pointed out that link
occurrences are not independent events. Their arguments are
mainly based on a three-link scenario: the event that both link
〈X, Y 〉 and link 〈X, Z〉 show up is not independent of the
event that〈Y,Z〉 exists. However, few studies have reported
on the dependency of any two links.

Two links that share no common endpoint node are obvi-
ously independent to each other. LetX, Y , and Z be three
nodes and considerLXY , the event that link〈X, Y 〉 exists, and



LXZ , the event that link〈X, Z〉 exists. WhenX is located at
(x, y), the probability that bothY and Z are located inX ’s
coverage is[c(x, y)/lm]2, wherec(x, y) denotes the area that
a node located at(x, y) covers. Thus the joint link probability
of LXY andLXZ is

Pr[LXY , LXZ ] =
1

lm

∫ l

0

∫ m

0

[
c(x, y)

lm

]2

dydx. (3)

Theorem 4:If border effects can be removed but system
area remains constant (which can be achieved by using, e.g.,
torus convention [6], [3]), the occurrences of any two links
are independent to each other.

Proof: Clearly,c(x, y) = πr2 for all x, y if border effects
disappear. ThusPr[LXY ] = Pr[LXZ ] = πr2/lm. By (3), we
havePr[LXY , LXZ ] = Pr[LXY ] Pr[LXZ ] for all X, Y , Z.

Corollary 3: It is the border effects that makes any two
links in an 〈n, r, l,m〉-network dependent.

Note that the three-link argument remains valid regardless
of border effects.

V. SIMULATIONS AND NUMERICAL RESULTS

We conducted additional experiments for a quantitative anal-
ysis of the impacts of border effects on network properties. The
first property we measured is average degree. Fig. 3(a) shows
average degrees estimated with Poisson point process [2] (the
rough estimate) while Fig. 3(b) shows the results obtained
from the simulation. Fig. 3(c) shows the errors of Corollary 1
in comparison with the simulated results, where the error is de-
fined as|estimated value− measured value|/measured value.
The mean is2.56 × 10−4 while the standard deviation is
4.81× 10−4. Fig. 3(c) shows the errors of the rough estimate
in comparison with the simulated results. Clearly, the errors
are in proportional to the radio radiusr (the mean is0.22 and
the standard deviation is0.11). This can be explained as the
impacts of border effects become significant as the radio radius
becomes large. In contrast, the largest error of our estimate is
only 0.6%, occurring on the smallestn andr.

We next measured coverage ratio, the ratio of the network
coverage to the whole system area. Fig. 4(a) shows results
estimated with Eq. (2). Fig. 4(b) shows the results obtained
from the experiments. The errors of Theorem 3 in comparison
with the simulated results are shown in Fig. 4(c), with mean
= 0.50×10−2 and standard deviation= 0.68×10−2. Fig. 4(d)
shows the errors of the results estimated with (2). The mean
is 2.97× 10−2 and the standard deviation is5.78× 10−2. We
conclude that Theorem 3 is more accurate and has smaller
variance than (2).

VI. CONCLUSIONS

Exact mathematical expressions for link probability, ex-
pected node degree, expected number of links, and expected
node and network coverage have been formulated. It has
been shown that every possible link in a MANET has equal
probability of occurrence. It is also proven that two links are
probabilistically independent to each other if there is no border
effect. Additional experimental results confirm our analysis.
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Fig. 3. Average degree in1000× 1000 rectangle. (a) Results of rough esti-
mate. (b) Simulated results. Each value is averaged over 100,000 experiments.
(c) Errors of precise estimate. (d) Errors of rough estimate.
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Fig. 4. Network coverage ratio in1000 × 1000 rectangle, with the same
ranges ofn andr as with Fig. 2. (a) Results estimated by Eq. (2). (b) Results
obtained from simulations (averaged over 10,000 experiments). (c) Errors with
Theorem 3. (d) Errors with Eq. (2).
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