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Abstract—This paper presents a scalable scheme for
ensuring causal ordering of messages passing among
processes in large-scale distributed systems. Previ-
ously proposed approaches, categorized as centralized
or fully distributed, either place the entire processing
loads on a single process or incur quadratic message
overheads in the number of participating processes.
These solutions perform limitedly in large-scale sys-
tems. Our scheme organizes the entire system as hi-
erarchical clusters in which any of the previously pro-
posed approaches can be employed. Message causality
is maintained by enforcing the rules by which messages
are propagated from origins to destinations. This ap-
proach incurs much less processing load on hot-spot
sites than the centralized approach, or, alternatively,
requires a message space overhead much less than that
in the fully distributed approach. We shall show that,
by setting cluster size appropriately, the message space
overhead can be only a linear or even a logarithmic
function of the number of processes involved. Our ap-
proach is suitable for large non-proprietary networks.
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I. I NTRODUCTION

The nondeterministic nature of distributed sys-
tems, i.e., asynchronous process execution speeds
and unpredictable communication delays, is the ma-
jor factor that complicates the design, verification,
and analysis of distributed systems.Causal message
ordering, henceforth referred to as CMO, is an or-
dering imposed on message deliveries to reduce sys-
tem nondeterminism while retaining concurrency. In
systems preserving CMO, messages directed to the
same destination are delivered in an order consistent
with their potential causality. The causality under
consideration is determined by thehappens-before
relation [25] but is restricted to message sending and
receiving events. Specifically, if a message-sending
event happens before the sending of another mes-
sage, the former message is considered to have the
potential for affecting the latter in a causal way, and
therefore must be received before the latter to retain
their cause-effect relationship, if they are destined
for the same process. In asynchronous distributed
systems, it may be difficult to ensure CMO since
processes continue their computation and communi-
cation activities after they issue messages, and mes-
sage delays are arbitrary.

CMO is considered important to reliable dis-
tributed systems [6], [8], [10], [27]. It can be used to
maintain the consistency of replicated data located
at different sites [23], [13], observe behaviors of a
distributed systems [29], [33], simplify the design
of distributed algorithms [1], [4], [6], and preserve
semantic causality in news or teleconference appli-
cations. Many implementations and extensions of
causally ordered communication have been done in
distributed shared memory systems [3], multimedia
systems [2], [7], and mobile computing systems [5],
[18], [28], [35]. Stoller and Schneider [32] formu-
lated a Hoare-style proof system for the verification
of algorithms that exploit CMO as their communica-
tion primitives. Yen [34] analyzed the probability of
breaking CMO by assuming some random distribu-
tions of message delays.

Conventional CMO solutions are either central-
ized or fully distributed. In centralized approaches
[12], [24], [30], a dedicated coordinator process se-
rializes all messages exchanged in the system, ef-
fectively imposing a total order on delivery that is
consistent with the causal order. In distributed ap-
proaches [8], [9], [29], [31], each process can send
messages directly to any others without the inter-
vention of a coordinator. The distributed approach
may use piggybacking technique [8], where each
message carries a history copy of all causally prior
messages. Thus when a messagem is delivered to
a processP , copies of all messages addressed to
P that causally precedem also arrive withm or
have arrived earlier. Alternatively, the distributed
approach may exploit vector clocks [20], [26] or
similar mechanisms [19] so that, instead of the con-
tents of all causally preceding messages, only vec-
tor clock timestamps of causally preceding messages
need to be carried in each message [9], [29], [31].
The basic idea is to deliver messagem to processP
only if all messages that causally precededm and
were destined forP have already been delivered.
Otherwise, messagem should be buffered until the
delivery condition stated above is satisfied.

None of these conventional approaches scales
well. The centralized approach creates a perfor-
mance bottleneck at the coordinator, resulting in
performance degradation especially when message-
exchanges are frequent. This drawback makes cen-



tralized approaches unsuitable for large-scale sys-
tems. The piggybacking approach may either suffer
from unbounded growth of the information added to
messages, or require a complex mechanism to pre-
vent it. Fully distributed approaches exploiting vec-
tor clocks, on the other hand, impose a size ofO(n2)
message header on every message (n is the number
of participating processes), which has been proven
necessary for system-wide CMO [2]1 This overhead
becomes intolerable whenn grows large.

In fact, one of the reasons that some researchers
criticized about CMO is that observed solutions do
not scale [17]. To cope with this limitation, in this
paper we propose a CMO scheme that unifies con-
ventional approaches for large-scale distributed sys-
tems. Our scheme organizes the system into hierar-
chicalclusters. Within a cluster, any existing CMO
methods can be locally adopted. Our approach effec-
tively decomposes system-wide CMO into a number
of independent cluster-wide CMOs. The correctness
is guaranteed by confining the way in which mes-
sages are propagated. The merit is that the heavy
work load on the coordinator that the centralized ap-
proach imposes is distributed, or, alternatively, the
costly message space overhead that a distributed ap-
proach imposes is decreased significantly.

The rest of this paper is organized as follows. Sec-
tion 2 gives some definitions and assumptions con-
cerning the problem. Section 3 describes details of
the proposed method and also proves its correctness.
In Section 4, we analyze the effects of clustering on
reducing message header space. Section 5 concludes
the paper.

II. PRELIMINARY

Our scheme assumes an asynchronous distributed
system consisting ofn processes. A process com-
municates with others solely by means of message-
passing. No shared memory or global clock is avail-
able. The communication channel between a pair of
processes is assumed to be logically reliable. Mes-
sage transmission delays are arbitrary but finite.

An event is defined as an atomic operation that
changes the state of a process. Three types of
events may occur in distributed systems: thesending
of messages, thereceipt of messages, and internal
events [26]. What constitutes an internal event de-
pends on the context of the system and is irrelevant
to the definition of message causality. The happens-
before relation (denoted by “→”) on the set of events
is the smallest transitive relation satisfying the fol-
lowing conditions [25]:
• if a and b occur in the same process and ifa

comes beforeb thena → b;

1The message overhead of some multicast (broadcast) proto-
cols can be degenerated toO(n). For such examples, we refer the
reader to [14], [11]. Observe that a multicast can be achieved by
multiple unicasts but notvice versa. The reduction of complexity
essentially results from abbreviating redundant, repeatedly iden-
tical causality information of messages in the unicast-type pro-
tocol. This paper is primarily concerned with the point-to-point
communication paradigm, a primitive.

• if a is the sending of messagem andb is the
receipt ofm, thena → b.

Conventional CMO approaches can be abstracted as
providing every process with a causal message deliv-
ery part (CMD) between the application process and
underlying communication network. The receipt of
a message is thus differentiated from the delivery of
the same message. A message is said to bereceived
by a site when it arrives at the CMD of that site, and
is said to bedeliveredto a site when it is passed by
the CMD to the application process without violat-
ing causal order. Letsent(m) anddeliv(m), respec-
tively, denote the events of sending and delivering
messagem. Conventional schemes as well as ours
aim to ensure CMO with respect to sending and de-
livering events,i.e., sent(m) → sent(m′) always im-
pliesdeliv(m) → deliv(m′) for two messagesm and
m′ addressed to the same destination.

III. T HE PROPOSEDSCHEME

The proposed scheme consists of two parts. The
first part states how processes are organized. The
second part describes how messages are propagated
from sources to destinations. We shall first present a
primitive two-layer hierarchy and then extend it to a
more complex structure.

A. A Primitive Two-Layer Hierarchy

Process Organization
The set of all processes is partitioned into a num-
ber of subsets called clusters. Processes in the same
cluster is allowed to send messages directly (i.e.,
without any intermediation of any other process) to
each other. Within each cluster a specific process is
designated as theagentof the cluster, and all others
are referred to asclients. All messages into or out of
a cluster must be queued and served serially at the
agent. The set of all agents forms a special cluster,
the agent cluster, which has no agent for it. How
processes are clustered is irrelevant to the correct-
ness of our scheme. A straightforward approach is
to assign computationally coherent processes to the
same cluster. Alternatively, processes can be clus-
tered to match the underlying communication or ad-
ministration structure of existing network.
Message Ordering and Propagation
We extended the abstraction of conventional ap-
proaches by introducing at every site a message re-
lay part (MR) between the application process and
the CMD. MR takes charge in relaying messages
between clusters. When a message is issued by
an application process, it is first passed to the MR
at the same site to determine the next stop of the
messages. The determination rule is as follows.
An intra-cluster message will be sent directly to its
destination, whereas an inter-cluster message will
be first directed to the origin’s agent, then toward
the destination’s agent, and finally to the destina-
tion process. Each relay of this message corre-
sponds to an intra-cluster message propagation be-
tween two MRs. Since every cluster employs its



own CMO protocol, the relay is accomplished by
the locally adopted cluster-wide CMO protocol. An
agent, which involves in communications between
two clusters, must maintain two independent CMD
processes, one for each cluster. At such an agent,
an incoming message is first received by the corre-
sponding CMD process. Upon delivery respecting
CMO, the message is then passed upward to the MR.
If the delivered message is destined for this site, it is
passed further to the application process; otherwise,
the MR relays the message through the other CMD
process. A typical message propagation scenario is
illustrated in Figure 1.
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Fig. 1. Message propagation example

Note that the relaying between two CMD pro-
cesses must be done in FIFO order. ConsiderY
in Figure 1 as an example. Letm andm′ be two
messages both from clusterB. If m is delivered by
CMDB to Y ’s MR beforem′ is, the MR must send
m throughCMDC beforem′. For message relayed
in the opposite direction,i.e., from clustersC to B,
the FIFO order requirement must be met as well.

B. Hyper-Clustered Hierarchy

The two-layer hierarchy can be extended, consid-
ering the fact that the agent cluster forms a smaller
subsystem that can be further decomposed by recur-
sively applying the same clustering rule. Such an
extension yields a hyper-clustered hierarchy.

Definition 1: Consider systemS. Let the primi-
tive set of processes be at the first layer and let the
set of processes at thei-th layer be denoted bySi.
S forms anl-layer hierarchy (l ≥ 2) if for all i,
1 ≤ i < l, the following conditions hold.
• Si is partitioned into mi clusters,
S1

i ,S2
i , . . . ,Smi

i , where1 < mi < |Si|.
• Let Aj

i denote the agent of clusterSj
i (1 ≤ j ≤

mi). Si+1 = {A1
i , A

2
i , . . . , A

mi
i }.

According to the definition, there is only one cluster
on the topmost layer which has no agent for itself.
Figure 2 shows an example of a three-layer hierar-
chy. Note that some process participating in two or
more clusters may act as an agent on some layer as
well as a client on a higher layer. As an example,
processR in Figure 2 involves in communications
among three clusters, one on each layer, and acts as
a client on the third layer.

A site participating ink (k ≥ 2) clusters now
must maintaink independent CMD processes, one
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Fig. 2. An example of a three-layer hierarchy

for each cluster. This results in totalk(k − 1) possi-
ble directions along which messages may be relayed
from one CMD process to another. It is required that
MR must relay all messages along the same direc-
tion in FIFO order.

The message relaying rule is generalized for anl-
layer hierarchy (l ≥ 2). Figure 3 shows a procedure,
MRP, that computes the complete sequence of sites
through which to propagate a message with known
source and destination sites. The relaying path for
messages from siteSi to siteSj is obtained by in-
voking MRP(Si, Sj , 1). The output is a sequence of
〈sender, receiver〉 tuples, which, in order, specifies
each link of that path.

procedureMRP(Si, Sj , k)
if Si andSj are in the same cluster on layerk then

output〈Si, Sj〉
else

Let Ai be the agent ofSi on layerk
Let Aj be the agent ofSj on layerk
if Si 6≡ Ai then

output〈Si, Ai〉
end if
invokeMRP(Ai, Aj , k + 1)
/* to generate the path fromAi to Aj */
if Sj 6≡ Aj then

output〈Aj , Sj〉
end if

end if
end procedure

Fig. 3. Procedure Message Routing Path (MRP)

C. CMD Implementations

Adopting Raynal-Schiper-Toueg Algorithm
The first implementation we consider is to adopt
in every cluster the algorithm proposed by Raynal,
Schiper, and Toueg [29] (henceforth referred to as
the RST algorithm). In this algorithm, each process



Pi maintains ann×n matrix,SENTi, wheren is the
total number of processes, to record the number of
messages, as it has known, sent from each process
to each others. Every message transmitted byPi is
tagged with the contents ofSENTi. Each processPi

also maintains ann-entry vector,DELIVi, to record
the number of messages delivered toPi from all oth-
ers. On receiving a message, saym, processPi can
determine whetherm can be delivered by compar-
ing DELIVi with thei-th column of theSENTmatrix
taggingm. If m can be delivered,SENTi as well as
DELIVi are updated, and theSENTmatrix tagging
m can be discarded.

Adopting the RST algorithm as an implementa-
tion of CMD, our scheme can be viewed as a way of
clustering the RST algorithm. Each CMD process
maintains its ownSENTmatrix andDELIV vector.
The sizes of the matrix and the vector depend on
the size of the cluster which the CMD process be-
longs to. When a message is delivered by a CMD,
the taggedSENTmatrix will be discarded before the
message is passed to the MR. On the other hand,
when the MR passes a message through a CMD to
send to a cluster, the CMD will tag the message with
the SENTmatrix maintained by that CMD. Conse-
quently, when an inter-cluster message is in propa-
gation, it is only tagged with theSENTmatrix cor-
responding to the current cluster. TheSENTmatrix
corresponding to the previous cluster has been dis-
carded when the message left that cluster.

Adopting the Centralized Approach
If the centralized approach is adopted in every clus-
ter as an implementation of CMD, a coordinator
must be nominated in each cluster. A simple strat-
egy is to incorporate the coordinator’s functionality
in every agent, and to nominate a process as the co-
ordinator at the top layer since the top layer, by our
definition, has no agent for itself. When combining
this strategy with the FIFO requirement on message
relaying, message propagation can be modeled as a
propagation tree similar to those proposed for total-
ordering multicast [21], [22]. Figure 4 shows the
propagation tree that corresponds to the three-layer
hierarchy shown in Figure 2.
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Fig. 4. The propagation tree corresponding to the hierarchy
shown in Figure 2

It is also possible to adopt other CMO algorithms,
and to even use different approaches for each cluster.
Various degrees of modifications may be needed in
adopting these approaches.

D. Correctness Justification

We shall justify that our mechanism ensures
system-wide CMO. The key to the correctness is
that wheneversent(m) → sent(m′) holds for two
messagesm and m′ addressed to the same pro-
cess, our scheme ensures that the same relation
will also be present in the destination cluster and
therebydeliv(m) → deliv(m′) by the CMO proto-
col employed there. This successful ordering en-
forcement relies on a property of our scheme: the
Replay Property. Consider the scenario shown in
Figure 5. Ifsent(m) → sent(m′) is present in clus-
terA, the CMO protocol employed inA ensures that
deliv(m) → deliv(m′) atX (the agent ofA) and the
FIFO message relaying rule ensures thatsent(m) →
sent(m′) will be present in clusterD. Thus form
and m′, the relationsent(m) → sent(m′) is “re-
played” in the next cluster.

m�

m'�

m�

m'�

X

X
�

A
�
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Fig. 5. Scenario illustrating the Reproduction Property.

Another important property is that by our mes-
sage propagation rule, there is only one unique path
between any two sites. Consider two messagesm
and m

′
addressed to the same process such that

sent(m) →sent(m
′
). If they are sent by the same

site, they will traverse the same propagation path.
By the Replay Property, the same causal relation be-
tween them will be present in all clusters along the
path. CMO will be respected in that case. If these
messages are sent by different sites, the following
theorem shows that CMO will still be preserved.

Theorem 1:Let m be a message sent by siteX
and destined for siteY . LetXi be any site other than
X andY . Letmi be the first messageX sends toXi

after the sending ofm. Then any messagem
′

that is
sent byXi and destined forY after the delivery of
mi will not be delivered beforem atY .
Proof: There are five possible message propaga-
tion routes amongX, Y , andXi, as shown in Fig-
ure 6. Note that as mentioned above, since there
is only one unique path between any two sites,
routes containing cycles are not possible. In (a),
it follows from the Replay Property that causal re-
lation sent(m) →sent(mi) will be recognized by
all agents on the path fromX to Xi (including
Xi). Therefore,Xi will send (actually, relay)m
beforem′. By the Replay Property, causal relation
sent(m) →sent(m′) will be present at all agents on
the path fromXi to Y . CMO will thus be enforced
by the CMO scheme employed in the last cluster.



In (b), sent(m) →sent(mi) will be recognized by
all agents on the path fromX to Y , sinceY is lo-
cated on the way of propagatingmi to Xi. ThusY
will deliver m beforemi. Messagem′ can never
be delivered beforem is becausesent(m′) occurs
causally subsequent tosent(mi). In (c), X sendsm
before sendingmi. Later, when messagem′ from
Xi is delivered and then sent again (relayed) byX,
sent(m) →sent(m′) will be honored. The Replay
Property ensures that this relation will be present at
agents on the path fromX to Y . Thusm will be
delivered beforem′ is. In (d), similar to the fore-
going argument of (b), relationsent(m) →sent(mi)
will be recognized at all sites fromX to W (in-
cluding W ). ThusW sends (relays)m beforemi,
and it is guaranteed by the Replay Property that
sent(m) →sent(m′) will be recognized in the last
cluster. Hence CMO is never violated. Case (e)
is possible only whenW1, W2, andW3 are all in
the same cluster. By the Reproduction Property,
sent(m) →sent(mi) will by recognized byW1. W2

will observedeliv(mi) →sent(m′) due to causality.
Therefore,sent(m) →sent(m′) holds in this cluster.
The CMO scheme at this cluster will guarantee the
desired CMO.2
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IV. PERFORMANCEANALYSIS AND

COMPARISON

We shall analyze and compare the performances
of our approach to those of the centralized and the
RST algorithm. We are primarily concerned with
two measurements, namely, message cost and pro-
cessing load. We assume that the system is orga-
nized in the following way. When the number of
sites,n, is not greater than a certain numberd, the
whole system forms a single cluster. Otherwise, all
sites are equally partitioned intob clusters, where
1 < b < d. If after partition, the number of sites
in a cluster is still greater thand, each cluster is fur-
ther partitioned intob smaller clusters. The cluster-
ing process terminates when the number of sites in
a cluster is less than or equal tod. In this way, the
number of layers,l, that ann-site system will form
can be derived by

l = dlogb

n

d
e+ 1 (1)

A. Message Cost

In this subsection we analyze the effects of clus-
tering on reducing message cost. The message cost
is defined as the extra space required in each mes-
sage’s header for CMO. In fact, this measure con-
tributes to message transmission time as well as
message processing time. We shall show that the
message cost in our scheme is only a linear or even
a logarithmic function of the number of processes.

The RST algorithm incursO(n2) message cost.
Suppose that the RST algorithm is employed in ev-
ery cluster. The message cost of an intra-cluster
message is proportional to the square of the cluster
size. The message cost of an inter-cluster message is
the sum of the costs of individual intra-cluster mes-
sages, each of which corresponds to a hop of that
message. We are interested in evaluating the worst-
case message cost. LetC(n) denote the worst-case
message cost for ann-site system. Whenn is not
greater thand, the whole system forms a single clus-
ter, and clearlyC(n) = cn2, wherec is a constant.
Whenn is greater thand, all sites together form a
hierarchy of two or more layers. In that case,C(n)
corresponds to the cost of propagating a message
from some non-agent site in Layer 1 to the top layer,
exchanging the message between two agents in the
top layer, and then propagating it to another non-
agent site in Layer 1. Therefore we have

C(n) =
{

cn2 1 ≤ n ≤ d
2D(n) + cb2 n > d

whereD(n) denotes the worst-case cost of propagat-
ing a message between a site in Layer 1 and another
site in the top layer. We defineD(n) = 0 when
1 ≤ n ≤ d. Whend < n ≤ bd, the whole sys-
tem forms a two-layer hierarchy, andD(n) is pro-
portional to the square of the Layer 1 cluster size.
ThusD(n) = c(n/b)2. Whenn > bd, the whole
system forms a hierarchy of more than two layers.
The value ofD(n) for a k-layer hierarchy is essen-
tially the value ofD(n/b), the worst-case cost of
propagating a message between a site in Layer 1 and
a site in Layer(k − 1), pluscb2, the cost of propa-
gating a message between a site in Layer(k−1) and
a site in Layerk. Therefore, the value ofD(n) can
be expressed as a recurrence relation:

D(n) = D(n/b) + cb2

It is known [15] thatD(n) = O(log n). Therefore,
we arrive at the following equation:

C(n) =





cn2 1 ≤ n ≤ d
c(2n2/b2 + b2) d < n ≤ bd
O(log n) n > bd

From the above we obtain the following result.
When the whole system forms a two-layer hierar-
chy (d < n ≤ bd), settingb =

√
n yields O(n)

message cost. When the whole system forms a hi-
erarchy of three or more layers, the message cost is
only O(log n), for b being fixed to some small num-
ber in comparison withn.



B. Processing Load

The processing load on a single site is defined as
the average number of messages arriving at that site
per unit of time, referred to as the site’smessage ar-
rival rate, when the whole system is in a steady state.
Suppose that in equilibrium, every site issues an av-
erage ofλ messages per unit of time. Let message
destination be a random variable that is uniformly
distributed over alln sites (including the sender).
If the system employs the RST algorithm, each site
contributes a message arrival rate ofλ/n to each of
the other sites. So the processing load on each site is
λ, independent of the number of sites in the system.
On the other hand, if the system adopts the central-
ized approach, the message arrival rate at the coor-
dinator isnλ. Clearly, the processing load on the
coordinator increases in proportion to the number of
sites in the system.

Regarding our approach, we assume that the cen-
tralized approach is adopted in every cluster, and the
coordinator’s functionality is incorporated in each
cluster’s agent. In addition, an extra site not in the
system is employed to act as the coordinator for sites
at the top layer. This site forwards messages for
all other sites without initiating any messages of its
own.

We shall derive the message arrival rates at the
coordinator and at agents. The following basic rules
[16] are needed in our derivation.
• If there arek independent message streams

fed into site S at respective arrival rates
λ1, λ2, . . . , λk, the message arrival rate atS is∑k

i=1 λi.
• Let m be a message stream feeding into site

Si with arrival rateλ. Suppose thatSi has to-
tal k downstream links leading respectively to
Si,1, Si,2, . . . , Si,k, to each of whichm can be
forwarded bySi with respective probabilities
pi,1, pi,2, . . . , pi,k. Let pi = 1 −∑k

j=1 pi,j be
the probability of directingm to Si itself. Let-
ting λi,j be the average rate at whichSi for-
wards messages toSi,j (referred to as themes-
sage departure ratefrom Si to Si,j), we have
λi,j = pi,j · λ. The same argument holds for
message streams originating fromSi.

Given ann-site system, letL(n) be the message
arrival rate at the coordinator of the top layer. When
1 ≤ n ≤ d, the system forms a one-layer hierarchy
andL(n) = nλ, which is essentially the same as
with the purely centralized approach. Whenn > d,
the system forms a hierarchy ofl layer (l ≥ 2) as
indicated by Equation (1). Letmn,k be a layer-k
coordinator of ann-site system, where1 ≤ k ≤ l,
and letR(n, k) be the message arrival rate atmn,k

that is contributed by all sites it serves. Since a
layer-1 coordinator servesn/bl−1 sites, we have
R(n, 1) = nλ/bl−1. Any other coordinator in layer-
k, where1 < k ≤ l, servesb sites, each of which
is a layer-(k − 1) coordinator with message arrival
rateR(n, k − 1). Since messages fed into a layer-

(k − 1) coordinator can be addressed to some site
served by the same coordinator, in this case an inter-
cluster message propagation to the layer-k coordina-
tor is not always required. Assume that a portionp
of R(n, k−1) constitutes the message departure rate
from a layer-(k− 1) coordinator to the layer-k coor-
dinator. Then we can formulatep as the ratio of how
many sites are not served by the layer-(k − 1) coor-
dinator ton, the total number of sites in the system.
For a layer-2 coordinator,p is equal to

n− n/bl−1

n
=

bl−1 − 1
bl−1

Therefore,

R(n, 2) = b · bl−1 − 1
bl−1

·R(n, 1)

=
bl−1 − 1
b2l−3

· nλ

For a layer-3 coordinator,p is equal to

n− n/bl−2

n
=

bl−2 − 1
bl−2

Therefore,

R(n, 3) = b · bl−2 − 1
bl−2

·R(n, 2)

=
(bl−1 − 1)(bl−2 − 1)

b3l−6
· nλ

In general, for a layer-k coordinator,

R(n, k) =
∏k−1

i=1 (bl−i − 1)
bj

· nλ

wherej = kl −∑k
i=1 i. Therefore,

L(n) = R(n, l) =
∏l−1

i=1(b
l−i − 1)

bl(l−1)/2
· nλ

Except for the coordinator of the top layer, every
layer-k coordinator also has a message stream from
its upper layer destined for some site within its ser-
vice cluster. LetS(n, k) be the message arrival rate
at mn,k that is contributed by its layer-(k + 1) co-
ordinator. Under our assumption of uniformly dis-
tributed destinations, a layer-k coordinator will di-
vide its S(n, k) into b equal parts, each of which
contributesS(n, k − 1). Therefore,

S(n, k) =
{

L(n)/b if k = l − 1
S(n, k + 1)/b if 1 ≤ k ≤ l − 2

Solving this recurrence relation, we haveS(n, k) =
L(n)/bl−k. The total message arrival rate atmn,k

is the sum ofR(n, k) and S(n, k). As an ex-
ample, consider a two-layer hierarchy. We have
L(n) = (b − 1)nλ/b and R(n, 1) + S(n, 1) =
nλ/b + L(n)/b. Figure 7 shows the values ofL(n)
andR(n, 1) + S(n, 1) for various settings ofb. It
can be seen that, on the condition ofb being 2,
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the processing load on the top-layer coordinator is
only half of that on the coordinator in the central-
ized approach; however, the processing loads on the
bottom-layer coordinators are relatively high. Asb
increases, the processing load on the layer-two co-
ordinator increases while processing loads on other
coordinators decrease. This can be explained by the
fact that whenb = 2, the amount of traffic due to
inter-cluster messages is the same as that of intra-
cluster messages. Asb increases, the cluster size be-
comes smaller, thus an agent serves fewer clients.
Meanwhile, inter-cluster messages increase, placing
more processing loads on the top-layer coordinator.

V. CONCLUSIONS

Conventional CMO solutions take either central-
ized or fully distributed approaches. We have
proposed a CMO scheme that unifies both kinds
of CMO approaches by partitioning processes into
clusters which can be further structured into a hier-
archy. This manner of process clustering is suscep-
tible to outstanding scalability and thereby efficient
communication, in the following lines. In the cen-
tralized approach, the coordinator becomes a perfor-
mance bottleneck when the number of processes in-
creases beyond a certain value, making the approach
unsuitable for large-scale distributed systems. By
means of process clustering, twofold advantages re-
sult. The processing load can be alleviated sub-
stantially from the central coordinator and shared
among agents, achieving better scalability. On the
other hand, fully distributed approaches like the RST
algorithm demandO(n2) message cost, which in-
creases both message transmission and processing
delays. Given our scheme, message overhead is de-
composed into a number of small components. By
setting cluster size appropriately, the message cost
can be reduced to onlyO(n) or evenO(log n).

As a remark on our proposal, we note that the
number of intermediate nodes to be traversed for
propagating messages, namely hop count, can in-
crease when more layers are introduced into the
system. This, however, does not necessarily imply
longer communication delay. Indeed, a simulation
study conducted in [5] showed that the size of mes-
sage space overhead can dominate the overall sys-
tem performance. The significant reduction of this
overhead by our scheme could outbalance the side

effect of longer routing paths. Yet another remark
pertinent to our proposal is stated as follows. All
causal ordering, point-to-point protocols, including
ours, are subject to a form of potential deadlock, re-
ferred to ascausal gap[9] in the literature, if both
node and link failures can occur. In contrast, causal
multicast protocols like those deployed in the ISIS
system [11], [14] do not suffer from this problem.

Nowadays large-scale networks such as the Inter-
net are organized as a collection of subnetworks. If
we view each subnetwork as a cluster and desig-
nate one site in each subnetwork as the agent, the
system-wide CMO can be maintained with the flexi-
bility that any CMO solution can be locally adopted
in each cluster. This makes our proposal a practical
solution and apt for modern non-propriety networks.
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