
Auto-Scaling in Kubernetes-based Fog
Computing Platform

Wei-Sheng Zheng and Li-Hsing Yen

Department of Computer Science, National Chiao Tung University, Taiwan
kweisamx0322@gmail.com, lhyen@nctu.edu.tw

Abstract. Cloud computing benefits emerging Inter of Things (IoT)
applications by providing virtualized computing platform in the cloud.
However, increasing demands of low-latency services motivates the place-
ment of computing platform on the edge of network, a new computing
paradigm named fog computing. This study assumes container as virtu-
alized computing platform and uses Kubernetes to manage and control
geographically distributed containers. We consider the design and imple-
mentation of an auto-scaling scheme in this environment, which dynam-
ically adjusts the number of application instances to strike a balance
between resource usage and application performance. The key compo-
nents of the implementation include a scheme to monitor load status
of physical hosts, an algorithm that determines the appropriate number
of application instances, and an interface to Kubernetes to perform the
adjustment. Experiments have been conducted to investigate the perfor-
mance of the proposed scheme. The results confirm the effectiveness of
the proposed scheme in reducing application response time.

Keywords: Container · Fog Computing · Kubernetes · Scalability.

1 Introduction

Internet of thing (IoT) technology supports the connectivity of smart devices to
the Internet. A typical IoT application architecture is a fleet of wireless sensors
or autonomous vehicles connected to a central cloud in the Internet, where an
IoT application server running to collect data from or send instructions to these
devices. This architecture suffers from excessive latency between the server and
devices and also imposes high traffic load on the backhaul network. Therefore,
when latency is a key parameter to the IoT application or when numerous IoT
devices are involved, it is needed to place IoT servers in the vicinity of IoT
devices. This calls for fog computing.

Fog computing deploys cloud service on the edge of the Internet, i.e., to the
proximity of cloud users. For Infrastructure as a Service (IaaS), cloud service is
embodied by virtual machines (VMs) or containers. Container is a light-weight
virtualization technology that uses cgroups and Linux namespaces to isolate ex-
ecution environment of applications. Compared with VMs, containers consumes
less resource, has a lower loading/starting time, and is easier to manage and

2 Wei-Sheng Zheng and Li-Hsing Yen

control. For this reason, there have been some approaches using container tech-
nology to build IoT platform [3, 5].

Docker is a popular container management software that manages containers
hosted by a single machine. Ismail et al. [8] used Docker to deploy an edge
computing platform. Bellavista and Zanni [2] proposed fog-oriented framework
with Docker container for IoT applications. Their experiments demonstrate the
feasibility and scalability of fog-based IoT platform.

However, Docker is not suitable for managing a cluster of containers spanning
a bunch of machines. Kubernetes [9] (k8s for short) manages a cluster of contain-
ers that span multiple physical hosts. It cooperates with container management
software such as Docker and Rocket [11] to control and manage physically scat-
tered containers. Tsai et al. [12] built a fog platform with Raspberry Pi and
Kubernetes, on which TensorFlow was deployed and tested.

Auto-scaling is a mechanism that monitors the load status of all applica-
tion instances and accordingly adjusts the number of instances. Without this,
some applications may not fully utilize precious resource allocated to them while
other heavily-loaded applications may need resource more than allocated to al-
leviate and distribute the load. Kubernetes has a native function for container
auto-scaling. But it considers only CPU utilization and thus only applies to
computation-intensive applications. In fact, whether an application is lightly or
heavily loaded should be specific to the application.

Our work took Kubernetes as an orchestrator that instantiates, manages,
and terminates containers in multiple-host environments for fog applications,
where each host acts as a fog node. On this platform, we developed a dynamic
auto-scaling scheme that strikes a balance between resource consumption and
application load. Our scheme collects load status from fog nodes, computes an
appropriate number of application instances with respect to the load, and co-
operates with Kubernetes to adjust the number of application instances. We
conducted experiments to compare the performance of the proposed design with
with the native scheme. The results indicate that the proposed solution signifi-
cantly reduces application response time.

The rest of this paper is organized as follows: Section 2 reviews related lit-
erature and background. Section 3 details the proposed approach for the fog
computing. Section 4 presents our experimental results and Section 5 concludes
this work.

2 Background and Related Work

Although fog computing differs from cloud computing in many ways, fog comput-
ing is not to replace cloud computing because fog platform may not have enough
computation resource for some applications. Therefore, we may integrate fog
computing and cloud computing to create a more comprehensive solution [10].

Yu et al. [13] proposed a framework for fog-enabled data processing in IoT
systems to support low-latency service requested by real-time data applications.
Their framework preprocesses sensory data uploaded from sensors at the fog

Auto-Scaling in Kubernetes-based Fog Computing Platform 3

computing platform before further forwarding them to the cloud. This approach
effectively reduce the amount of data to be forwarded.

Hu et al. [7] considered running face identification and resolution scheme,
which is computation-intensive, on fog platform. The fog-based resolution scheme
efficiently performs the designated task. Hao et al. [6] identified some research
challenges and problems with fog computing.

As a high-scalability system for OpenStack, ref [1] used a master node that
controls the number of VMs running a certain application. The master node also
severs as a single entry point for all requests for the application. All requests
coming to the master node are queued and then dispatched by the master node
to a VM. They also designed automatic scaling-up and scaling-down algorithm,
which makes the platform stable and load balance. The problem of this approach
is that the master node then becomes a performance bottleneck. We needs a
mechanism that separates auto-scaling controller from traffic entry points.

Chang et al. [4] proposed an approach to monitoring Kubernetes container
platform. The approach includes a monitoring mechanism that provides detailed
information like utilization ratio of system resource and QoS metrics of appli-
cation. The information enables an sophisticated resource provisioning strategy
that performs dynamic resource dispatch. However, the system model used only
one machine and did not explain the setting of their parameters.

3 A New Dynamic Fog Computing Architecture

We propose a fog computing platform based on a collection of physically dis-
tributed containers that is orchestrated by Kubernetes. In this platform, an ap-
plication instance runs in a single container. More than one application instances
may be instantiated on several physical hosts. This is to distribute the load of
the application and also extend the service coverage of the application. However,
as IoT devices may roam or dynamically participate in and out, the distribution
of application instances may not match the distribution of requests coming from
devices. As a result, loads on application instances may not be even. The main
purpose of our design is to dynamically probe the load status of each application
instance, based on which the most appropriate number of application instances
that matches the current load and request status can be calculated. With this
information, our design then communicates with Kubernetes for the adjustment
of application instances, hopefully resulting in a better instance distribution that
matches the current request needs from devices.

3.1 System Architecture

Pod and Service are two features of Kubernetes that are essential to the compre-
hension of our work. Pod is a package of one or containers that share common
network namespace, storage, and some policies for restart and healthy check.
Pod is the basic control and management unit of Kubernetes and each Pod has
its own life cycle. In our work, we always run a single application instance in

4 Wei-Sheng Zheng and Li-Hsing Yen

one Pod. Therefore, n Pods should be created if we should run n application
instances.

Service helps dispatch requests to target Pods. Multiple Pods may be iden-
tified by outside users using a single IP address. When a packet destined to
some IP address is received by the system, any Pod that is configured with the
destination IP address can serve the request with equal probability. Kubernetes
dispatch packets to all candidate Pods in a round-robin manner, which helps
system evenly distribute requests to all serving Pods.

Kubernetes is a client-server architecture that consists of Master and Nodes.
Master controls the whole kubernetes cluster, stores information and opens API
for other users or nodes. Nodes is under the control and management of Master.

Master has four components: Etcd, Controller Manager Server, Scheduler,
and APIServer. Etcd is a distributed key-value store that keeps data across all
machines in a reliable way. Controller Manager Server handles any situation of
the cluster to ensure stability of Kubernetes. Scheduler decides by which node a
newly created Pod is to be hosted. It keeps track of node status, like CPU and
memory usage, to select a suitable node for hosting the Pod. Finally, APIServer
exports all function using RESTful API for information gathering and operation
request.

Kubernetes Node consists of two components: Kubelet and Kube-proxy. Kubelet
running on every node collects node information, including data, volume, image,
status for containers, then connects to APIServer for information synchroniza-
tion with Master. Kubelet also executes instructions from Master. Kube-proxy
handles network routing for the accomplishment of service. It also supports basic
load balance (round-robin request dispatch).

Kuberlet
Node

Exporter

Node 1

Application

Instance 1

Kubernetes

Controller &

Scheduler

Kubernetes

APIServer

AS

Broker

Master

Application

Instance 2

Kuberlet
Node

Exporter

Node 2

Application

Instance 1

Application

Instance 2

Kuberlet
Node

Exporter

Node n

Application

Instance 1

Application

Instance 2

...

Kubernetes

components

Fig. 1. System Architecture

Auto-Scaling in Kubernetes-based Fog Computing Platform 5

Kubernetes has a native mechanism for auto-scaling (needs installing heap-
ster) that considers only CPU usage. Users could specify the maximal number of
application instances, but the actual number of application instances activated
is under the control of Kubernetes. We addressed this issue by developing Auto
Scaling Broker (AS Broker) to dynamically adjust the number of Pods by users.

Fig. 1 shows the whole architecture in including Kubernetes and AS Broker.

3.2 Design of AS Broker

We did not modify the round-robin packet dispatch policy of Kube-proxy, though
this policy does not consider the current loads of nodes. We also left Scheduler
untouched, so Pod placement is also handled by Kubernetes. However, we de-
veloped AS Broker to bypass load status reported by Kubelet to Master as we
aim at a customized auto-scaling scheme.

AS Broker is a service running in a Pod on Master. It communicates through
APIServer with Controller and Scheduler of Kubernetes to obtain a list of nodes
where application instances are currently running. It then collects node informa-
tion from all nodes. It the number of application instances should be adjusted,
it then sends a request through APIServer for Pod number adjustment.

There are three major tasks of AS Broker: getting machine information from
nodes, estimating an appropriate number of application instances, and requesting
Master to exercise the result. For the first task, we run an open-source software
Node Exporter in a Pod on each node to get information like CPU and memory
usage from the physical machine on which it is running. To enable outside access
of the information locally kept by Node Exporter, we opens a port on each Pod
running Node Exporter so that AS Broker can send a HTTP GET to get node
information there. The information consists of raw data of the node status, based
on which we can get CPU usage ratio as defined in (1).

CPUusage = (usertime + systemtime + nicetime)/∆, (1)

where usertime and systemtime are the CPU time spent on user and kernel
modes, respectively, nicetime is the CPU time spent on adjusting the program
scheduler or setting priority for programs, and ∆ is the time interval of probe.

In a large-scale system, deploying exactly one Pod running Node Exporter
on each node manually may not be viable. We use function DaemonSet of Ku-
bernetes to automate this task.

AS Broker probes node information every ∆ seconds, and runs Algorithm 1
every Ts seconds to determine the best number of application instances n. If n is
different from the current number, AS Broker then asks Kubernetes Controller
through APIServer to keep n instances.

The following notations are for Algorithm 1. Let S be the set of all nodes that
host the target application instances. For every node i ∈ S, let uci be the CUP
utilization ratio and umi be the memory usage. Define Tc and Tm be the thresholds
of CPU utilization and memory usage to trigger an adjustment. Parameter α is a
factor that indicates the weighting between CUP utilization and memory usage.

6 Wei-Sheng Zheng and Li-Hsing Yen

It should be high (close to 1) for computation-intensive applications. Parameter
β is an adjustment factor that keeps the value of n not exceeding the maximal
number of Pods allowed for the applications.

Algorithm 1 best-instance-number(S, {uci}, {umi })

Parameter
α: weighting factor between Uc and Um

β: adjustment factor
Output

n: number of Pods (application instances)

1: if ∃i ∈ S, uc
i > Tc or um

i > Tm then
2: Uc =

∑
i∈S u

c
i/|S| . Avg. CPU utilization

3: Um =
∑

i∈S u
m
i /|S| . Avg. memory usage

4: n = (α ∗ Uc + (1− α) ∗ Um)/β
5: else
6: n = 1
7: end if
8:

4 Experimental Results

Our fog platform consisted of four PCs. Each PC has a 3.2 GHz i5-6500 CPU
and 8 GB RAM. The operating system is Ubuntu 16.04LTS. Kubernetes version
is 1.6.1. Among them, three PCs were Nodes and the other was Master. AS
Broker ran on the Master.

We used another PC to generate and send requests to the fog platform. We
used stress program to generate CPU and memory load to emulate the processing
of requests. Every request took 15-second execution time and 50-MB memory
space. The inter-arrival time of requests was an exponential distribution with
mean 1/λ, rendering request arrivals a Poisson process with mean arrival rate
λ. All requests were sent toward to an application and directed by Kubelet to a
Node where an application instance was running. We varied the value of scaling
interval Ts to investigate the impact of Ts on performance. Because instantiating
a container took three seconds, the value of Ts was ranged from 10 to 60 seconds.
Fig. 2 shows the experiment environment.

We varied the value of λ and ran a 600-second trial with Ts = 20 for each
setting of λ. Fig. 3 shows cumulative probabilities of the number of Pods for
different λ. We can see that with λ = 1, 47% of the time there were only six or
fewer application instances (Pods). When λ was set to 2, the percentage dropped
to 30%. It was 10% with λ = 4. When λ was 5, there were 8 or 9 application
instances running 80% of the time.

We also tested application response time with and without AS Broker. Fig. 4
shows the result with α = 0.8, Ts = 30, and λ = 1. Clearly, though response

Auto-Scaling in Kubernetes-based Fog Computing Platform 7

Fig. 2. Experiment Environment

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Pods

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

λ = 1

λ = 2

λ = 3

λ = 4

λ = 5

Fig. 3. Number of Pods (application instances) with different λ

time dynamically changes, the result with AS Broker is better than that without
almost at every time point. This result demonstrates the effectiveness of the
proposed scheme.

5 Conclusions

We has proposed an auto-scaling scheme for Kubernetes-based fog computing
platform. It uses an open-source software Node Exporter running in a Pod on
each node to get machine information. AS Broker collects machine information
to determine the most appropriate number of application instances. It then asks
Kubernetes to keep the desired number of Pods. Experimental results confirm
the effectiveness of the proposed scheme in reducing application response time.

References

1. de la Bastida, D., Lin, F.J.: OpenStack-based highly scalable IoT/M2M platforms.
In: IEEE Int’l Conf. on Internet of Things. Exeter, UK (Jun 2017)

8 Wei-Sheng Zheng and Li-Hsing Yen

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

Time (sec.)

A
p

p
lic

a
ti
o

n
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

Without AS Broker

With AS Broker

Fig. 4. Application response time with and without AS Broker (α = 0.8, Ts = 30,
λ = 1)

2. Bellavista, P., Zanni, A.: Feasibility of fog computing deployment based on Docker
containerization over RaspberryPi. In: Proc. 18th Int’l Conf. on Distributed Com-
puting and Networking (Jan 2017)

3. Brogi, A., Mencagli, G., Davide Neri, J.S., Torquati, M.: Container-based support
for autonomic data stream processing through the Fog. In: Euro-Par 2017: Parallel
Processing Workshops. pp. 17–28 (2017)

4. Chang, C.C., Yang, S.R., Yeh, E.H., Lin, P., Jeng, J.Y.: A kubernetes-based mon-
itoring platform for dynamic cloud resource provisioning. In: IEEE Global Com-
munications Conference (Dec 2017)

5. Dupont, C., Giaffreda, R., Capra, L.: Edge computing in IoT context: Horizontal
and vertical linux container migration. In: Global Internet of Things Summit (Jun
2017)

6. Hao, Z., Novak, E., Yi, S.: Challenges and software architecture for fog computing.
IEEE Internet Computing 21(2), 44–53 (Mar 2017)

7. Hu, P., Ning, H., Qiu, T., Zhang, Y., Luo, X.: Fog computing based face iden-
tification and resolution scheme in internet of things. IEEE Trans. on Industrial
Informatics 13(4), 1910–1920 (Aug 2017)

8. Ismail, B.I., Goortani, E.M., Karim, M.B.A.: Evaluation of Docker as Edge com-
puting platform. In: 2015 IEEE Conference on Open Systems. Bandar Melaka,
Malaysia (Aug 2015)

9. kubernetes: Production-grade container orchestration, https://kubernetes.io/
10. Mebrek, A., Merghem-Boulahia, L., Esseghir, M.: Efficient green solution for a

balanced energy consumption and delay in the IoT-Fog-Cloud computing. In: 16th
Int’l Symp. on Network Computing and Applications. Cambridge, MA, USA (Oct
2017)

11. Rocket: A security-minded, standards-based container engine,
https://coreos.com/rkt

12. Tsai, P.H., Hong, H.J., Cheng, A.C.: Distributed analytics in fog computing plat-
forms using TensorFlow and Kubernetes. In: 19th Asia-Pacific Network Operations
and Management Symposium. Seoul, South Korea (Sep 2017)

13. Yu, T., Wang, X., Shami, A.: A novel fog computing enabled temporal data reduc-
tion scheme in IoT systems. In: IEEE Global Communications Conference (Dec
2017)

