
Network Service Embedding in Multiple Edge
Systems: Profit Maximization by Federation

Yu-Chen Tai and Li-Hsing Yen
Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Email: {taiyuchen.cs07g, lhyen}@nctu.edu.tw

Abstract—A service chain (SC) comprises a series of service
functions realized as virtualized network functions (VNFs). Each
VNF has specific resource, bandwidth, and location requirements.
This study assumes multiple SCs to be placed on geo-distributed
heterogeneous edge servers owned by multiple edge service
providers (ESPs). Each ESP selectively hosts SCs to earn profit.
We consider the problem to maximize the total profit (i.e., social
welfare) of all ESPs by organizing ESPs into a set of disjoint
federations called federation structure. We formulate the problem
of finding an optimal federation structure, identify the difficulties
in solving the problem, and present two time-efficient heuristics as
our approach. Simulation results show that elaborate federation
structures do bring in higher social welfare compared with simple
all-in or all-out ESP organization. The proposed heuristics can
also approximate the optimal result in many cases.

I. INTRODUCTION

Service Function Chaining (SFC) is to link independent
service functions (SFs) together in a particular order to form
a service chain (SC), which enacts a specific network service
(NS) in data network. SFC has been a prominent use case
of and tightly coupled with Network Functions Virtualization
(NFV) [1], which realizes SFs as software modules known as
virtualized network functions (VNFs). VNFs run on commod-
ity servers and can be boosted by cloud-based virtualization
technologies. With the support of software defined networking
(SDN), NFV/SFC enables dynamic instantiation, configura-
tion, and termination of NSs, which significantly enhances
scalability and elasticity. It also facilitates innovative network
services such as network slicing [2].

Network service embedding (NSE) is to deploy SC to
an NFV infrastructure. There have been many studies on
NSE in cloud datacenter (NSE-Cloud) [3], [4]. In contrast,
this study assumes edge system as NFV infrastructure. Edge
system brings cloud service to the proximity of end users by
leveraging geo-distributed edge servers. NSE in the edge is
essential to latency-sensitive, location-dependent, or context-
aware applications. For instance, the cache server of content
delivery network (CDN) in the edge can provide better user
experience [5]. Also, a firewall placed in edge can preserve a
greater amount of bandwidth when a denial-of-service (DoS)
attack occurs [6].

Figure 1 shows the target environment of this study. We
assume multiple SCs to be placed on geo-distributed het-
erogeneous edge servers owned by multiple edge service
providers (ESPs). Each ESP receives payments but also incurs
operational costs from hosting SCs.

ESP 1 ESP 2 ESP m

Area 1
Area l

Area 2

Src VNF1 VNF2 Dst

Src VNF1 VNF2 DstVNF3

deployment

Service Chains

……

……

……

Fig. 1: Multiple SCs embedded to geo-distributed edge servers owned by
multiple ESPs

Individual Edge Profit Maximization (IEPM) problem is to
maximize an individual ESP’s profit by hosting a selected set
of SCs. The selection is subject to computation resource, band-
width, and location constraints. The IEPM problem possesses
some unique features that differentiate it from NSE-Cloud such
as limited computation resource and bandwidth, heterogeneous
server costs, and dispersed server locations. However, it still
shares some properties with NSE-Cloud. For example, some
type of VNF (such as firewall or video codec [7]) may have
different bandwidth demands for inflow and outflow traffics,
respectively (i.e., traffic scaling [8]). IEPM is at least as hard
as NSE-Cloud, because NSE-Cloud is only a special case of
IEPM (NSE-Cloud assumes homogeneous servers with vast
resource and uniform cost within a single area).

We further consider the problem to maximize the total
profit (i.e., social welfare) of all ESPs by forming disjoint
ESP federations. An ESP federation is a set of ESPs that
share their resources for NSE. When considerable SCs come
in for possible deployment, it is possible that no ESP alone
can host some profitable SC due to inadequate computing or
bandwidth resource in some area. If two or more ESPs could
form a federation, they may earn extra profit and increase
the social welfare by jointly hosting the SC. Federation Profit
Maximization (FPM) problem is to maximize the profit of a
particular federation by hosting a selected set of SCs. It is like
the IEPM problem with an additional consideration of extra
federation maintenance cost [9].

Our main problem, social welfare maximization (SWM), is
to identify a federation structure that maximizes the social
welfare. A federation structure is a partition of all ESPs into

a set of disjoint federations. SWM consists of two parts. One
part is to enumerate all possible federation structures, which is
challenging because the number of possible federation struc-
tures exhibits exponential growth. The other part is to figure
out the profit of each federation structure. This part cannot be
directly decomposed into independent FPM problems because
of the conflict of interest among federations within the same
federation structure regarding their own profit maximization.

We formally formulate the SWM problem, discuss the
difficulties in solving it, and present two time-efficient heuris-
tics as our approach. We conducted simulations to compare
the performance of the proposed heuristics against simple
federation structures such as grand federation (which includes
all ESPs in it) and singleton federations (where all ESPs
work alone). Simulation results show that a well-structured
federation structure generally increases social welfare. In many
cases, the proposed heuristics also approximate the optimal
result.

The rest of this paper is organized as follows: Sec. II reviews
related work, presents the system model, and formulates the
problem. The following section details the issues of the SWM
problem and presents the proposed approach. Sec. IV shows
the simulation results and the last session concludes this paper.

II. BACKGROUND AND PROBLEM FORMULATION

A. Related Work

NSE mainly comprises VNF placement and VNF chaining.
VNF placement allocates a server with associated resource to
each VNF of the SC to be deployed while VNF chaining links
together all these VNFs with guaranteed bandwidth or end-to-
end (E2E) latency. The objectives of NSE are diverse. Some
typical examples are operational cost and service latency mini-
mizations. Cost minimization can be achieved by consolidating
multiple VNFs on the same host [3] or sharing a VNF among
multiple SCs [4]. Latency minimization can be achieved by
replicating VNF instances for load balancing [10].

Some prior work has addressed VNF deployment on edge
servers [11], [12] but did not consider the chaining of multiple
VNFs. There have been some studies on SC deployment on
geo-distributed infrastructure. The work by Dietrich et al.
[8] aims at NSE with a set of heterogeneous geo-distributed
datacenters. Their approach partitions a network function into
components, each is embedded into a datacenter. The goal
is to minimize overall cost while achieving load balancing
among datacenters. Jia et al. [13] jointly optimized instance
provisioning and traffic routing for service chaining in geo-
distributed datacenters. They aimed at minimizing the cost of
NS providers. Zhou et al. [14] considered a similar problem
in an environment where one central cloud and multiple edge
clouds coexist. Compared with central cloud, edge clouds have
significantly constrained resource capacity. Leivadeas et al.
[15] also addressed VNF placement problem in a hybrid cloud-
edge environment with a goal to minimize SC deployment
cost as well as E2E communication delay. They specifically
considered location requirements imposed by VNFs.

All the mentioned papers assumed one infrastructure
provider. Benkacem et al. [16] considered VNF deployment
for CDN on the top of multiple public clouds. The proposed
approach allows the CDN provider to make a possible trade-
off between deployment cost and quality of user experience.
Chen and Yen [17] introduced a business model between ESPs
and network service providers (NSPs), where NSPs lease cloud
resources from ESPs for NS deployments. The authors adapted
a matching mechanism for the dispatch of NSs to ESPs and
another matching mechanism for the deployment of VNFs to
edge servers.

This paper follows the model proposed in [18], which
studied the federation of ESPs for resource provisioning to
multiple requesters. However, the work in [18] considered gen-
eral resource allocation without regarding to NFV-based NS
deployment. The approach to federation structure generation
in [18] (merge-and-split) is also different from ours.

B. System Model

We assume n ESPs P = {p1, p2, . . . , pn} and l different
areas A = {a1, a2, . . . , al} in the system. We consider t dif-
ferent types of computing resources (CPU, memory, storage,
etc.) numbered from 1 to t. For each ESP pi ∈ P , let Ri(k, r)
denote pi’s capacity of Type-r resource in area ak ∈ A, where
1 ≤ r ≤ t. Likewise, we use Bi(p, q) to denote ESP pi’s
bandwidth capacity between two areas ap and aq . Every ESP
has its own cost structure. We use cri ∈ Z+ and cb

i ∈ Z+

to denote pi’s unit costs of Type-r computing resource and
bandwidth, respectively. All these physical resources on the
edge server can be virtualized into a pool of virtual resource
managed by Virtualized Infrastructure Manager (VIM), which
is one of the major functional blocks of NFV Management
and Orchestration Architecture (NFV-MANO) [19].

On the other side, we assume m SCs S = {s1, s2, . . . , sm}
to be deployed. Let sj ∈ S consist of δj VNFs. Each
VNF is characterized by its resource demand and designated
deployment area. Let the Virtual Deployment Unit (VDU)
descriptor [20] of the v-th VNF in sj be denoted by a tuple
Vvj = (qj,v1 , qj,v2 , . . . , qj,vt , αj,v, βj,v), where qj,vr , 1 ≤ r ≤ t,
is the amount of Type-r resource required, αj,v ∈ A is the
designated area, and βj,v is the bandwidth required from areas
αj,v to αj,v+1, the designated area of the next VNF. For the
last VNF in sj , the last term in the tuple is the bandwidth
required from αj,δj (the area of the egress node) to αj,1

(the area of the ingress node). Each SC sj ∈ S is specified
as a chaining sequence of VNFs associated with a payment
ρj ∈ Z+ that will be given to the ESP that accommodates sj .

C. Social Welfare Maximization (SWM)

For a federation structure with Φ federations F =
{F1, F2, . . . , FΦ}, the profit of each federation Fφ ∈ F is
the total payment collected from all SCs hosted by Fφ minus
the associated cost. The cost comprises two parts. One is
associated with resource consumption, which is proportional to
the amount of consumed computing and networking resources.

Let yik,r be the amount of Type-r resource in area ak that is al-
located by ESP pi to accommodate SCs. Define yir =

∑
k y

i
k,r

to be the total amount of pi’s Type-r resource allocated for
SCs in all areas. Then pi’s total cost on computing resource is∑
r(y

i
rc
r
i). Let zip,q be the amount of link bandwidth between

two areas ap and aq allocated by ESP pi for SCs. Then pi’s
total cost on bandwidth consumption is

∑
(ap,aq)∈A2(zip,qc

b
i).

The other is additional maintenance cost associated with the
deployment of SCs across different ESPs. We model this part
as some power of the cardinality of the federation. Let µ be
the maintenance cost with a federation of size two. Then the
maintenance cost with Fφ is µ(|Fφ| − 1)γ , where γ is the
growth rate of the maintenance cost.

For any federation Fφ ∈ F , let xjφ be an indicator variable
such that xjφ = 1 if Fφ serves sj ∈ S and xjφ = 0
otherwise. The service decision of Fφ can be represented
as Xφ = {x1

φ, x
2
φ, . . . , x

m
φ }. The utility of Fφ ∈ F with a

decision Xφ is the profit that Fφ can earn with Xφ. Formally,

νφ(Xφ) =
∑
sj∈S

xjφ (ρj − µ (|Fφ| − 1)
γ
)

−
∑
pi∈Fφ

 t∑
r=1

yir · cri +
∑

(ap,aq)∈A2

zip,q · cb
i

 . (1)

Define X =
⋃Φ
φ=1Xφ. The social welfare of F with X is

defined as
u(F , X) =

∑
Fφ∈F

νφ(Xφ). (2)

The SWM problem is formally defined as follows. Let F(P)
be the set of all possible federation structures that can be
formed on P . The problem is to find out a federation structure
F ∈ F(P) and a dispatch of SCs to all federations in F (i.e.,
determining the contents of X) such that the social welfare is
maximized, i.e.,

(F̂ , X̂) = arg max
F∈F(P),X

u(F , X). (3)

The problem is subject to the following constraints.
Φ∑
φ=1

xjφ ≤ 1, ∀sj ∈ S, (4)

yik,r ≤ Ri(k, r), ∀pi ∈ P, ak ∈ A, 1 ≤ r ≤ t, (5)

zip,q + ziq,p ≤ Bi(p, q), ∀pi ∈ P, (ap, aq) ∈ A2, (6)

∑
pi∈Fφ

yik,r ≥
m∑
j=1

xjφ ·
δj∑
v=1

αj,vk · q
j,v
r ,

∀Fφ ∈ F , ak ∈ A, 1 ≤ r ≤ t, (7)

and ∑
pi∈Fφ

zip,q ≥
m∑
j=1

xjφ ·
δj−1∑
v=1

αj,vp · αj,v+1
q · βj,v

+ αj,δj−1
p · αj,1q · βj,δj−1,

∀Fφ ∈ F , (ap, aq) ∈ A2 ∧ p 6= q. (8)

Eq. (4) ensures that an SC can be served by at most one federa-
tion. Eq. (5) is the resource constraint: no edge server can host
a set of VNF instances that is beyond its resource capacity.
Eq. (6) specifies bandwidth constraint: the total amount of
bandwidth allocated to two-way NS traffic between areas ap
and aq must not exceed the in-between bandwidth capacity.
The last two inequalities ensure that each federation Fφ has
enough aggregated computation resource and bandwidth to
host all SCs that are dispatched to Fφ, where αj,vk is an
indicator set to 1 when αj,v = ak and 0 otherwise.

III. ISSUES AND PROPOSED MECHANISMS

We outline a straightforward approach to the SWM problem
as follows. First, enumerate all possible federation structures.
Second, maximize the social welfare for each federation struc-
ture. Finally, select the federation structure with the maximum
social welfare. However, this approach is hardly feasible. In
this section, we point out some fundamental difficulties with
this approach and then propose two heuristics as our solution.

A. Finding the Maximum Profit of a Federation Structure

The SWM problem is a mixed integer programming (MIP)
problem. Let us consider an associated Federation Structure
Profit Maximization (FSPM) problem: determining the dis-
patch of SCs to all federations in a given federation structure
F to maximize the total profit in F , i.e.,

X̂ = arg max
X

u(F , X) (9)

subject to Eqs. (4) to (8). Let umax(F) = u(F , X̂) be the
maximal profit in F .

The FSPM problem is still an MIP problem. As a practi-
cal approach, we consider the following divide-and-conquer
strategy. First, decompose the FSPM problem into smaller
Federation Profit Maximization (FPM) problem: selecting a
set of SCs to be hosted by a federation Fφ to maximize Fφ’s
own profit, i.e.,

X̂φ = arg max
Xφ

νφ(Xφ). (10)

Let νmax
φ = νφ(X̂φ) be Fφ’s profit with X̂φ. Second, take∑

Fφ∈F ν
max
φ as the maximal social welfare of F .

Unfortunately, the solution may be invalid due to possible
conflict of interest (COI) among all federations belonging
to the same federation structure regarding the maximization
of their own profits. The solutions to the FPM problem
of two federations may both assume an exclusive hosting
of a common profitable SC, but at most one of them can
actually host it when they are in the same federation structure.
Consequently, a federation Fφ may earn different profits in
solving the FSPM problem for different federation structures.
The actual profit of Fφ in solving the FSPM problem for a
federation structure F depends on not only who the members
of Fφ are but also how other EPSs not in Fφ federate together
(i.e., what F \ {Fφ} is).

We relax the problem by disregarding COI during the search
of the optimal solution. This is done by replacing Eq. (4) with

xjφ ≤ 1, ∀sj ∈ S. (11)

This relaxation allows an independent derivation of νmax
φ

regardless how P \ Fφ is further partitioned. Moreover, we
may take νmax

φ as the profit of Fφ in any federation structure
to which it belongs and use

∑
Fφ∈F ν

max
φ to approach umax(F)

for any federation structure F . Of course, this relaxation
allows an SC to be served by more than one federations, so
the result is only an approximation.

B. Enumerating All Possible Federation Structures

The number of federation structures to enumerate is numer-
ous. In fact, the number with n ESPs is given by Bell numbers,
Bn, where

Bn =

n∑
k=0

S(N, k) =

n∑
k=0

1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n. (12)

An upper bound of the Bell numbers is [21]

Bn ≤
(

0.792n

ln(n+ 1)

)n
, (13)

which is O(nn).
Although the relaxation eases deriving the social welfare of

each federation structure, we still have too many federation
structures to enumerate. For example, we need enumerate
115, 975 federation structures for 10 ESPs. In fact, finding
an optimal federation structure among all is still NP-complete
[22]. To this end, we devise two heuristics combined with the
relaxation as a time-efficient approach. A common feature of
these two heuristics is that we do not examine every possible
federation structure.

C. Proposed Mechanisms

We now present two heuristics for the SWM problem.
One approach (Algorithm 1) constructs a federation structure
by including federations one by one based on a ranking on
federations. The other (Algorithm 2) uses simulated annealing
to efficiently explore the solution space of the SWM problem.

Instead of enumerating O(nn) federation structures, Algo-
rithm 1 computes O(2n) νmax

φ values for all Fφ ⊆ P . Initially,
C is the power set of P , v is an empty list, and F is an empty
set. The rank of a federation Fφ is determined by νmax

φ divided
by Fφ’s weighted size (Line 6). Note that other weighting such
as
√
ε|Fφ| is also possible. The algorithm picks up a federation

Fi that currently ranks the highest and adds it into F . To
ensure that all federations in F are disjoint, any federation
in C that contains some ESP in common with Fi is excluded
from further consideration (Line 11). The process repeats until
C becomes empty.

We use a parameter ε ≥ 1 in Algorithm 1 to control
the weight between profit and federation size when ranking
federations. A large ε weights profits more than federation
sizes while a small ε does the opposite. We can adjust ε to
make the algorithm adaptive to different scenarios.

Algorithm 1 Greedy Approach
Require: P ; ε
Ensure: F

1: C ← power set of P (excluding ∅)
2: v← emptylist
3: F ← ∅
4: for each federation Fφ ∈ C do
5: νmax

φ = maxXi{νφ(Xi)} . Solve the FPM problem for Fφ

6: v[Fφ]←
νmax
φ

ε
√

|Fφ|
. Find the worth of Fφ

7: end for
8: while C 6= ∅ do
9: Pick Fi from C that has the largest v[Fi]

10: F ← F ∪ {Fi}
11: C ← C \ {F ′ | F ′ ∈ C, F ′ ∩ Fi 6= ∅}
12: end while
13: return F

Simulated annealing (SA) is a randomized algorithm de-
signed to approximate the optimal solution in problems with
a large search space. As a classic meta-heuristic algorithm,
there are many variants of SA. We modify one of them and
integrate it with our relaxation to approximate the optimal
federation structure.

The details of the algorithm are shown in Algorithm 2. We
initialize the solution, F , to be a random federation structure.
The utility associated with F , e, is named energy in SA and
is defined to be the sum of νmax

φ ’s for which Fφ ∈ F . As long
as the current temperature tc does not drop below a preset
value tf , we repeatedly examine a random neighbour, F ′,
of F . The definition of a neighbour is design dependent. In
our experiments presented later, F ′ is a neighbour of F if
only one ESP has different memberships in F and F ′. For
example, {{a, b}, c}} is a neighbor of {{a}, {b}, {c}} while
{{a, b}, c}} is a neighbour of {{a}, {b, c}}. If the neighbor
F ′ has an energy e′ higher than F’s, F ′ is taken as a new
solution in this iteration. Otherwise, there is also a probability
to accept F ′ as a new solution. The acceptance probability
depends on the difference of the energy ∆, a parameter k, and
the current temperature t. The main reason of the stochastic
acceptance is to prevent the method from being stuck at a
local optimum. Another parameter c ≤ 1 is used to control the
number of iterations. When the termination condition is met,
the algorithm returns the value of F as the solution. Compared
with the greedy algorithm, SA need not calculate the utility
of every federation beforehand, yet the number of iterations is
the key to the quality of the solution.

IV. NUMERICAL RESULTS

We analyze the performance of the proposed heuristics
against two simple solutions. One is the federation structure
referred to as Singleton that contains all singleton federations
(i.e., no federation at all). The other referred to as Grand
is the federation structure that includes all ESPs in a single
federation (i.e., the grand federation). We use Greedy and SA
to abbreviate the federation structures found by the greedy
and the SA approaches, respectively. Optimum refers to the
optimal federation structure found by an exhaustive search.

Algorithm 2 Simulated Annealing (SA)
Require: P ; tc; tf ; k; c
Ensure: F

1: Select a random solution F ∈ F(P).
2: e←

∑
Fφ∈F νmax

φ . Need solving the FPM problem for each Fφ
3: while tc > tf do
4: F ′ ← neighbour(F)
5: e′ ←

∑
Fφ∈F′ νmax

φ . Need solving the FPM problem for each Fφ
6: if e′ > e then
7: (F , e)← (F ′, e′)
8: else
9: ∆← e− e′

10: r ← random number from [0, 1]
11: if exp(−∆/(kt)) > r then
12: (F , e)← (F ′, e′)
13: end if
14: end if
15: tc ← c× tc
16: end while
17: return F

TABLE I: Simulation Setup

Parameters Default setting
l (number of areas) 10
n (number of ESPs) 5
m (number of SCs) 50
Bi(p, q), ∀pi ∈ P, (ap, aq) ∈ A2 (link
bandwidth)

500

Ri(k, r), ∀pi ∈ P, ak ∈ A, 1 ≤ r ≤ t
(resource capacity)

60

cri , ∀pi ∈ P, 1 ≤ r ≤ t (unit cost of resource) 5
cbi , ∀pi ∈ P (unit cost of bandwidth) 5
δj , ∀sj ∈ S (SC length) N (5, 22)

qj,vr , ∀sj ∈ S, 1 ≤ v ≤ δj , 1 ≤ r ≤ t
(resource demand)

N (7, 22)

βj,1, ∀sj ∈ S (initial bandwidth demand) N (50, 152)
βj,v+1 − βj,v , ∀sj ∈ S, 1 ≤ v < δj
(bandwidth increment)

±[10,20]

Payment per unit N (15, 32)
µ (maintenance cost for a two-ESP federation) 7
γ (growth rate of maintenance cost) 1.25

Due to huge computation cost, we tested Optimum only in
small-scale experiments.

Each result of SA in all simulations is an average of 50
trials. Table I shows the major simulation parameters with
default settings. We used Google OR-Tools [23] to solve all
MIP problems. For a fair time comparison, all simulation
programs were run on a PC with an eight-core 3.20 GHz
processor and 8-GB RAM. The simulation programs were
written in Python.

A. Effects of Resource Dispersion

In this experiment, we assumed that all ESPs have the same
amount of resources which are evenly distributed over all
serving areas. We changed the number of serving areas as
a way to control the degree of resource dispersion as well as
the number of unserved areas.

Fig. 2a shows how the average social welfare of each
approach changes with the number of serving areas. The
result shows that SA has the best performance and is close to
Optimum. We also note that more iterations for SA only lead
to slightly better performance. The performance of Greedy

3 4 5 6 7 8 9

Number of serving areas

0

1000

2000

3000

4000

5000

6000

A
v
e

ra
g

e
 s

o
c
ia

l
w

e
lf
a

re

Greedy

SA (T=100)

SA (T=10)

Grand

Singleton

Optimum

(a) vs. degree of resource dispersion

1 1.2 1.4 1.6 1.8 2

Resource Quantity Multiplier

0.8

1

1.2

1.4

1.6

1.8

S
o

c
ia

l
W

e
lf
a

re

10
4

Greedy

SA (T=100)

Grand

Singleton

Optimum

(b) with uneven resource distribution

Fig. 2: Average social welfare

1 1.2 1.4 1.6 1.8 2

Resource Quantity Multiplier

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r

o
f

fe
d

e
ra

ti
o

n
s

Greedy

SA (T=100)

Grand

Singleton

Optimum

(a) Avg. number of federations

1 1.2 1.4 1.6 1.8 2

Resource Quantity Multiplier

15

20

25

30

35

N
u

m
b

e
r

o
f

S
C

s
 s

e
rv

e
d

Greedy

SA (T=100)

Grand

Singleton

(b) Avg. number of SCs served

Fig. 3: Results with uneven resources distribution

is only better than Singleton. The performance of Singleton
becomes worse with an increasing number of serving areas
because individual federation does not have enough resource
in each serving area to host SCs.

B. Effects of Uneven Resources Distribution

We also studied the effect of uneven resource distribution
on performance. We used Zipf’s law to distribute resource
among ESPs. The resource allocated to an ESP was then
evenly divided among its servers in all areas. The total amount
of resource was set to 100 units initially and multiplied by a
resource quantity multiplier.

As shown in Fig. 2b, social welfare generally increases as
more resource is provided to the system. Greedy and SA
approach Optimum when more resource is provided. Both
outperform Singleton, particularly with little resource. Grand
performs well when resource is not enough to serve all SCs.
As resource increased, Grand is surpassed by other approaches
due to its high maintenance cost.

Fig. 3a shows the sizes (cardinalities) of federation struc-
tures. Grand and Singleton surely have fixed sizes. The size of
Optimum gradually changes from 2 to 4 as resource increases.
Compared with Optimum, the sizes of Greedy and SA do not
vary too much. Together with Fig. 2b, we can see that the
size of federation structures does not have much to do with
the social welfare.

Fig. 3b shows the number of SCs served by different
schemes. With little resource, Grand serves more SCs than
the other schemes. When the multiplier is larger than 1.6,
GA and Greedy serve more SCs than Grand. Singleton serves
the fewest SCs, but the gap becomes insignificant when the

0 1 2 3 4 5

Standard deviation

0.5

1

1.5

2

2.5

3

S
o

c
ia

l
w

e
lf
a

re

10
4

Greedy

SA (T=100)

Grand

Singleton

Optimum

(a) vs. difference of resource costs
across ESPs

20 30 40 50

Number of SCs

6000

7000

8000

9000

10000

11000

12000

13000

S
o

c
ia

l
w

e
lf
a

re

Greedy

SA (T=100)

Grand

Singleton

Optimum

(b) vs. the number of SCs

Fig. 4: Average social welfare

multiplier is 1.8 or larger. Although the number of served SCs
has positive correlation with social welfare, hosting more SCs
does not necessarily imply higher social welfare (cf. Fig. 2b).

C. Effects of Heterogeneous Cost Structures

We varied the difference of resource costs across ESPs and
measured the social welfares. The difference was controlled
by the standard deviation of the resource cost distribution. A
high standard deviation implies a high degree of cost variation.

As shown in Fig. 4a, the difference of social welfares is not
significant with small standard deviation. When the standard
deviation is between 2 and 4, searching good federation struc-
tures is beneficial (compared with either Grand or Singleton).
When the standard deviation is even larger, the performance
gap becomes smaller. The reason is that some highly profitable
SCs dominates the overall profit. Once these SCs are served,
the rest low-profit SCs cannot contribute the overall profit too
much. In most cases, SA and Grand perform similarly and are
close to Optimum.

D. Effect of the Number of SCs

Fig. 4b shows the relationship between social welfare and
the number of SCs. With few SCs, Grand has poor perfor-
mance due to its high federation maintenance cost. When the
number of SCs increases, Grand outperforms Singleton and
Greedy because it has enough resource and bandwidth capacity
to serve all SCs. Except for 50 SCs, SA performs even better
than Grand and is very close to Optimum.

V. CONCLUSIONS

In this paper, we consider maximizing the social welfare of a
set of ESPs by identifying an optimal federation structure. This
problem is hard due to numerous enumerations of federation
structures and the infeasibility of a divide-and-conquer prob-
lem decomposition. We therefore propose two time-efficient
heuristics: Greedy and SA. These two heuristics generally
outperform federation structures that contain only grand or
singleton federations. In particular, SA can be taken as an
approximation to the optimal solution.

In the future, we shall study the profit distribution prob-
lem for federation participants. Specifically, we shall analyze
payoff satisfaction level of each ESP for each possible profit
distribution scheme.

REFERENCES

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtu-
alization: Challenges and opportunities for innovations,” IEEE Comm.
Mag., vol. 53, no. 2, pp. 90–97, 2015.

[2] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network slicing for 5G with SDN/NFV:
Concepts, architectures, and challenges,” IEEE Comm. Mag., vol. 55,
no. 5, pp. 80–87, 2017.

[3] D. Li, P. Hong, K. Xue, and j. Pei, “Virtual network function placement
considering resource optimization and SFC requests in cloud datacenter,”
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7, pp. 1664–1677, 2018.

[4] H. Guo, Y. Wang, Z. Li, X. Qiu, H. An, P. Yu, and N. Yuan, “Cost-aware
placement and chaining of service function chain with vnf instance
sharing,” in Proc. IEEE/IFIP NOMS, Budapest, Hungary, Apr. 2020.

[5] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Performance bench-
mark of transcoding as a virtual network function in CDN as a service
slicing,” in Proc. IEEE WCNC, Barcelona, Spain, Apr. 2018.

[6] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware
and energy-efficient vNF placement for service chaining: Joint sampling
and matching approach,” IEEE Trans. Services Comput., vol. 13, no. 1,
pp. 172–185, 2020.

[7] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing
chains of virtual network functions,” in IEEE 3rd Int’l Conf. on Cloud
Networking, Luxembourg, Luxembourg, Oct. 2014, pp. 7–13.

[8] D. Dietrich, A. Abujoda, A. Rizk, and P. Papadimitriou, “Multi-provider
service chain embedding with nestor,” IEEE Trans. Netw. Service
Manag., vol. 14, no. 1, pp. 91–105, 2017.

[9] D. Dietrich, A. Abujoda, and P. Papadimitriou, “Network service em-
bedding across multiple providers with Nestor,” in IFIP Netw. Conf.,
Toulouse, France, May 2015.

[10] F. Carpio, S. Dhahri, and A. Jukan, “VNF placement with replication
for load balancing in NFV networks,” in Proc. IEEE ICC, Paris, France,
May 2017.

[11] F. Ben Jemaa, G. Pujolle, and M. Pariente, “QoS-aware VNF placement
optimization in edge-central carrier cloud architecture,” in Proc. IEEE
Globecom, Dec. 2016.

[12] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal vNF placement at the network edge,” in Proc. IEEE INFOCOM,
2018, pp. 693–701.

[13] Y. Jia, C. Wu, , Z. Li, F. Le, and A. Liu, “Online scaling of NFV
service chains across geo-distributed datacenters,” IEEE/ACM Trans.
Netw., vol. 26, no. 2, pp. 699–710, Apr. 2018.

[14] Z. Zhou, Q. Wu, and X. Chen, “Online orchestration of cross-edge
service function chaining for cost-efficient edge computing,” IEEE J.
Sel. Areas Commun., vol. 37, no. 8, pp. 1866–1880, 2019.

[15] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “VNF
placement optimization at the edge and cloud,” Future Internet, vol. 11,
no. 3, Jan. 2019.

[16] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Optimal VNFs
placement in CDN slicing over multi-cloud environment,” IEEE J. Sel.
Areas Commun., vol. 36, no. 3, pp. 616–627, Mar. 2018.

[17] Y.-C. Chen and L.-H. Yen, “Distributed profitable deployment of net-
work services to geo-distributed edge systems,” in Proc. APNOMS,
Daegu, Korea, Sep. 2020.

[18] L.-H. Yen, C.-H. Chang, and Y.-C. Chen, “Profit maximization by
forming federations of geo-distributed MEC platforms,” in Proc. IEEE
WCNC Workshop, Marrakech, Morocco, Apr. 2019.

[19] V. Sciancalepore, F. Giust, K. Samdanis, and Z. Yousaf, “A double-tier
MEC-NFV architecture: Design and optimisation,” in Proc. IEEE CSCN,
Berlin, Germany, 2016.

[20] “TOSCA simple profile for network functions virtualization (NFV) ver-
sion 1.0,” http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd04/tosca-
nfv-v1.0-csd04.html, accessed: 2020-10-30.

[21] D. Berend and T. Tassa, “Efficient bounds on Bell numbers and on
moments of sums of random variables,” Probability and Mathematical
Statistics, vol. 30, no. 2, Jan. 2010.

[22] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé,
“Coalition structure generation with worst case guarantees,” Artificial
Intelligence, vol. 111, no. 1, pp. 209–238, 1999.

[23] L. Perron and V. Furnon, “OR-Tools,” Google. [Online]. Available:
https://developers.google.com/optimization/

