
1

Incentive-Aware Resource Allocation for Multiple
Model Owners in Federated Learning

Feng-Yang Chen and Li-Hsing Yen, Member, IEEE

Abstract—A user (model owner) in federated learning builds a learning model by aggregating local learning models trained by
independent workers with their private datasets. A fundamental issue of federating learning is allocating resource from workers to the
training task. As the allocation causes extra costs and overheads, workers are inherently reluctant to participate. Therefore, it is crucial
to design an incentive-based resource allocation mechanism (incentive mechanism) that motivates workers to contribute their
resources. Though some incentive mechanisms have been proposed for federating learning, none has devoted to the case when
multiple users coexist and compete for worker service whereas a worker can contribute to multiple training tasks at the same time. For
this scenario, this paper proposes an auction-based approach, where multiple users as buyers place bids for worker’s service. We
devise two algorithms attempting to find an auction result that maximizes social welfare, together with a pricing rule that ensures
incentive compatibility and individual rationality. Simulation results show that one of the algorithms, which is based on the alternating
direction method of multipliers (ADMM), outperforms the other greedy algorithm in terms of social welfare particularly when workers do
not have adequate computing resource for all the training tasks.

Index Terms—Resource allocation, Auction theorem, Federated learning.

✦

1 INTRODUCTION

Conventionally, machine learning takes a simple archi-
tecture where a powerful computing machine, such as a
cloud server, constructs a learning model by performing a
training task itself with a large dataset. The machine itself is
a performance bottleneck and also a single point of failure.
To enhance the performance and the reliability, we could
adopt an alternative architecture called distributed learning
[1], [2], which partitions the dataset into several parts, trains
a local model for each part by an individual computing
device, and then forms a global model by aggregating the
locally trained models.

Similar to the conventional architecture, distributed
learning implicitly assumes that the one who constructs the
learning model (i.e., the model owner) also owns the dataset
in need. This assumption may not be true for many cases.
In that case, the dataset owners may be reluctant to provide
their datasets for model training due to privacy or security
concern. Concerning this, Google has proposed federated
learning (FL) [3] for model training on privacy-sensitive
datasets that are not owned by the model owner. FL enables
model training under the premise that data owners need not
expose the contents of their datasets, thus preserving data
privacy.

FL could be vertical or horizontal [4], [5]. In this work,
we assume horizontal FL, where the datasets are of the same
feature set. We refer to model owners and data owners as
users and workers, respectively, hereafter. A user wants to
build a learning model (referred to as a global model) from

• F.-Y. Chen was with the Department of Computer Science, National Yang
Ming Chiao Tung University, Hsinchu, Taiwan.

• L.-H. Yen is with the Department of Computer Science, National Yang
Ming Chiao Tung University, Hsinchu, Taiwan.

the help of workers. Each worker trains a local learning
model for a global model based on its own dataset with
the initial global model provided by the user. The user
aggregates all local models delivered by workers to update
the global model. The updated global model is then dis-
seminated to workers for another epoch of model training.
The whole training process may involve several epochs: it
stops only when the loss rate becomes acceptable or when
the number of epochs reaches a predefined value.

Since the introduction of FL, several issues have been
identified with it. First, because different local models are
trained on different datasets, aggregating these models into
a unified global model may be challenging. To this end, Fe-
dAvg [6], FedProx [7], and many other aggregation schemes
[8], [9], [10] have been proposed. Second, malicious work-
ers may use problematic local model to poison the global
model. Consequently, the global model may be inaccurate.
Several detection techniques have been proposed to detect
and tackle attacks from malicious workers [11], [12]. Third,
since the training process induces time and energy costs,
we need to incentivize workers to offer their datasets and
computing resources for local model training.

Incentive-based resource allocation mechanism or incen-
tive mechanism for FL involves two main tasks. One is to
configure the amounts of various types of resource (com-
puting power, dataset, etc.) to be allocated from workers for
the user’s model learning. This is an optimization problem
since the user’s valuation on the amount of worker resource
generally exhibits the effect of diminishing returns. The
other task is to set a pricing rule for resource usage so as
to motivate worker to contribute resource for the model
training. Incentive mechanisms for FL could be designed
based on contract theory [13], [14], [15], [16], Stackelberg
game [17], [18], [19], [20], or auction [21], [22]. These ap-
proaches all assume a single user (i.e., model owner), so

2

the incentive mechanisms were designed for workers who
need compete with one another for possible payoffs from
the user. Unlike these approaches, this study aims to design
an incentive mechanism for multiple users. When multiple
users coexist in an FL system, they have to compete with
one another for worker resource.

Type-2

Dataset

User i

Local

Model 2

Type-1

Dataset

Local

Model 1

Type-1

Dataset

Local

Model 1
...

Global

Model 1

Worker 1 Worker j Worker m

User 1

Global

Model 2

User n

Global

Model 2
......

...

Type-2

Dataset

Local

Model 2

Fig. 1: FL architecture with multiple users sharing worker resource in a
non-exclusive manner

In this work, we address the problem of designing an in-
centive mechanism for multiple users in FL. Different from
prior studies, a worker in our work may posses different
types of datasets and contribute its resource to multiple
training tasks (using the same type of dataset or not) at
the same time. Therefore, users share worker resource in a
non-exclusive manner (Fig. 1). The sharing is subject to the
worker’s computation capability: all workers must complete
their training tasks within a designated time period for a
timely model aggregation. We remark that a non-exclusive
sharing of worker training resource (even with training time
constraint), when compared with otherwise exclusive shar-
ing setting [15], [23], [24], [25], provides a potentially better
results in terms of accuracy. Fig. 2 shows an experimental
result using the MNIST dataset [26] with three different
cases of worker resource sharing from three workers (X, Y,
and Z) to three users (A, B, and C). When users exclusively
shared worker training resource (Case 1), B and C had poor
performance due to label distribution skew. When B and C
equally shared the training resource of Y and Z (Case 2),
their performance significantly improved. When all users
equally share worker resource (Case 3), user performance
as a whole further improved slightly despite a degraded
performance of user A.

The optimal resource allocation (from multiple workers
to multiple users) is modeled as a concave integer pro-
gramming problem which seeks to maximize the social
welfare of all participants. Social welfare maximization is
a design goal common to auction-based approaches (e.g.,
[21], [22]). We tackle this problem by an auction-based
approach, where a data transaction platform (DTP) acting as
an auctioneer solves the optimization problem using either
a greedy algorithm or an approximation algorithm based
on the alternating direction method of multipliers (ADMM)
[27], [28]. The algorithms are complemented by a pricing
rule which charges each user the loss of social welfare due
to her/his participation. We prove that this pricing rule

Case 1 Case 2 Case 3

Workers Workers Workers

X Y Z X Y Z X Y Z

U
sers

A 1 0 0 1 0 0
1

3

1

3

1

3

B 0 1 0 0
1

2

1

2

1

3

1

3

1

3

C 0 0 1 0
1

2

1

2

1

3

1

3

1

3

(a) Ratio of resource sharing 1 2 3

Case

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

User A

User B

User C

(b) Accuracies

Fig. 2: Three different worker-resource-sharing cases and correspond-
ing tested accuracies. Worker X had an image dataset consisting of all
10 handwritten digits, while Workers Y’s and Z’s datasets contained
only images of the smaller and larger five digits ([0, 4] and [5, 9]),
respectively. Worker datasets were of the same size (600 images) and
data labels were uniformly-distributed in each data set. Accuracies
were obtained after 100-epoch training using LeNet. FedAvg was used
with 10 iterations and batch size set to 60.

provides two desirable properties: incentive compatibility
and individual rationality. The former demands that no user
can be better off by not claiming its true valuation on the
result while the latter means that no user can be worse off
by participating in the auction. For performance evaluation,
we set up simulations to observe the impacts of various
factors on social welfare in the proposed algorithms. The
factors include the number of users, the number of workers,
dataset size, and the maximum training time. The results
of the simulation show that, when the worker resources
or the number of workers are insufficient, the ADMM-
based algorithm can achieve a higher social welfare than
the greedy algorithm.

The main contributions of this work are twofold:

• To the best of our knowledge, this is the first study
on the incentive mechanism for FL that allows data
owners to contribute their resource to multiple train-
ing tasks at the same time. This work will help
designing a market which motivates multiple model
owners and heterogeneous data owners to partici-
pate for possible service trading.

• We propose an auction-based approach for configur-
ing the amount of resource allocated from each data
owner to each learning task and the associated price.
For the resource allocation, we propose a greedy and
an ADMM-based algorithms as approximation to the
maximum social welfare. For pricing, we propose a
pricing rule which provides incentive compatibility
and individual rationality.

The rest of this paper is organized as follows. We re-
view existing resource allocation mechanisms in Section 2.
Section 3 describes the system model and formulates the
resource allocation problem in FL. Section 4 elaborates the
designs of the greedy algorithm, the ADMM-based algo-
rithm and the pricing rule. The settings and results of the
simulation are presented in Section 5. Section 6 concludes
this paper and presents future work.

2 RELATED WORK

Resource allocation problem has arisen in some other re-
lated fields, for which many auction-based schemes have

3

been proposed. For example, allocating sensing devices to
users in crowdsourcing is a resource allocation problem
which involves the consideration of sensing device energy
cost, sensing task computing time, transmission time, and
transmission cost. Li et al. [29] used a randomized auction
to select workers for user’s sensing tasks. In edge comput-
ing, an edge server provides various types of computing
resource to users to perform tasks such as model training
and Bitcoin mining. To maximize the utility of edge server,
Li et al. [30] used a double auction mechanism to resolve the
resource allocation problem, which ensures that both edge
users and edge server are incentive compatible. Zhong et
al. [31] considered a scenario in which customers submit
their requests for energy resource such as electricity, heating
energy, and cooling energy to an energy hub, which then
decides an optimized energy scheduling for customers. The
authors designed an auction mechanism, which ensures
incentive compatibility, and proposed using ADMM to find
the auction result.

Resource allocation problem in FL could be treated sep-
arately without considering participant’s incentive. Dinh et
al. [32] aimed to find an optimal resource allocation for FL
that minimize overall time and energy consumption. They
proposed decomposing the problem into multiple convex
sub-problems and solving the sub-problems by Lagrange
multiplier. While the result might be optimal, this approach
does not induce workers to participate.

In the literature, only a few auction-based resource al-
location schemes have been proposed for FL. Cong et al.
[33] aimed to maximize social welfare which is defined as
the quality of user model minus worker cost. They used
Vickrey-Clarke-Groves (VCG) payment [34], [35], [36] to
make this approach incentive compatible. Kim [37] also
proposed an incentive mechanism for FL, which takes the
same VCG payment rule with a unique feature of preserving
worker’s data privacy. Le et al. [22] viewed workers as
bidders who bid for user’s model learning tasks. A bid sub-
mitted by a bidder consists of the resource usages, the local
accuracy, and the cost corresponding to the model training.
When determining the set of winning bids, the auctioneer
aims to maximize the social welfare while ensuring that each
worker is allocated to at most one learning task. Le et al. pro-
posed a primal-dual based greedy algorithm to approximate
the optimal solution. They also proposed a critical-valued-
based pricing rule that ensures incentive compatibility, indi-
vidual rationality, and computation efficiency. Jiao et al. [21]
considered a similar auction-based platform for FL, where
each worker places bids to get reward by model training.
The bid includes the dataset size, values of accuracy-related
parameters, requested communication resource, and the as-
sociated cost. The goal of the auction is also to select a set of
workers that maximizes the social welfare. The authors first
devised an approximation algorithm to the optimization
problem, and then proposed a deep reinforcement learning
based approach that further improves the social welfare and
the efficiency. Both approaches in [21], [22] are proved to be
incentively compatible and individually rational.

All resource allocation schemes mentioned above con-
sidered the matching between a number of resource suppli-
ers (i.e., workers) and a single resource requester (i.e., user).
Recently, some approaches have been proposed considering

the existence of multiple users in FL. Lim et al. [15] consid-
ered a scenario where users recruit their respective work-
ers using a contract-theoretic approach and multiple users
collaboratively form several disjoint coalitions to maximize
their payoffs. Deng et al. [23] considered allocating workers
with various dataset sizes/qualities to multiple users with
various budgets via a reverse auction. Their work aims to
maximize the sum of estimated learning qualities, where the
estimations are based on historical records. For this the auc-
tions should be done periodically for record collections. By
contrast, our approach needs no estimation on datasets and
is therefore one-shot. Lim et al. [24] proposed a two-level
approach where cluster heads are introduced between users
and workers to help intermediate model aggregation and
relaying. Two main challenges in their work are for workers
to select their respective cluster heads and to assign cluster
heads to users. The competition for the service provided
by cluster heads among users is modeled as a multi-round
single-item auction. Both the allocation result and the asso-
ciated payment are determined by a deep learning approach
which ensures seller revenue maximization while achieving
individual rationality and incentive compatibility. Because
each worker and cluster head can only participate in the
training process with a single user, this approach effectively
partitions all workers among a set of users. Ng et al. [25]
also proposed a two-level approach which separates data
owners from FL workers. FL workers are similar to cluster
heads [24] in that they do not own their own datasets. The
modeling and the resolution of the competition among users
for the service provided FL workers are also similar to those
presented in [24]. In short, all these incentive mechanisms
proposed for multiple FL users [15], [23], [24], [25] constrain
that a worker can participate in only one learning task,
which implies that the resource allocation result effectively
partitions all workers among users.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model
We assume n users U = {1, 2, · · · , n} and m workers
W = {1, 2, · · · ,m}. We also assume l data types Φ =
{1, 2, · · · , l}. Each worker may own several types of data
while each user i ∈ U requests a certain type of data ϕi ∈ Φ
for its model training. We assume that each user i demands
ηi training epochs and τ i training iterations per epoch from
each worker for its model training. On the other hand, the
batch size in one training iteration for the model training is
individually set up for each worker (subject to constraints
specific to the worker). Note that aggregation schemes can
handle the variability of batch size with weighted averaging,
i.e., assigning each worker a weight based on the size of the
batch used for the worker’s local training. Let qij denote the
batch size of worker j set for the model training of user i (qij
is preset to 0 if worker j cannot work for user i for privacy
or other concern). Then, qijτ

i is the data size of worker j
allocated for user i’s model training and σi =

∑
j∈W qijτ

i is
the size of the total data allocated by all workers for user i’s
model training.

The quality of a learning model can be evaluated in
terms of loss rate or accuracy. Raudys and Jain [38] argued
that small size of data can easily contaminate a learning

4

model, which implies that the larger the dataset is, the
better quality (lower loss rate or higher accuracy) the trained
model will be. However, the benefit from large training
data also exhibits the effect of diminishing returns: after a
user gets adequate data for model training, more data does
not significantly improve the quality of the training model.
Zhan et al. [17] reported that the test accuracy of training
model can be regarded as a logarithm function with respect
to the amount of training data. Therefore, we estimate the
model quality of user i as

model quality of user i = ln
(
1 + γiσi

)
, (1)

where γi > 0 is a model-specific parameter that represents
the sensitivity of model quality to the size of the training
data. Note that model quality depends on not only quantity
but also quality of the training data. For example, Zhao et
al. [39] reported that FedAvg does not exhibit the behavior
indicated by (1) with highly skewed non-IID data. With
contaminated data, the training accuracy neither improves
with more training data. However, we do not assume
prior knowledge of the statistical characteristics of worker’s
datasets. With this assumption, we use (1) to capture the
relationship between model quality and dataset size.

Users also need to estimate the worth of their models,
referred to as their valuations on the models, to budget their
payments to workers. The valuation of a model certainly re-
lates to the model quality, yet how closely these two metrics
are related varies from user to user. For example, some user
may be willing to pay more to workers for a high-quality
model while some other user may only need an acceptable
model or has a limited budget. To capture the variety, we
introduce αi to denote the degree of closeness between
model quality and user i’s valuation on it. Formally, user
i’s valuation on σi is a function

vi(σi) = αi ln
(
1 + γiσi

)
= αi ln

(
1 + γi

∑
j∈W

qijτ
i

)
. (2)

A large αi value implies that user i’s valuation on a model
closely relates the quality of the model. In that case, user i
is willing to pay more for high-quality model.

On the other hand, a worker has a limited supply of
data for model training and no worker can allocate more
data than its supply capacity to any user. We use σj,k to
denote the size of type k dataset owned by each worker j.
Workers also take additional time and bear extra cost for
user’s training tasks, which calls for compensations from
users. We argue that the cost and the time of delivering a
learning model (more specifically, delivering parameters of
a learning model) are considerably less than the cost and the
time of model training, respectively. Therefore, we focus on
the latter part. We assume that both the cost and the time of
worker j for user i’s model training depend on the product
of how many data of j are used and how many times these
data are used, which is amounted to qijτ

iηi. Therefore, the
total cost for worker j to perform model training for user i
is

cij = ξijq
i
jτ

iηi, (3)

where ξij is worker j’s training cost on a unit of data for the
model training of user i. This formulation is consistent with

the experimental result on energy consumption reported in
[40]. The associated time is

tij = ρijq
i
jτ

iηi, (4)

where ρij is the time that worker j takes on a unit of data
for the model training of user i. It is well known that
model training in FL can be slowed down considerably by
stragglers, i.e., workers that cannot complete their training
tasks in time. Stragglers can occur without warning at any
work for many unpredictable reasons, but we pay attention
to workers with low computation capability and thus long
response time. One way to mitigate the straggler effect is
to set up a permissible upper limit for the model training
time of each worker [41], [42]. Therefore, we require that the
training time of a worker does not exceed an upper bound
Tmax.

Table 1 summarises notation in this paper.

TABLE 1: Notation

U Set of users
W Set of workers
Φ Set of data types
Tmax Maximum training time

User
ϕi Data type needed for user i’s model training
τ i The number of training iterations demanded by user

i
ηi The epoch count for user i’s model training
pij User i’s payment to worker j
vi (·) Valuation function of user i
αi, γi Two user-specific parameters in vi (·)

Worker
σj,k Size of type k dataset owned by worker j.
ξij Unit cost of worker j for user i’s model training
cij Total cost of worker j for user i’s model training
ρij Unit time of worker j for user i’s model training
tij Total time of worker j spent in user i’s model train-

ing
qij Batch size of worker j for user i’s model training

Besides users and workers, there is a data transaction
platform (DTP) which acts as an auctioneer for the proposed
auction-based resource allocation approach. Each user as
a buyer i ∈ U submits its request ⟨ϕi, τ i, ηi, αi, γi⟩ as a
bid to the DTP. Meanwhile, workers as sellers consider the
DTP as a trustworthy third-party and each worker j ∈ W
independently reports ⟨{ξij , ρij}i∈U , {σj,k}k∈Φ⟩ to the DTP.
After receiving all the information, the DTP decides the
values of qij and pij for each pair of user i ∈ U and worker
j ∈ W . The workers and users proceed to train the models
after receiving the auction result announced by the DTP. The
whole process is similar to the FL service market proposed
in [21]. Fig. 3 illustrates the whole process.

3.2 Problem Formulation

For an economically efficient resource allocation, the objec-
tive of the auctioneer is to maximize social welfare defined
as the total utility of all buyers and sellers. Let pij be the

5

Users DTP Workers

Bid submission Capacity & cost report

𝑞 ’s and 𝑝 ’s𝑝 ’s

Resource allocation &
payment calculation

Model Training

Payments

〈𝜙 , 𝜏 , 𝜂 , 𝛼 , 𝛾 〉 〈 𝜉 , 𝜌
∈
, 𝜎 , ∈

〉

Fig. 3: Auction-based resource allocation for FL

payment of user i to worker j set by the auctioneer. Each
buyer i’s utility is defined as

ui(σi, {pij}j∈W) = ζvi(σi)−
∑
j∈W

pij

= ζαi ln

(
1 + γi

∑
j∈W

qijτ
i

)
−

∑
j∈W

pij , (5)

where ζ is a factor used to transform vi(·) to monetary. On
the other hand, each seller j’s utility is

uj({pij}i∈U , {cij}i∈U) =
∑
i∈U

(
pij − cij

)
. (6)

Therefore, the social welfare is∑
i∈U

[
ζvi(σi)−

∑
j∈W

pij

]
+

∑
j∈W

∑
i∈U

(pij − cij)

=
∑
i∈U

[
ζαi ln

(
1 + γi

∑
j∈W

qijτ
i

)]
−

∑
j∈W

∑
i∈U

(
ξijq

i
jτ

iηi
)
.

(7)

The value of (7) depends on the setting of qij ’s for each i ∈ U
and each j ∈W . Therefore, the resource allocation problem
P in FL is

max
q

{
ζ
∑
i∈U

[
αi ln

(
1 + γi

∑
j∈W

qijτ
i
)]
−

∑
j∈W

∑
i∈U

ξijq
i
jτ

iηi
}
(8)

subject to the following constraints:∑
i∈U

ρijq
i
jτ

iηi ≤ Tmax,∀j ∈W, (9)

qijτ
i ≤ σj,ϕi ,∀i ∈ U,∀j ∈W, (10)

and
qij ∈ N,∀i ∈ U,∀j ∈W. (11)

Though a worker may train multiple learning models at
the same time, the training time constraint (9) limits the total
training time of any worker to be a value not exceeding Tmax.
Eq. (10) is the capacity constraint that specifies the largest
possible batch size. Eq. (11) limits all batch sizes to nature
numbers.

To see the complexity of P , we define

f i(qi) = ζαi ln

(
1 + γi

∑
j∈W

qijτ
i

)
−

∑
j∈W

ξijq
i
jτ

iηi, (12)

and rewrite (8) as
max
q

∑
i∈U

f i(qi). (13)

Theorem 1. For each i ∈ U , f i(qi) is a concave function.

Proof: See Appendix.
Because f i(·) is concave for each i ∈ U , the objective

function as a sum of f i(·)’s is also concave. As all batch sizes
are non-negative integers, the resource allocation problem P
is a concave integer programming problem.

Besides q, the DTP also decides the payment pij of each
winning user i ∈ B to each worker j, where B ⊆ U is the
set of all users i with qij > 0 for some j ∈ W . Although
payments seem not directly affecting the optimal value de-
fined in (8), the pricing rule does affect the attainable social
welfare in two ways. First, if the pricing rule does not incen-
tivize users to be truthful about their valuations, the derived
solution to P may not actually maximize the social welfare.
We thus demand the pricing rule to be incentive compatible,
meaning that no users can be better off by lying about their
valuations. Second, the pricing rule may discourage users to
participate if they may get negative utilities by the pricing
rule. In that case, the social welfare may be lower than that
when all users participated. Therefore, another requirement
of the pricing rule is to provide individual rationality, which
means no user can get a negative utility by participating in
the auction.

4 PROPOSED MECHANISMS

We first assume truthful bidders and propose two ap-
proaches to the resource allocation problem P . We then
present a pricing rule that is incentive compatible and
provides individual rationality.

4.1 Greedy Algorithm
The first approach is a greedy method which allocates
worker resource to users one at a time. When allocating
resource to a particular user, it first attempts allocating all
the training data in need to maximize the user’s utility from
a worker with the lowest unit cost of training data. If the
amount of allocated data is not adequate, it then attempts
allocating the rest from a worker with the second lowest unit
cost, and so forth. The algorithm turns to the next user when
it cannot further increase the first user’s utility. It repeats
this process until all user’s requests have been processed.
Algorithm 1 elaborates the whole procedure.

There are two design issues in Algorithm 1. The first is
the order to process user’s requests. A straightforward idea
is to rank all users by their valuation functions. However,
this is not as simple as it seems. By (2), user i’s valuation on
σi depends on both αi and γi. So it is possible that user i has
a higher valuation than user j on data of small size but does
not when the data size becomes large. Fig. 4 shows one such
example. Algorithm 1 takes a simple strategy by ranking
users by lexicographical order of the (αi, γi) pairs. More

6

Algorithm 1 The Greedy Algorithm

1: q← a |U | × |W | matrix with all zeros;
2: sort all users i ∈ U by (αi, γi);
3: for each i ∈ U do
4: FWi ← {j ∈W |σj,ϕi > 0}; ▷ users with data
5: sort all j ∈ FWi in a non-decreasing order of ξij ;
6: for each j ∈ FWi do
7: set qij,opt by (16)
8: set qij,max by (17)
9: set qij,rem by (18)

10: qij ← ⌊min{qij,opt, q
i
j,max, q

i
j,rem}⌋

11: end for
12: end for
13: return q ;

0 500 1000 1500 2000

Data size

0

10

20

30

40

V
a

lu
a

ti
o

n
 o

f
U

s
e

r

i
 = 20,

i
 = 0.004

j
 = 30,

j
 = 0.002

Fig. 4: Valuation functions of two users

specifically, user i ranks higher than user j if 1) αi > αj or
2) αi = αj and γi > γj .

The other design issue is the batch size of a worker
allocated for the user’s model training. Recall that the al-
location is to maximize the user’s utility subject to worker
capacity and training time constraints. Therefore, three fac-
tors should be considered for this issue: the user’s utility,
the worker’s dataset size, and the worker’s training time
constraint.

Suppose that we are to assign worker j for the model
training of user i, and let σi

alloc =
∑

l∈W\{j} q
i
lτ

i to be the
total size of the data already allocated to user i before the
allocation of worker j’s dataset. If q is the batch size of
worker j set for user i’s model training, i’s valuation will
become αi ln

(
1 + γi(σi

alloc + qτ i)
)
. The associated payment,

pij , is not set at this moment but surely will be proportional
to the associated cost ξijqτ

iηi. Letting pij = ξijqτ
iηi, the

optimal value of q that maximizes user i’s utility, denoted
by qij,opt, is

qij,opt = argmax
q

{
ζαi ln

(
1 + γi

(
σi

alloc + qτ i
))
− ξijqτ

iηi
}
.

(14)
Since i’s utility is a concave function of q, qij,opt can be
derived by solving the following equation

d

dq

(
ζαi ln

(
1 + γi

(
σi

alloc + qτ i
))
− ξijqτ

iηi
)
= 0. (15)

The value of qij,opt is the solution to (15), i.e.,

qij,opt = q =
ζαiγi − ξijη

i
(
1 + γiσi

alloc

)
ξijη

iγiτ i
. (16)

Concerning the second factor, the setting of batch size
must meet the capacity constraint as specified by (10). This
constraint limits the maximum value of qij to be

qij,max =
σj,ϕi

τ i
. (17)

For the last factor, the maximum value of qij is subject to the
training time constraint shown in (9), which is

qij,rem =
Tmax − Tj,alloc

ρijτ
iηi

, (18)

where Tj,alloc =
∑

l∈U\{i} ρ
l
jq

l
jτ

lηl is the amount of j’s
training time already allocated to other training tasks.

The algorithm sets the value of qij to be the minimum
of qij,opt, q

i
j,max, and qij,rem, and makes a rounding on qij in

Line 10.

4.2 ADMM-Based Algorithm

The second approach is an approximation to the optimal
solution by alternating direction method of multipliers
(ADMM) [27], [28]. We target at (13) and define two func-
tions:

gj,time(qj) =
∑
i∈U

ρijq
i
jτ

iηi − Tmax,∀j ∈W, (19)

and
gij,data(q

i
j) = qijτ

i − σj,ϕi ,∀i ∈ U,∀j ∈W, (20)

where qi = [qi1, q
i
2, · · · , qim] and qj = [q1j , q

2
j , · · · , qnj]. Our

objective function (13) is subject to

gj,time(qj) ≤ 0,∀j ∈W (21)

and
gij,data(q

i
j) ≤ 0,∀i ∈ U,∀j ∈W. (22)

To ensure that ADMM is applicable to our problem,
f i(qi) in (13) should be concave for all i ∈ U and all
functions in (21) and (22) should be linear. Theorem 1
already proves that all f i(qi)’s are indeed concave. The
function linearity can be easily seen from the definitions in
(19) and (20).

To apply ADMM, we first relax constraint (11) by al-
lowing fractional solutions. We also need to define auxiliary
variables µj,time for each j ∈ W and µi

j,data for each i ∈ U
and j ∈ W . These variables are initialized to 1’s in our
algorithm. ADMM approximates the optimal solution by
iterating the following two steps.

4.2.1 Step 1
Decompose P into unconstrained, individually solvable
sub-problems. This is for each user i ∈ U to find qi such
that

qi = argmax
q

{
f i (q)−

∑
j∈W

h1(j)−
∑
i∈U

∑
j∈W

h2(i, j)
}
,

(23)

where

h1(j) =

{
0, if gj,time(qj) ≤ 0,

∥gj,time(qj)− µj,time∥22 , otherwise,
(24)

7

and

h2(i, j) =

 0, if gij,data(q
i
j) ≤ 0,∥∥∥gij,data(q

i
j)− µi

j,data

∥∥∥2
2
, otherwise,

(25)
are two penalties that user i will receive if the setting of qi

does not meet the constraints (21) and (22), respectively.

4.2.2 Step 2
Update µj,time by

µj,time = µj,time + gj,time(qj) (26)

for every j ∈W and update µi
j,data by

µi
j,data = µi

j,data + gij,data(q
i
j) (27)

for every j ∈ W and i ∈ U . The
algorithm repeats these two steps until
||(µ1,time, · · · , µm,time, µ

1
1,data, · · · , µn

m,data)|| ≤ ERR or
||(g1,time(q1), · · · , gm,time(qm), g11,data(q

1
1), · · · , gnm,data(q

n
m))||≤

ϵ, where ERR and ϵ are two preset values standing for error
tolerance and significant difference, respectively. The
resulting allocation profile q = [q1,q1, · · · ,qn], after
rounding to integers, can approximate the maximal social
welfare. Algorithm 2 elaborates the process.

Algorithm 2 The ADMM-Based Algorithm

1: µj,time ← 1 for each j ∈W
2: µi

j,data ← 1 for each i ∈ U and j ∈W
3: repeat
4: for each i ∈ U do
5: find qi by (23) ▷ update qi

6: end for
7: for each j ∈W do
8: µj,time ← µj,time + gj,time(qj) ▷ update µj,time
9: for each i ∈ U do

10: µi
j,data ← µi

j,data + gij,data(q
i
j) ▷ update µi

j,data
11: end for
12: end for
13: δ1 ← ||(µ1,time, · · · , µm,time, µ

1
1,data, · · · , µn

m,data)||
14: δ2 ← ||(g1,time(q1), · · · , gm,time(qm), g11,data(q

1
1), · · · ,

gnm,data(q
n
m))||

15: until δ1 ≤ ERR or δ2 ≤ ϵ
16: qij ← ⌊qij⌋ for each qij ∈ q ▷ rounding

4.3 The Pricing Rule

Recall that a pricing rule should provide incentive compati-
bility and individual rationality to users. We hereby propose
a pricing rule that follows the principle of VCG, which
charges each winning user i of the loss of the social welfare
of all other users due to the participation of user i. More
explicitly, define P−i to be a sub-problem that is identical to
P except that user i does not participate. That is,

max
q

∑
k∈U\{i}

fk
(
qk

)
(28)

subject to
gj,time(qj) ≤ 0,∀j ∈W (29)

and
gij,data(q

k
j) ≤ 0,∀k ∈ U\{i},∀j ∈W. (30)

Let q̂ = [q̂1, q̂2, · · · , q̂n] and q̄−i =
[q̄1, q̄2, · · · , q̄i−1, q̄i+1, · · · , q̄n] be the solutions to P
and P−i, respectively. Our pricing rule demands each
winning user i ∈ U to pay

pi =
∑

k∈U\{i}

fk
(
q̄k

)
−

∑
k∈U\{i}

fk
(
q̂k

)
+

∑
j∈W

ξij q̂
i
jτ

iηi.

(31)
The last term in (31) represents the additional cost borne by
all workers for user i’s model training. With this payment,
each winning user i’s utility is

ui(q̂) = ζvi(q̂i)− pi, (32)

which accounts for its valuation on q̂i minus the associated
payment.

Before presenting the properties of this payment rule, we
need the following definition.
Definition 1. An algorithm designed for the resource alloca-

tion problem is monotonic if its solution to P provides a
social welfare that is at least as high as the social welfare
of its solution to P−i for any i ∈ U . Formally, such an
algorithm is monotonic if∑

k∈U

fk
(
q̂k

)
≥

∑
k∈U\{i}

fk
(
q̄k

)
(33)

for all i ∈ U .

A monotonic resource allocation algorithm provides a
desirable feature that more user participants cannot lower
the social welfare.
Theorem 2. Any algorithm that optimally solves the resource

allocation problem P is monotonic.

Proof: Let q̂ = [q̂1, q̂2, · · · , q̂n] and q̄−i =
[q̄1, q̄2, · · · , q̄i−1, q̄i+1, · · · , q̄n] be the optimal solutions to
P and P−i, respectively, generated by the algorithm. For any
i ∈ U , if q̂i = 0, then f i(q̂i) = 0 and∑

k∈U

fk
(
q̂k

)
=

∑
k∈U\{i}

fk
(
q̄k

)
. (34)

Otherwise, let Q = {q̃ | q̃i = 0 s.t. (29) and (30)} be a set of
suboptimal solutions to P . Because

max
q̃∈Q

∑
k∈U

fk
(
q̃k

)
=

∑
k∈U\{i}

fk
(
q̄k

)
,

we have ∑
k∈U

fk
(
q̂k

)
>

∑
k∈U\{i}

fk
(
q̄k

)
. (35)

By (34) and (35), the algorithm is monotonic.
The greedy algorithm does not guarantee monotonic-

ity. The ADMM-based algorithm can be monotonic if the
approximation and rounding errors can be controlled such
that (33) holds for all i ∈ U even after rounding. It is non-
trivial to bound the errors of the ADMM-based algorithm.
However, if the error of the ADMM-based solution can be
modeled as a Gaussian random variable X , then the social
welfares of the ADMM-based solutions to P and P−i are∑

k∈U

fk
(
q̂k

)
+X (36)

8

and ∑
k∈U\{i}

fk
(
q̄k

)
+X, (37)

respectively. By Theorem 2, the expected value of (36) is
larger than or equal to the expected value of (37). Therefore,
the ADMM-based algorithm is monotonic in terms of ex-
pected social welfare. In fact, the ADMM-based algorithm
exhibited monotonicity in our simulation results presented
in Sec. 5.3.

For the pricing rule to provide individual rationality,
each user must have a nonnegative utility as indicated by
Theorem 3.

Theorem 3. For a resource allocation algorithm that is mono-
tonic, the pricing rule shown in (31) ensures that

ui(q̂) = ζvi(q̂i)− pi ≥ 0

for every user i ∈ U .
Proof: If user i does not win the auction, i.e.,

q̂i = 0, then vi(q̂i) = 0. Also,
∑

k∈U\{i} f
k
(
q̄k

)
=∑

k∈U\{i} f
k
(
q̂k

)
so pi = 0 by (31). Therefore, its utility

is 0 by (32). If user i is a winning user,

ui(q̂i) = ζvi(q̂i)− pi

= ζvi(q̂i)−
∑

k∈U\{i}

fk
(
q̄k

)
+

∑
k∈U\{i}

fk
(
q̂k

)
−

∑
j∈W

ξij q̂
i
jτ

iηi (38)

=
∑

k∈U\{i}

fk
(
q̂k

)
+ ζvi(q̂i)−

∑
j∈W

ξij q̂
i
jτ

iηi

−
∑

k∈U\{i}

fk
(
q̄k

)
(39)

=
∑

k∈U\{i}

fk
(
q̂k

)
+ f i

(
q̂k

)
−

∑
k∈U\{i}

fk
(
q̄k

)
(40)

=
∑
k∈U

fk
(
q̂k

)
−

∑
k∈U\{i}

fk
(
q̄k

)
. (41)

The former and the latter terms in (41) are the social wel-
fares of P and P−i, respectively. Therefore, for a resource
allocation algorithm that is monotonic, the utility of each
winning user i is

ui (q̂) =
∑
k∈U

fk
(
q̂k

)
−

∑
k∈U\{i}

fk
(
q̄k

)
≥ 0. (42)

Therefore, the pricing rule (31) provides individual ra-
tionality.

For the pricing rule to be incentive compatible, no user
i ∈ U can be better off by declaring a valuation function
ṽi(·) that deviates from vi(·). This property is formally
stated as Theorem 4.

Theorem 4. Let q̃ be a solution to P generated by an optimal
resource allocation algorithm when i ∈ U declares a
valuation function ṽi(·) ̸≡ vi(·). The pricing rule shown
in (31) ensures ui(q̂) ≥ ui(q̃) for this algorithm.

Proof: Note that regardless of what ṽi(·) is, the social
welfare in P−i remains to be

∑
k∈U\{i} f

k
(
q̄k

)
. By (41),

ui (q̂)− ui (q̃) =
∑
k∈U

fk
(
q̂k

)
−

∑
k∈U\{i}

fk
(
q̄k

)
−

∑
k∈U

fk
(
q̃k

)
+

∑
k∈U\{i}

fk
(
q̄k

)
(43)

=
∑
k∈U

fk
(
q̂k

)
−

∑
k∈U

fk
(
q̃k

)
. (44)

For any optimal resource allocation algorithm, we have

ui (q̂)− ui (q̃) =
∑
k∈U

fk
(
q̂k

)
−

∑
k∈U

fk
(
q̃k

)
≥ 0. (45)

5 NUMERICAL RESULTS

5.1 Simulation Settings
We conducted extensive simulations to evaluate the perfor-
mance of the proposed methods. We assumed three types of
data. For each worker, we first determined the number of
data types owned by the worker using a uniform distribu-
tion over the set {A,B,C}. We then randomly determined
the set of data types owned by the worker. We varied the
number of users (from 2 to 11), the number of workers (from
2 to 11), the number of training samples (i.e., the dataset
size) owned by workers, and the maximum training time to
study the impact of these factors on the social welfare. All
the other parameters are shown in Table 2. For the ADMM-
based algorithm, we used SciPy library [43] to solve the sub-
problem in (23). All results are averages over 800 trials.

Besides the greedy and the ADMM-based algorithms,
we also considered a variant of the greedy algorithm for
comparison purpose. This variant differs from the greedy
algorithm in three points.

• It ranks users randomly.
• For a particular user, it randomly picks up workers

for resource allocation.
• After finding the best batch size qij (Line 10 in Algo-

rithm 1), it randomly sets a batch size between 0 and
qij for worker j to train the model of user i.

This variant is referred to as Random in all the simulation
results.

5.2 Model Validation
It is difficult to perform an experimental trial based on
real traces due to the lack of an existing target system.
More specifically, we do have open datasets and aggrega-
tion algorithm for FL. However, concerning the incentive
mechanism part, it is not feasible to acquire user-dependent
and worker-dependent private information such as user’s
valuation function vi(·) (and associated coefficients αi and
γi) and worker’s unit cost for training user j’s model ξij .
Nevertheless, we performed a simple experiment to testify
the validness of the basic assumptions for the proposed
approach.

As we assumed three data types, we divided the MNIST
dataset into three subsets (one for each data type) A, B, and

9

TABLE 2: Simulation Settings

Name Description Value Setting

l Number of data types 3
n Number of users Default: 4. Range: 2

to 11 w/ step size 1
m Number of workers Default: 4. Range: 2

to 11 w/ step size 1
Tmax Maximum training time (s.) Default: 3600.

Range: 1200 to
12000 w/ step size
1200

ζ Parameter used in (5) 5
σj,k Number of type-k training

samples owned by worker j
U [σmin, σmax]

σmin Minimum dataset size Default: 0. Range: 0
to 25000 w/ step
size 2500

σmax Maximum dataset size Default: 10000.
Range: 10000 to
35000 w/ step size
2500

τ i Iteration count of user i U [300, 450]
ηi Epoch count of user i U [10, 30]
αi Parameter in vi(·) definition U [100, 500]
γi Parameter in vi(·) definition U [30, 50]
Ci User-dependent coefficient

for user i
U [0.1, 1]

ξj Worker-dependent unit cost
of worker j

U [10−4, 10−3]

ξij Unit cost of worker j for
training user i’s model

ξj × Ci

ρj Worker-dependent unit time
of worker j

U [0.005, 0.01]

ρij Unit time of worker j for
training user i’s model (s.)

ρj × Ci

ERR Parameter in Algorithm 2 0.1
ϵ Parameter in Algorithm 2 0.01

TABLE 3: The setup of each user and worker

(a) User’s demands and valuation coefficients

User ID Data type #Iteration #Epoch αi γi

1 B 424 23 170.2 35.1
2 A 418 15 399.4 41.2

(b) Worker’s dataset

Worker ID Type A Type B Type C

1 ✓
2 ✓ ✓ ✓
3 ✓
4 ✓ ✓

(c) Value of ρij

j i = 1 i = 2

1 - 0.0011
2 0.0057 0.0009
3 0.0065 -
4 0.0042 -

(d) Value of ξij × 105

j i = 1 i = 2

1 - 9.95
2 49.08 8.20
3 36.79 -
4 17.23 -

C , each consisting of images of three sequential handwritten
digits (A : [1, 3], B : [4, 6], C : [7, 9]). We took the same
simulation setting used in the next section to generate 1)
the demanded data type and associated iteration and epoch
counts for each user and 2) the set of data types owned
by each worker and parameters for unit time and cost.
Table 3 shows the setting generated for two users and

four workers. We then ran the ADMM-based and greedy
algorithms to derive the batch sizes for workers to train
their local models (Table 4). We used weighted FedAvg to
aggregate local models, which assigned a weight to each
model that represents the batch size for that model. We
measured each worker’s training time for each user, and
tested the accuracy of each user’s model.

1 2 3 4

Worker ID

0

100

200

300

400

500

600

700

800

900

T
im

e
 (

s
)

Measured Time for User 1

Measured Time for User 2

Predicted Time for User 1

Predicted Time for User 2

Fig. 5: Measured and predicted training time. All the training tasks
were done by a PC with Ryzen 5600X@3.7GHz CPU and 16 GB RAM.

Fig. 5 shows the measured training time together with
the predicted working time of each worker. All the training
tasks were done by a single computer, whereas the working
time was predicted by (4). Because all workers actually
had identical computing power in the measurements, we
replaced ρij in (4) with a constant 0.001 in the corresponding
predictions for a fair comparison. The result clearly shows
the validness of the working time prediction.

The model accuracies of the two users were measured
to be 99.54% and 99.68%, respectively. On the other hand,
the model qualities as estimated by (1) are 14.48 and 14.29,
respectively. Clearly, our definition of model quality does
capture model accuracy in this trial. .

5.3 Number of Users
We first study the changes of the social welfare by varying
the number of users. We initially set up four workers and
two users. We then added one user at a time and measured
the average social welfare. Figure 6 shows how the number
of users affects the average social welfare. In all algorithms,
the average social welfare increased as the number of users
increased. This is exactly the reason why we need to guar-
antee individual rationality: more user participation implies
higher social welfare. The result also supports the conjecture
that these algorithms are monotonic.

The ADMM-based algorithm has the highest increasing
rate among all the algorithms, followed by Random and
then the greedy algorithm. When only two users were
requesting model training, the workers could collectively
offer the optimal batch size as indicated by (16) to each
user. The associated training time was also lower than Tmax.
Consequently, as shown in Table 4, the greedy algorithm
and the ADMM-based algorithm yielded identical result.
However, when 11 users were requesting model training
from only four workers, both the capacity and training time

10

2 3 4 5 6 7 8 9 10 11

Number of users

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

A
v
e
ra

g
e

 s
o

c
ia

l
w

e
lf
a
re

10
5

ADMM

Greedy

Random

Fig. 6: Average social welfare with respect to the number of users

constraints were obstacles to an optimal allocation to all
users. In this case, the ADMM-based algorithm achieved
a higher social welfare than the greedy algorithm by pro-
viding a finer granularity of resource allocation. Refer to
Table 5 for the allocation results of both algorithms. As
demonstrated by the ADMM-based algorithm, the way to
maximize the social welfare in this case is to distribute
worker training resource among a relatively large number
of users. The greedy algorithm failed to do so because it
tends to allocate resource to fewer but more “valuable”
users. In fact, a worker was assigned to four to six users
by the ADMM-based algorithm but only two to three users
by the greedy algorithm. Consequently, six users did not
have their models trained by any worker in the greedy
algorithm, which explains the low social welfare of the
greedy algorithm in that case.

TABLE 4: The batch size of each worker for each user (two users and
four workers)

(a) ADMM-based algorithm

User Worker ID
ID 1 2 3 4
1 0 48 39 44
2 43 50 0 0

(b) Greedy algorithm

User Worker ID
ID 1 2 3 4
1 0 48 39 44
2 43 50 0 0

TABLE 5: The batch size of each worker for each user (11 users and four
workers)

(a) ADMM-based algorithm

User Worker ID
ID 1 2 3 4
1 0 11 10 13
2 43 50 0 0
3 16 47 0 0
4 7 29 0 0
5 0 0 0 42
6 0 0 9 9
7 0 0 0 10
8 0 0 15 16
9 39 1 0 0
10 0 0 46 5
11 5 0 0 0

(b) Greedy algorithm

User Worker ID
ID 1 2 3 4
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 46 53 0 0
5 0 0 0 42
6 0 0 0 0
7 0 0 0 0
8 0 0 43 48
9 28 41 0 0
10 0 0 38 31
11 0 0 0 0

The superiority of Random over the greedy algorithm
can be justified by the following feature of Random. When
setting up the batch size for a worker to train a user model,
Random does not allocate the largest possible batch size
(as indicated by qij in Algorithm 1) from worker j to user
i. Consequently, Random generally assigns a worker to

more users than the greedy algorithm. This helps increasing
the social welfare especially when workers do not have
adequate training resource for all the model training tasks.

5.4 Number of Workers
We next measured the impact of the worker population on
social welfare. We fixed four users and tested 2 to 11 workers
by adding one worker at a time. Figure 7 shows the result.

2 3 4 5 6 7 8 9 10 11

Number of workers

6

6.5

7

7.5

8

8.5

9

A
v
e

ra
g
e
 s

o
c
ia

l
w

e
lf
a
re

10
4

ADMM

Greedy

Random

Fig. 7: Average social welfare with four users.

We can observe that the social welfare increased in all
algorithms as the number of workers increased. This can
be explained as each new worker brings in additional data
and computing power for model training. However, the
model training cost increases linearly with the batch size
whereas the user valuation increases only sub-linearly with
the batch size (due to the effect of diminishing returns).
Therefore, as shown in Figure 7, when the number of work-
ers increased, the social welfare increased but the increasing
rate decreased. Although the greedy algorithm performed
worse than the ADMM-based algorithm in all settings, the
performance gap becomes smaller when more workers par-
ticipated. This is consistent with the finding in the previous
subsection that the performance of the greedy algorithm is
acceptable when workers have adequate resource for the
model training.

Note that the number of workers can easily exceed a
hundred in practice. The result here does not exclude the
need for tens or hundreds of workers to maximize social
welfare in other settings (e.g., when workers have few
training samples). However, we also note that, more work-
ers (i.e., sellers) leads to more supply of training resource
(goods) and thus lessens resource competition among users
(i.e., buyers). Consequently, it becomes a buyer’s market
where each user can hire any desired set of workers with a
payment to each worker just a bit higher than the worker’s
training cost. Our study targets at a balanced market where
users may need to compete for worker’s resources.

5.5 Effects of The Dataset Size
We investigated the effects of the capacity constraint by
fixing the set of users and workers but expanding the
dataset size. The mean number of training samples of each
worker was set to 5000 initially. We then increased the mean
by 2500 at a time and measured the average social welfare.
Figure 8 shows how the dataset size affects the result.

11

0.5 1 1.5 2 2.5 3

Mean dataset size 10
4

6.8

7

7.2

7.4

7.6

7.8

8

8.2

A
v
e

ra
g

e
 s

o
c
ia

l
w

e
lf
a

re

10
4

ADMM

Greedy

Random

Fig. 8: The average social welfare versus the dataset size

Both Random and the ADMM-based algorithm achieved
a growth in social welfare with increase in dataset size. For
the greedy algorithm, the social welfare increased with the
dataset size when the mean dataset size did not exceed
12500. After that point, enlarging datasets turned to de-
crease the social welfare of the greedy algorithm.

TABLE 6: The batch size of each worker for each user (mean dataset
size: 5000)

(a) ADMM-based algorithm

User Worker ID
ID 1 2 3 4
1 0 25 26 18
2 15 12 16 0
3 0 29 24 0
4 0 29 25 0

(b) Greedy algorithm

User Worker ID
ID 1 2 3 4
1 0 25 26 18
2 15 12 16 0
3 0 29 24 0
4 0 29 25 0

The reason behind this phenomenon is that the
worker computing power remained unchanged. With small
datasets, the resource allocation is only subject to the capac-
ity constraint. So setting up the largest possible batch size
for a pair of worker and user does not deviate significantly
from the optimal setting. Refer to Table 6 for the allocation
results with the mean dataset size set to 5000. Here two
to three workers were needed for the model training of a
single user because no single worker had sufficiently large
dataset to maximize a user’s utility. Furthermore, even if the
greedy algorithm allocates the whole dataset of a worker to
a particular user, the worker still has spare time to train
other user’s learning models. This explains the result why
some worker was able to train models for all the four users
at the same time. In short, the training time constraint
did not prevent a worker from serving as many users as
possible.

TABLE 7: The batch size of each worker for each user (mean dataset
size: 30000)

(a) ADMM-based algorithm

User Worker ID
ID 1 2 3 4
1 0 74 73 69
2 25 22 22 0
3 0 9 8 0
4 0 0 60 0

(b) Greedy algorithm

User Worker ID
ID 1 2 3 4
1 0 80 82 74
2 65 0 0 0
3 0 26 34 0
4 0 0 0 0

However, with large datasets, the resource allocation is
no longer bounded by the capacity constraint. When the

average dataset size was larger than 12500, allocating the
whole dataset of a worker to a particular user for model
training takes considerable time from the worker. As a
result, the training time constraint prevents the worker from
serving too many users at the same time. Because user’s
valuation on dataset size exhibits the effect of diminishing
returns, distributing worker computation power to more
users can generally achieve higher social welfare than the
alternative that allocates worker resource to few users. Refer
to Table 7 for the detailed allocations with mean dataset size
set to 30000.

5.6 Effects of The Training Time Constraint
The last factor we examined is the training time constraint.
The maximum training time Tmax was ranged from 1200 to
12000 seconds with a step size of 1200 seconds. Figure 9
shows how the average social welfare changed with respect
to different settings of Tmax.

0 2000 4000 6000 8000 10000 12000

Maximum training time

5

5.5

6

6.5

7

7.5

8

8.5

A
v
e

ra
g

e
 s

o
c
ia

l
w

e
lf
a

re

10
4

ADMM

Greedy

Random

Fig. 9: The average social welfare versus the maximum training time.

When Tmax is small, a worker can only serve a few users
if we always allocate the largest possible batch size for a
training task. This is exactly what the greedy algorithm did
in our simulations. In fact, a worker could have served more
users if the batch size had not been set to the maximum. This
allocation strategy were actually taken by Random and the
ADMM-based algorithm, which explains their superiority
over the greedy algorithm when Tmax was small. Refer to
Table 8 for the allocation results with Tmax = 1200. As
the maximum training time increased, both the ADMM-
based and the greedy algorithms had increased average
social welfare. This can be justified as the training time
constraint is no longer an obstacle to the resource allocation
when Tmax is sufficiently large. In that case, the allocation
is only bounded by the capacity constraint. This explains
not only the trend of the increasing social welfare but also
the convergence of both algorithms. Refer to Table 9 for the
allocation results with Tmax = 12000.

The performance of Random seems not improving as
Tmax increased. This is because Random did not allocate the
maximum batch size even if doing so could maximize the
social welfare without violating the training time constraint.

5.7 Heterogeneity of Users
We simulated heterogeneous users by varying the diversity
in user’s valuations on dataset size. More specifically, we

12

TABLE 8: The batch size of each worker for each user (Tmax = 1200)

(a) ADMM-based algorithm

User Worker ID
ID 1 2 3 4
1 0 47 0 0
2 0 38 53 33
3 70 34 51 31
4 57 3 13 24

(b) Greedy algorithm

User Worker ID
ID 1 2 3 4
1 0 0 0 0
2 0 41 45 35
3 70 0 0 4
4 57 40 48 36

TABLE 9: The batch size of each worker for each user (Tmax = 12000)

(a) ADMM-based algorithm

User Worker ID
ID 1 2 3 4
1 0 47 0 0
2 0 43 57 35
3 70 48 58 44
4 57 40 48 36

(b) Greedy algorithm

User Worker ID
ID 1 2 3 4
1 0 47 0 0
2 0 43 57 35
3 70 48 58 44
4 57 40 48 36

used a uniform distribution U [300− ϵ, 300+ ϵ] to set up the
value of αi for each user i’s valuation, where the value of ϵ
ranged form 0 to 135 with a step size 15. A large ϵ implies
a large range of the αi values and thus highly diverse
user valuations. Fig. 10 shows the results by applying the
ADMM-based algorithm.

0 15 30 45 60 75 90 105 120 135

Value of

6.5

7

7.5

8

8.5

9

9.5

10

A
v
a
re

g
 s

o
c
ia

l
w

e
lf
a
re

10
4

Fig. 10: Average social welfare versus the diversity of user valuations
on datasets

It can be seen that the average value of the social welfare
did not vary significantly with ϵ. The reason is that the mean
value of αi remained to be 300 regardless of the value of
ϵ. Nevertheless, the standard deviation did increase as ϵ
increased.

6 CONCLUSIONS

In this work, we have formally modeled the incentive-aware
resource allocation problem in multi-worker multi-user FL
and proposed an auction-based solution framework. In the
framework, the DTP as an auctioneer allocates source from
each workers to each user for the user’s model training. We
have proposed two methods for the DTP to approximate
the optimal result of the auction: a greedy algorithm and an
ADMM-based algorithm. We have also proposed a pricing
rule that provides incentive compatibility and individual
rationality. For performance evaluation, we have conducted
simulations to study how the social welfare is affected by
various factors including the number of users, the number
of workers, the dataset size, and the maximum training
time. The simulation results show that the ADMM-based

algorithm achieves higher social welfare than the greedy
algorithm due to its ability to allocate worker resource to
users in a more elaborate manner. The performance gap
between these two approaches is significant when resource
collectively supplied by workers does not suffice to train all
user’s models but not when sufficiently many workers par-
ticipate or when the training time constraint is appropriately
loosened.

In short, this study demonstrates the feasibility of
auction-based incentive mechanism for multi-user FL. Our
future work is to perform optimality analyses of the pro-
posed algorithms and evaluate them with a considerable
number of workers that have weak computation capability
such as Internet of Things (IoT) devices.

REFERENCES

[1] T. Kraska, A. Talwalkar, J. Duchi, R. Griffith, M. J. Franklin, and
M. Jordan, “MLbase: A distributed machine-learning system,” in
The 6th Biennial Conf. on Innovative Data Systems Research, Jan. 2013.

[2] M. Li, D. G. Andersen, A. Smola, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed ma-
chine learning with the parameter server,” in Proc. 11th USENIX
Symp. on Operating Systems Design and Implementation, Oct. 2014,
pp. 583–598.

[3] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated Learning: Strategies for Improving
Communication Efficiency,” CoRR, vol. abs/1610.05492, 2016.

[4] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Trans. on Intelligent Systems
and Technology, vol. 10, no. 12, pp. 1–19, 2019.

[5] O. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated machine
learning: Survey, multi-level classification, desirable criteria and
future directions in communication and networking systems,”
IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 1342–1397, 2021.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Int. Conf. Artif. Intell. Stat., 2017, pp.
1273–1282.

[7] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc.
Machine Learning and Systems, vol. 2, 2020, pp. 429–450.

[8] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choud-
hary, “Federated learning with personalization layers,” CoRR, vol.
abs/1912.00818, 2019.

[9] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khaz-
aeni, “Federated learning with matched averaging,” CoRR, vol.
abs/2002.06440, 2020.

[10] X. Gong, A. Sharma, S. Karanam, Z. Wu, T. Chen, D. Doer-
mann, and A. Innanje, “Ensemble attention distillation for privacy-
preserving federated learning,” in Proc. IEEE/CVF Int’l Conf. on
Computer Vision, Oct. 2021, pp. 15 076–15 086.

[11] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 634–643.

[12] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proc. Int. Conf. Artif. Intell. Stat.,
2020, pp. 2938–2948.

[13] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive
mechanism for reliable federated learning: a joint optimization
approach to combining reputation and contract theory,” IEEE
Internet Things J., vol. 6, no. 6, pp. 10 700–10 714, Dec. 2019.

[14] Y. M. Saputra, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz,
and S. Chatzinotas, “Federated learning meets contract theory:
energy-efficient framework for electric vehicle networks,” CoRR,
vol. abs/2004.01828, 2020.

[15] W. Y. B. Lim, Z. Xiong, C. Miao, D. Niyato, Q. Yang, C. Leung,
and H. V. Poor, “Hierarchical incentive mechanism design for
federated machine learning in mobile networks,” IEEE Internet
Things J., vol. 7, no. 10, pp. 9575–9588, Jul. 2020.

[16] N. Ding, Z. Fang, and J. Huang, “Optimal contract design for
efficient federated learning with multi-dimensional private infor-
mation,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 186–200,
Jan. 2021.

13

[17] Y. Zhan, P. Li, Z. Qu, D. Zeng, and S. Guo, “A learning-based
incentive mechanism for federated learning,” IEEE Internet Things
J., vol. 7, no. 7, pp. 6360–6368, Jul. 2020.

[18] L. U. Khan, S. R. Pandey, N. H. Tran, W. Saad, Z. Han, M. N. H.
Nguyen, and C. S. Hong, “Federated learning for edge networks:
Resource optimization and incentive mechanism,” IEEE Commun.
Mag., vol. 58, no. 10, pp. 88–93, 2020.

[19] S. R. Pandey, N. H. Tran, M. Bennis, Y. K. Tun, A. Manzoor, and
C. S. Hong, “A crowdsourcing framework for on-device federated
learning,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3241–
3256, May 2020.

[20] G. Xiao, M. Xiao, G. Gao, S. Zhang, H. Zhao, and X. Zou,
“Incentive mechanism design for federated learning: a two-stage
Stackelberg game approach,” in IEEE 26th Int’l Conf. on Parallel and
Distrib. Syst., Dec. 2020.

[21] Y. Jiao, P. Wang, D. Niyato, B. Lin, and D. I. Kim, “Toward
an automated auction framework for wireless federated learning
services market,” IEEE Trans. Mobile Comput., vol. 20, no. 10, pp.
3034–3048, Oct. 2021.

[22] T. Le, N. H. Tran, Y. K. Tun, M. N. H. Nguyen, S. R. Pandey, Z. Han,
and C. S. Hong, “An incentive mechanism for federated learning
in wireless cellular networks: An auction approach,” IEEE Trans.
Wireless Commun., vol. 20, no. 1, pp. 4874–4887, Aug. 2021.

[23] Y. Deng, F. Lyu, J. Ren, Y.-C. Chen, P. Yang, Y. Zhou, and Y. Zhang,
“FAIR: Quality-aware federated learning with precise user incen-
tive and model aggregation,” in Proc. IEEE INFOCOM, May 2021.

[24] W. Y. B. Lim, J. S. Ng, Z. Xiong, J. Jin, Y. Zhang, D. Niyato,
C. Leung, and C. Miao, “Decentralized edge intelligence: a dy-
namic resource allocation framework for hierarchical federated
learning,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp. 536–
550, Mar. 2022.

[25] J. S. Ng, W. Y. B. Lim, Z. Xiong, X. Cao, D. Niyato, C. Leung, and
D. I. Kim, “A hierarchical incentive design toward motivating par-
ticipation in coded federated learning,” IEEE J. Sel. Areas Commun.,
vol. 40, no. 1, pp. 359–375, Jan. 2022.

[26] L. Deng, “The MNIST database of handwritten digit images for
machine learning research,” IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, Nov. 2012.

[27] G. Banjac, P. Goulart, B. Stellato, and S. Boyd, “Infeasibility detec-
tion in the alternating direction method of multipliers for convex
optimization,” J. Optim. Theory Appl., vol. 183, pp. 490–519, 2019.

[28] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1,
pp. 1–122, 2011.

[29] J. Li, Y. Zhu, Y. Hua, and J. Yu, “Crowdsourcing sensing to smart-
phones: A randomized auction approach,” IEEE Trans. Mobile
Comput., vol. 16, no. 10, pp. 2764–2777, 2017.

[30] Q. Li, H. Yao, T. Mai, C. Jiang, and Y. Zhang, “Reinforcement-
learning- and belief-learning-based double auction mechanism for
edge computing resource allocation,” IEEE Internet Things J., vol. 7,
no. 7, pp. 5976–5985, 2020.

[31] W. Zhong, C. Yang, K. Xie, S. Xie, and Y. Zhang, “ADMM-
based distributed auction mechanism for energy hub scheduling
in smart buildings,” IEEE Access, vol. 6, pp. 45 635–45 645, 2018.

[32] C. T. Dinh, N. H. Tran, M. N. H. Nguyen, C. S. Hong, W. Bao, A. Y.
Zomaya, and V. Gramoli, “Federated learning over wireless net-
works: Convergence analysis and resource allocation,” IEEE/ACM
Trans. Netw., vol. 29, no. 1, pp. 398–409, Feb. 2021.

[33] M. Cong, H. Yu, X. Weng, J. Qu, Y. Liu, and S.-M. Yiu, “A VCG-
based fair incentive mechanism for federated learning,” CoRR, vol.
abs/2008.06680, 2020.

[34] W. Vickrey, “Counterspeculation, auctions and competitive sealed
tenders,” The Journal of Finance, vol. 16, no. 1, pp. 8–37, Mar. 1961.

[35] E. Clarke, “Multipart pricing of public goods,” Public Choice,
vol. 11, no. 1, pp. 17–33, 1971.

[36] T. Groves, “Incentives in teams,” Econometrica, vol. 41, no. 4, pp.
617–631, Jul. 1973.

[37] S. Kim, “Incentive design and differential privacy based federated
learning: a mechanism design perspective,” IEEE Access, vol. 8,
pp. 187 317–187 325, 2020.

[38] S. J. Raudys and A. K. Jain, “Small sample size effects in statistical
pattern recognition: Recommendations for practitioners,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 13, no. 3, pp. 252–264, Mar.
1991.

[39] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Fed-
erated learning with non-IID data,” CoRR, vol. abs/1806.00582v2,
2022.

[40] Y. Zou, S. Feng, D. Niyato, Y. Jiao, S. Gong, and W. Cheng, “Mobile
device training strategies in federated learning: an evolutionary
game approach,” in Proc. Int. Conf. Internet Things, IEEE Green
Comput. Commun., IEEE Cyber, Phy. Social Comput., IEEE Smart
Data, 2019, pp. 874–879.

[41] N. Ferdinand, H. Al-Lawati, and S. C. Draper, “Anytime Mini-
batch: Exploiting stragglers in online distributed optimization,” in
Proc. of the 7th Int. Conf. on Learning Representations, May 2019.

[42] A. Reisizadeh, H. Taheri, A. Mokhtari, H. Hassani, and
R. Pedarsani, “Robust and communication-efficient collaborative
learning,” in Proc. Advances in Neural Information Processing Sys-
tems, Dec. 2019, pp. 8386–8397.

[43] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright
et al., “SciPy 1.0: fundamental algorithms for scientific computing
in Python,” Nature Methods, vol. 17, no. 3, pp. 261–272, 2020.

Feng-Yang Chen received the M.S. degree
in computer science from National Yang Ming
Chiao Tung University, Hsinchu, Taiwan, in 2021.
He is currently an engineer with Chunghwa Tele-
com, Taiwan. His research interests include re-
source optimization and game theory.

Li-Hsing Yen received the B.S., M.S., and
Ph.D. degrees in computer science from Na-
tional Chiao Tung University, Hsinchu, Taiwan,
1989, 1991, and 1997, respectively. He has been
a professor of National Chiao Tung University,
Taiwan, since 2016. His current research inter-
ests include distributed computing, wireless net-
working, and game theory. He has been in the
Editor Boards of the Springer’s Wireless Net-
works and is the recipient of the Best Paper
Awards of the IEEE WCNC 2013, ISPA 2015,

and APNOMS 2021.

	Introduction
	Related Work
	System Model and Problem Formulation
	System Model
	Problem Formulation

	Proposed Mechanisms
	Greedy Algorithm
	ADMM-Based Algorithm
	Step 1
	Step 2

	The Pricing Rule

	Numerical Results
	Simulation Settings
	Model Validation
	Number of Users
	Number of Workers
	Effects of The Dataset Size
	Effects of The Training Time Constraint
	Heterogeneity of Users

	Conclusions
	References
	Biographies
	Feng-Yang Chen
	Li-Hsing Yen

