
Decentralized Auctioneerless Combinatorial
Auctions for Multi-Unit Resource Allocation

Li-Hsing Yen and Guang-Hong Sun
Department of Computer Science, College of Computer Science
National Chiao Tung University, Hsinchu, Taiwan 300, R.O.C.

Email: lhyen@cs.nctu.edu.tw, martian206@gmail.com

Abstract—Auction has been used to allocate resources or tasks
to processes, machines or other autonomous agents in distributed
systems. Among various types of auctions, combinatorial auction
(CA) allocates a bundle of items to each agent at once. Finding an
optimal auction result for CA that maximizes total winning bid
is NP-hard. Many time-efficient approximations to this problem
work with a bid ranking function (BRF). However, existing ap-
proximations are mostly for single-unit resource and demand an
auctioneer. This paper proposes the first auctioneerless open-bid
multi-unit CA (MUCA) scheme. It includes a BRF-based winner
determination scheme that enables every agent to locally compute
a critical bid value for it to win the MUCA and accordingly take
its best response to other agent’s bid and win declarations. It also
allows each winner to locally compute its payment for a critical-
value-based pricing scheme. We analyze stabilization, correctness,
and consistency properties of the proposed approach. Simulation
results confirm that the proposed approach identifies exactly the
same set of winners as the centralized counterpart regardless of
initial bid setting, but at the cost of lower total winning bid and
payment.

I. INTRODUCTION

Auction is a trading process that allows seller to identify
potential buyers and the prices the buyers are willing to pay.
We may use auctions as resource and task allocation schemes.
Unlike conventional approaches that assume zero or fixed price
of resource or task, auction-based approaches can allocate
resource/task to requesters in a way that reflects actual demand
and supply conditions. For this reason, auctions have been
used to allocate different types of resources or tasks to a
fleet of autonomous, self-interest agents. Existing examples
include but not limited to the allocations of wireless spectrum
[1], [2], cloud resource [3], [4], [5], [6], servers in mobile
edge computing [7], [8], tasks of robots [9], [10], [11], and
computation or sensing tasks of mobile devices [12], [13].

Depending on how many types and how many units of the
items are to sell, auctions can be classified into four categories
as shown in Table I. Single-unit single-item (SUSI) is the
simplest form of auction, where only item is to sell and there
is only one winner. Some studies considered a single item
of multiple supplying units (multi-unit single-item or MUSI)
[14], [4], [6], where more than one bidders can be winners. We
consider the allocation of multiple types of items via auctions.
A typical example is in cloud environment, where we have
computation, memory, storage, network, and other types of
resources. If there is only one supplying unit for each type of
item, the auction is of single-unit multi-item (SUMI), where

TABLE I
CLASSIFICATION OF AUCTIONS.

Type Related work
Single-Unit Single-Item (SUSI) [15], [16]
Multi-Unit Single-Item (MUSI) [14], [17], [4], [6]
Single-Unit Multi-Item (SUMI) [18], [19], [11], [20], [21]
Multi-Unit Multi-Item (MUMI) [22], [23], [24], [25], [5]

two or more agents (i.e., bidders) could be winners at the same
time provided that no two winners have conflicting interests
(i.e., they place bids on a common item). If there can be
multiple supplying units for some type of item, the auction is
of multi-unit multi-item (MUMI), where two or more agents
having conflicting interests can be winners at the same time
provided that the set of winning bids is feasible. A set of
winning bids is feasible if for each type of item, the total
amount of units demanded by all winning bids does not exceed
the supply.

A. Combinatorial Auction

Identifying a feasible set of winning bids with the highest
total bid is winner determination problem (WDP). WDP is
NP-hard even for SUMI. Some approaches take sequential
single-item auction [21], [20], [11], where bidders bid for
one item at a time. This type of auction can be executed in
polynomial time. However, it typically applies to SUMI and is
not suitable when agents are single-minded [18] (i.e., bidders
are only interested in and thus places a bid on a particular
bundle of items).

For single-minded agents, combinatorial auction (CA) [19],
[26] allocates a bundle of items to bidders at once. We refer to
CAs for SUMI and MUMI as SUCA and MUCA, respectively.
As WDP for CA is NP-hard [19], most existing approaches
take approximations. We particularly consider approximations
that are based on a bid ranking function (BRF), which defines
a total order on bid requests. BRF-based approximations are
time efficient and suited to single-minded agents, but do not
guarantee optimality.

Another point of auction-based resource allocation is to
identify bidders’ valuations on resources. In general, different
bidders have different valuations on the same type of re-
source. For example, computation resource is more valuable to
computation-intensive tasks than to communication-intensive
tasks. An auction mechanism is economically efficient if it

maximizes social welfare, i.e., the aggregated valuation from
all winning bidders. Economically efficient auction is desirable
when it is that the total utility of resource requesters rather than
the revenue of the seller that is of concern.

If every bid represents the bidder’s true valuation on the bid
items, the auction has a nice property called truthful bidding.
Truthful bidding ensures that the total winning bid is exactly
the social welfare that we want to maximize. Truthful bidding
is challenging, however, because bidder’s valuations on bid
items are considered local and private (i.e., not revealed to
other bidders and the auctioneer who conducts the auction).
Whether bidders are willing to bid truthfully primarily depends
on pricing scheme that decides the payment of each winner in
auction. From the perspective of game theory, a pricing scheme
is incentive compatible if every bidder’s dominant strategy is
to bid truthfully.

In a first-price pricing scheme, winner pays exactly her bid.
Consequently, rational bidders will not place any bids higher
than their valuations on bid items because doing so only incurs
negative payoffs. On the other hand, bidders tend to lower their
bids so as to increase payoffs by paying less when they turn out
to be winners. Therefore, the first-price pricing scheme is not
incentive compatible and the auction result is not economically
efficient generally. As a remedy, Vickrey proposed second-
price scheme [27] for SISU auction, where the winner pays the
second highest bid. This payment rule is incentive compatible.

Incentive-compatible pricing scheme together with an opti-
mal winner determination can ensure economical efficiency.
The most well-known incentive-compatible pricing scheme
for CA is the Vickrey-Clarke-Groves (VCG) mechanism
[27], [28], [29]. VCG relies on the optimal solution to the
WDP, so it is not computationally feasible. We consider a
computationally-efficient heuristic called critical-value-based
payment that depends on the definition of the BRF for the
associated WDP. It has been proved that if the associated BRF
is monotone, a critical-value-based payment is incentive com-
patible [18]. However, VCG and most BRF-based approaches
[18], [30] are for SUCA.

B. Related Work and Motivation

Apart from the types and the number of units of the bid
items, auctions can also be classified by how the auction is
conducted. Many auctions implicitly assume a single entity,
i.e., an auctioneer, to conduct auctions. An auctioneer is
needed in a sealed-bid auction, where all participants send
their bids to the auctioneer without knowledge of other bids.
It is the auctioneer that declares winners and associated
payments. Many previous CA approaches fall into the category
of sealed-bid auctions and thus all need an auctioneer [31],
[18], [30], [23], [32].

The auctioneer is a single point of failure and can be a
performance bottleneck. There have been some approaches
that attempt to duplicate or partition the load of auctioneer to
a set of brokers [33]. Kutanoglu and Wu [34] decomposed the
WDP for CA into subproblems each solved by a local agent.

However, an auctioneer is still needed to collect and update
bidding information for coordinating an iterative auction.

When there are multiple units or types of items to sell,
there could be multiple auctioneers, for which decentralized
approaches also have been proposed. Lewis et al. [17] pro-
posed a decentralized adaptive pricing scheme for sellers to
determine the best selling prices in a posted-price model.
In [13], buyers send their bids to multiple sellers, which
then locally determine the set of winning bid candidates.
Each buyer then chooses its final seller. A reverse auction is
proposed for the allocation of sensing tasks to smart devices
in [12], where buyers (task owners) individually work as
auctioneers of their own task auctions. Smart devices as sellers
submit their asking prices to buyers, which then assnounce
the auction results. An additional step is needed to handle
the case when a seller becomes winners of multiple auctions.
In all these decentralized approaches, sellers sell the same
type of item with different quantities, which renders these
approaches decentralized MUSI. Multiple auctioneers have
also been proposed for decentralized SUMI auctions [35].

Our study focuses on decentralized auctioneerless auction,
where bidders themselves coordinately determine the set of
winners and payments. This type of auction is preferable in
many cases, especially when supplies of and requests for
resources exhibit locality property. Some examples are listed
below.
• Resource is only accessible to “local” users. An example

is wireless spectrum resource.
• Users only have interest in locally-accessible resource.

An example is virtualized resource provided by edge
servers in mobile edge computing environment.

In these cases, potential competitors contending for the same
type of resource tend to cluster together. Therefore, a decen-
tralized auction for bidders to coordinate the set of winners is
more robust and scalable than an auctioneer-based approach.
Furthermore, in applications like robot task allocations, it is
more desirable to let robots themselves coordinate their tasks
because, compared with a central coordination approach that
decides a global task allocation, the decentralized approach
has a shorter response time.

For SUSI, Esteva and Padget [15] proposed an auction-
eerless approach to WDP based on leader election protocol
running on a ring overlay network. Their approach targets at
single-item auction so only one winner is possible. For SUMI,
sequential single-item auctions are also decentralized and
auctioneerless. Each agent independently and incrementally
constructs its own bundle of items. In each round of the
auction, a single item is to sell to one agent via (possibly
reverse) single-item auction. Each agent places its bid on the
item based on the reward it might receive from adding the
item to its bundle. Sequential single-item auctions have been
proposed for the assignment of different tasks to a fleet of
robotic agents [21], [9], [20], [11].

In this paper, we propose a decentralized auctioneerless ap-
proach to MUCA where bidders autonomously decide whether
they themselves are winners and how much they should pay.

TABLE II
SUMMARY OF RELATED WORK

Number of
auctioneers Type Execution model Related work

One
SUCA Centralized [31], [18], [30]
MUCA Centralized [23], [24], [25],

[5], [32]
SUCA Distributed [33], [34]

Multiple MUSI Distributed [17], [12], [13]
SUMI Distributed [35]

None
SUSI Distributed [15]
SUMI Distributed (sequential

single-item auctions)
[21], [9], [11],
[20]

MUCA Distributed This work

a1

a2

a3

a4
a5

a6

a7

Fig. 1. A conflict graph for seven bidders in a CA

Our approach differs from sequential single-item auctions in
the following points. First, these approaches typically apply to
SUMI, while ours applies to MUCA. Second, these approaches
do not work for single-minded agents. Third, these approaches
assume that bidders are intrinsically truthful, while ours does
not. Finally, all items must be sold in sequential single-item
auctions, but this is not a requirement in our approaches.

Refer to Table II for a summary of related work.

C. Challenges

Without auctioneer, bidders have to exchange bidding infor-
mation for collaborative winner and payment determinations.
Consequently, the decentralization turns a static game (sealed-
bid auction) into a dynamic game (open-bid auction). We
model it as a dynamic multi-unit CA (MUCA) game with a
monotone BRF used for determining the ranks of bid requests.
The basic idea is that every agent can locally figure out the
minimum bid that can let the agent win the requested items.
With this and the agent’s valuation, each agent knows and
makes its best response in the MUCA game. After the game
stabilizes, each winner is able to calculate the minimum bid
that still ensures its win and take it as its payment. The auction
result can be verified by participants in the auction.

However, the computation and communication overhead
may be high if each agent has to exchange information with
every other agent. The key to the benefit and the feasibility of
the decentralization is that only bidders that have conflicting
interests need to interact with one another for winner deter-
mination. The competitions among bidders can be captured
by a conflict graph, where bidders are nodes and there is an
edge for each pair of competing bidders. Fig. 1 shows an
example of conflict graph for seven bidders in a CA. Here,
for bidding agent a5 to determine whether it can win its bid,

it only needs to know the bidding information and the status
of its competitors (a4, a6, and a7). Agent a5 is free to declare
its win in the CA without information from other bidders (a1,
a2, and a3). This suggests a localized, autonomous winner
determination mechanism, which is more robust and scalable
than a centralized one.

Bidding protocols under this game-theoretic framework face
several challenges. First, if bidders can gain extra payoff by
having knowledge of other bids before they place their own
bids, they may intentionally postpone their decision makings
until they receive bidding information of their competitors. The
consequence is that the whole system may enter a deadlock
state simply because no bidder wants to place its bid first.
Second, bidders progress asynchronously due to the lack of
a synchronization scheme among them. The non-deterministic
interactions among bidders may not converge to a stabilized
result without appropriate regulations. Third, even if the pro-
tocol reaches a stabilized outcome, the outcome may not be
the same as that of the corresponding centralized counterpart
using the same BRF.

D. Contribution and Organization

The contributions of this work are summarized as follows.

• We propose a winner determination protocol for MUCA
which works with any given BRF that is monotone. This
protocol is deadlock free because it allows bidders to
revise and update their bid requests whenever they want
to react to other bidder’s updates (as their best responses).
This protocol guarantees stabilization in the face of
dynamic bidder interactions. It meets resource constraint
and conforms to the BRF-based winner determination
rule. For a specific BRF, the proposed decentralized
approach can yield the same set of winners as the cen-
tralized counterpart, despite that the ranks of bid requests
and payments may be different in the two approaches.

• We consider two pricing schemes, first-price payment
and critical-value-based payment, and analyze the impact
of pricing scheme on agent’s bidding strategies in the
framework of game theory. We show that, with critical-
value-based payment, truthful bidding is every agent’s
weakly dominant strategy. We also propose a method for
each winner to locally determine how much it should pay
if critical-value-based payment is in effect.

To the best knowledge of the authors, this is the first decen-
tralized CA approach that possesses these properties. We have
conducted extensive simulations to investigate the performance
of the proposed approach.

The rest of this paper is organized as follows. Sec. II covers
the background and Sec. III presents the game model for our
problem. We present the proposed scheme in details in Sec. IV
and analyze its properties in Sec. V. Section VI contains the
simulation results that confirm the advantage of our scheme.
The last section concludes this paper.

II. PROBLEM DEFINITION

We consider a set of n bidding agents (bidders) A =
{a1, a2, . . . , an} and m different types of resources R =
{r1, r2, . . . , rm}. Let q = (q1, q2, . . . , qm) be a supply vector
such that qi ≥ 1 is the total number of units (or identical
instances) of resource type ri. For SUCA, qi = 1 for all
i. Agent ai submits a request vector si = (s1

i , s
2
i , . . . , s

m
i),

where sji ≤ qj is the number of units of resource type rj
requested by ai. For SUCA, si reduces to a set (named bundle)
Si ⊆ R. Theoretically speaking, what ai requests may deviate
from what ai desires if such a deviation could bring ai a higher
expected payoff. For now we assume that no agent cheats at
the request vector. Later we will prove that indeed no agent
has the incentive to cheat.

The bid ai places on si is denoted by bi(si) or simply
bi, which together with si forms ai’s bid request (si, bi). We
assume that an agent only submits one bid request. If an agent
may submit multiple requests (i.e., OR bids [36]), we can
treat A as a set of requests rather than agents. If an agent is
allowed to submit but not to win multiple requests (i.e., XOR
bids [36]), we may manually add mutual-exclusive relation
between each pair of requests submitted by the same agent1.

A. Winner Determination Problem

Given a set of bid requests B = {(si, bi(si))}ni=1, the winner
determination problem (WDP) is to find a setting of X =
(x1, x2, . . . , xn), where xi ∈ {0, 1} for all i, that maximizes
the total winning bid ∑

xi=1

bi(si) (1)

subject to the resource capacity constraint defined as
n∑
i=1

(
xi · ski

)
≤ qk for all k = 1, . . . ,m. (2)

The WDP for SUCA is an instance of the maximum
weight set packing problem, which is known to be NP-
hard [19]. Some approaches guarantee optimality but may
be time-inefficient for some problem instances [36], [37].
Some approaches are time-efficient and achieve optimality
by restricting the form or size of bid requests [38]. Some
approaches use heuristic or approximation techniques for
time efficiency but not optimality. Hoos and Boutilier [39]
used stochastic local search algorithm as an approximation to
WDP. Zurel and Nisan [40] also proposed an approximation
which runs the linear-programming relaxation of the packing
problem and then refines the solution by local improvements
in the order of bids (hill-climbing). The hill-climbing concept
was also adopted by Fukuta and Ito [41] to improve the
performance of a simple greedy approach [18]. They also
considered the use of simulated annealing technique. Other
approximation approaches include dynamic programming [3]
and genetic algorithm [42].

1One possible way of doing this is through the creation of dummy goods
[22]. Also note that all OR bids can be converted into equivalent XOR bids
[36].

In this paper, we mainly consider approximations that use
a BRF to define a total order ≺ on {(si, bi)}ni=1 such that
(sj , bj) ≺ (si, bi) if (sj , bj) ranks higher than (si, bi). Algo-
rithm 1 shows the general framework for greedy allocations
which examines all bid requests in the order defined by ≺ to
determine whether each request can be granted.

Algorithm 1 BRF-based Greedy Allocation
1: B ← {(si, bi)}ni=1

2: xi ← 0 for all i
3: while B 6= ∅ do
4: Let (sk, bk) be the request that ranks first in B
5: if q− sk ≥ 0 then
6: q← q− sk
7: xk ← 1
8: end if
9: B ← B \ {(sk, bk)}

10: end while

There have been many BRFs proposed for SUCA. The
BRF proposed by Lehmann et al. [18] favors a request that
maximizes normalized bid value defined as

ws(Si, bi) =
bi
|Si|α

, (3)

where α is a configurable parameter. Mito and Fujita [30]
considered several possible BRFs inspired by the heuristics
for the maximum weighted independent set (MWIS) problem
[43]. Let Ni be the set of all conflicting requests for request
(Si, bi). One such BRF sets a priority defined as

wn(Si, bi) =
bi

(|Ni|+ 1)β
, (4)

where β is a configurable parameter. Another BRF considered
by them is

wφ(Si, bi) =
φ(Si, bi)

(
∑

(Sj ,bj)∈Ni
bj + 1)β

, (5)

where

φ(Si, bi) =
bi

(
∑

(Sj ,bj)∈Ni
|Si ∩ Sj |+ 1)α

. (6)

Function φ(·) alone could also be a BRF.
Not too many approaches have been proposed for MUCA.

Leyton-Brown et al. [22] proposed an optimal WDP algorithm.
This algorithm uses techniques like branch-and-bound and
dynamic programming, which makes it difficult to be decen-
tralized. As an approach to allocating fine-grained spectrum
resources, Jia et al. [23] generalized the BRF ws(·) defined in
(3) to MUCA. The proposed BRF is

wm(si, bi) =
bi

(
∑m
k=1 s

k
i)α

. (7)

The same BRF has also been used for the allocation of virtual
machine instances in clouds [24], [25]. The work in [44]
generalized the BRF to consider scarcity of resources with

α = 0.5. Mashayekhy et al. [5] considered the following BRF
for a bid request in a unit of time.

wd(si, bi) =
bi∏

ski 6=0 s
k
i

. (8)

Some BRFs for SUCA like (4) do not consider the number
of resource instances. When being used in MUCA, these BRFs
may perform poorly. BRFs like (5) and (6) have not yet been
extended to handle multi-unit resources. A possible extension
is to replace |Si ∩ Sj | in (6) with some matching term like
si · sj .

B. Pricing Scheme

The VCG mechanism generalizes the second-price scheme
to ensure truthful bidding in CAs. VCG demands that each
winner ai in VCG has to pay the social opportunity cost (i.e.,
the reduction of the total winning bid excluding ai’s) due to
the presence of ai’s request. Suppose that we have a set of
request pairs B = {(Si, bi)}ni=1. Let B−i denote B\{(Si, bi)}.
Let W and W−i be the sets of winning requests with the
highest total bid given B and B−i, respectively. Each winning
request (Si, bi) ∈ W has to pay pi(B) =

∑
(Sj ,bj)∈W−i

bj −∑
(Sk,bk)∈W\{(Si,bi)} bk. VCG payment has been used in [45].

VCG is economically efficient but computationally infeasible
because determining W is NP-hard.

For BRF-based winner determination designed for SUCA,
Lehmann et al. [18] defined monotonicity property for BRF,
which states that the BRF gives (Sj , bj) a rank equal to or
higher than that of (Si, bi) if Sj ⊆ Si and bj ≥ bi. BRF ws(·)
has the monotonicity property. BRFs wn(·), wφ(·), and φ(·)
do not ensure monotonicity because it is possible that S′i ⊂ Si
but (S′i, bi) 6≺ (Si, bi) as long as the set Ni remains unchanged
for both Si and S′i.

An allocation of resource to bidders is exact if each bidder
ai is allocated either its request si (if ai wins) or nothing
(otherwise) [18]. For a BRF-based winner determination for
SUCA with both the exactness and monotonicity properties, it
is proved [18] that there is a critical value ci for each bi such
that ai gets Si if bi > ci and ai gets nothing if bi < ci.

For example, assume that (Si, bi) is a winning request and
(Sj , bj) is the request that has the highest rank in the set of
requests that do not win because of the presence of (Si, bi). For
the BRF defined in (3), (Si, bi) is a winning request because
ws(Si, bi) > ws(Sj , bj), which implies that

bi > bj
|Si|α

|Sj |α
. (9)

On the other hand, (Si, bi) would not be a winning request if
ws(Si, bi) < ws(Sj , bj) or, equivalently, if

bi < bj
|Si|α

|Sj |α
. (10)

Therefore, ci = bj × |Si|α/|Sj |α is the critical value for bi.2

2Though not explicitly stated, critical values should also exist for other
monotone BRFs with exact allocations [30].

If a BRF-based winner determination is used for which the
criticality property holds, then the following pricing scheme
ensures truthful bidding in a sealed-bid CA [18].

pi =

{
ci, if xi = 1,

0, otherwise.
(11)

Intuitively, ci does not depend on bi, so ai cannot decrease
its payment by unilaterally manipulating bi. This implies that
criticality-based pricing schemes are strategy-proof.

It is not difficult to see that a critical value also exists for
each bidder in a MUCA with the same setting. In this paper,
we shall extend critical-value-based payment for MUCA.

III. DYNAMIC MUCA GAME

In the proposed framework, bidder independently sets up
bid request and then notifies all competitors of that setting.
The setting may cause the competitors to make their own
moves. Because notifications take arbitrary time and there is no
synchronization scheme to coordinate bidder’s moves, bidders
make moves one after another in a non-deterministic manner.
We thus model MUCA as a dynamic game. In contrast, bidders
in sealed-bid CAs place their bids without bidding information
of any others, rendering it a static (one-shot) game.

We assume a BRF brf which maps any bid request to a posi-
tive real number. It defines a total order� on B = {(si, bi)}ni=1

as follows.
Definition 1 (Ranks on Bid Requests): Given two bid

requests (si, bi) and (sj , bj), we have (si, bi) � (sj , bj) if
brf(si, bi) ≥ brf(sj , bj), and (si, bi) ≺ (sj , bj) if brf(si, bi) >
brf(sj , bj).

We assume that brf is monotone. The monotonicity of
BRF defined in [18] is for SUCA. We now generalize the
monotonicity property to MUCA as follows.

Definition 2 (Monotonicity for Multi-unit BRF): Let
si = (s1

i , s
2
i , . . . , s

m
i) be ai’s request vector. Let S =

{s1, s2, . . . , sn}. Define binary relation ≤ on S as si ≤ sj
if ski ≤ skj for all k ∈ {1, . . . ,m}. Define binary relation <
on S as si < sj if si ≤ sj and si 6= sj . A BRF is monotone
if (sj , bj) � (si, bi) whenever sj ≤ si and bj ≥ bi.

By this definition, both wm(·) and wd(·) defined in Sec. II-A
are monotone and can be used in the MUCA game.

To simplify our design and analysis, we assume that for any
two bid requests (si, bi) and (sj , bj), either (si, bi) ≺ (sj , bj)
or (sj , bj) ≺ (si, bi). That is, no two bid requests have the
same rank. Although BRF like wm(·) and wd(·) does not have
this property, we can easily make it by introducing some tie-
breaking rule for ranks like unique bidder identifiers.

Each agent ai has a valuation on si denoted by νi(si),
which is private. We do not allow for externalities, which
means that νi(·) does not depend on any νj(·) with j 6= i.
Possibly different from si, each agent ai has a need vector
di = (d1

i , d
2
i , . . . , d

m
i), where dji ≤ qj is the units of resource

type rj really needed by ai. We assume exact allocation, so
each bidder ai is allocated either its request si (if ai wins)

or nothing (otherwise). Moreover, the assumption of single-
minded agents indicates that every agent ai is interested in di
only. Formally,

νi(si) =

{
νi(di), if di ≤ si,

0, otherwise.
(12)

Therefore, winning si such that si < di gives no value to
ai. On the other hand, the monotonicity property implies that
(di, bi) ≺ (si, bi) for all di < si but νi(si) = νi(di).
Therefore, submitting si such that di < si only lowers the
probability of winning the auction (due to the monotonicity
property) without increasing the value of the win. In other
words, agent ai has no incentive to manipulate si and si is
not part of ai’s strategy in the game. Thus it is reasonable
to assume that ai sets up si initially and does not change si
during the game.

Each agent’s primary strategy is its bid bi. In open
ascending-price auctions and other decentralized auctions [33],
[31], [16], agents can only raise their bids. We take the same
assumption.

Besides bi, every ai also needs to declare whether it wins
or not currently with bi. We use xi to denote ai’s declaration,
where xi = 1 if ai declares a win and xi = 0 otherwise.
We use Ni to denote agent ai’s neighboring nodes in the
conflict graph, i.e., the set of ai’s competitors. Every agent
ai needs to notify all agents in Ni of xi. Similarly, ai needs
win declaration xj of every agent aj ∈ Ni for its own win
declaration. Win declaration information is needed because
of the locality property that we want to exploit in designing
decentralized auction protocol. For example, suppose that a2

in Fig. 1 is a winner only if a4 is not, which in turn depends on
whether a5 wins. Due to locality, a2 does not have knowledge
of a5’s win and thus cannot locally deduce a4’s win. Therefore,
agent a4 should notify a2 of its win declaration.

Including xi in ai’s strategy adds another dimension to
agent’s strategy space. The value of xi should be interpreted
as ai’s willingness to win and pay. This interpretation allows
bidders to withdraw their current bids. In contrast, bidders in
any other auction have no freedom to configure xi’s because
bidders are implicitly assumed to be always willing to win
with their current bids.

It is theoretically possible that ai declares a win (i.e., xi =
1) or loss (xi = 0) without a matching bid bi. The correctness
of xi depends on the relationship between bi and ai’s critical
value ci. As proved by Lehmann et al. [18], if a BRF with both
the exactness and monotonicity properties is used for winner
determination, there is a critical value ci for every ai such
that ai wins if bi > ci and does not if bi < ci. To define
the correctness of win declaration in MUCA, we extend the
definition of critical value for SUCA in [18] to MUCA as
follows.

Definition 3 (Critical Value for MUCA): Given B−i = B \
{(si, bi)} and X−i = {xj |j 6= i}, ai’s critical value ci is the
minimal value that ai can win by placing a bid bi > ci (which
is also the maximal value that ai will definitely lose by placing

bi < ci, if ci > 0) with respect to B−i and X−i. Formally,∑
(sj ,bj)≺(si,bi)

(
xj · skj

)
≤ qk − ski for all ski 6= 0 (13)

if bi > ci. If (13) holds when bi ≥ 0, we define ci = 0.
Otherwise, we also have∑

(sj ,bj)≺(si,bi)

(
xj · skj

)
> qk − ski for some ski 6= 0 (14)

when bi < ci.
Because ai wins only if bi ≥ ci and does not only if bi ≤ ci,

we have the following definition.
Definition 4 (Correctness of Win Declaration): For a pair

(bi, xi) declared by any agent ai, xi is correct if xi = 1 and
bi > ci or xi = 0 and bi < ci. When bi = ci, which implies
that the BRF value of (si, bi) is the same as that of another
bid request (sj , bj), whether xi is correct depends on the tie-
breaking rule used to determine the rank order between (si, bi)
and (sj , bj).

The setting of xi directly affects ai’s utility. Let pi be the
price that ai has to pay at the end of the auction. We consider
both first-price payment and critical-value-based payment. In
the first-price payment, each winner ai pays its winning bid,
i.e., pi = bi. In the critical-value-based payment, pi = ci for
each winner ai. The utility of ai is defined to be ai’s payoff in
the auction, i.e., ai’s valuation on si minus pi if ai declares a
win, and zero otherwise. Formally, given B−i = B \{(si, bi)}
and X = {xj}nj=1,

ui(B−i, X) = xi (νi(si)− pi) . (15)

The problem with (15) is that agent’s utility has nothing to
do with the correctness of win declaration. When νi(si) > pi,
ai can get a positive utility by declaring xi = 1 regardless of
whether bi ≥ ci. On the other hand, when νi(si) < pi, ai can
get a zero (instead of negative) utility by declaring xi = 0
even if bi > ci.

To ensure correct win declarations, we propose the follow-
ing rules for agents that falsify win declarations.
R1 If xi = 0 but bi > ci, ai gets nothing and pays pi.
R2 If xi = 1 but bi < ci, ai gets si and pay pi + ρ, where

ρ > 0 is a penalty.
With this treatment, the following theorem shows that falsi-

fying win declaration is not beneficial if any false declaration
can always be detected.

Theorem 1: If false win declarations are always detected,
no agent has the incentive to falsify win declaration.

Proof: Consider any agent ai and let vi = νi(si). One
type of false win declaration is xi = 0 but bi > ci. If vi ≥ pi,
then declaring xi = 1 will give ai a non-negative utility vi−pi
(instead of −pi by R1) so ai has no incentive to declare xi =
0. Therefore, it must be the case that vi < pi. When xi = 0
is detected false at the end of the auction, ai has to pay pi
by R1, which is higher than the loss pi − vi if ai declares
a win instead. So ai would rather set xi to 1. Now consider
the other case that xi = 1 but bi < ci. If vi < pi, declaring

xi = 1 gives ai a negative utility (compared with 0 if xi = 0
instead) so ai has no incentive to do so. Therefore, it must be
the case that vi ≥ pi. In that case, raising bi to some value
between ci and vi (or ci if vi = ci) would give ai a utility
vi − pi larger than vi − pi − ρ that ai has to pay by R2. So
ai has no incentive to declare xi = 1 with bi < ci.

However, we cannot guarantee the detection of false win
declarations if some agents collude with one another. If we
preclude the possibility of collusion and always detect any
single false declaration, then no agent has the incentive to
make a false win declaration. Theorem 2 shows the feasibility
of detecting any single false win declaration.

Theorem 2: After the MUCA game ends, any single false
win declaration can be detected.

Proof: Without loss of generality, let ai be the only agent
with false xi. Let Ak = {aj |skj 6= 0} be the set of all agents
that request rk. All these agents are competitors so any of them
has knowledge of all other’s bid requests and win declarations.
Consider two possible cases of false declarations:
• xi = 1 is false. If xi = 1 is correct, bi should be

larger than ci. By Definition 3, bi > ci implies that∑
(sj ,bj)≺(si,bi)

(
xj · skj

)
≤ qk − ski for all ski 6= 0. All

agents in ∪ski 6=0Ak can collaboratively verify whether
the above condition holds. If it does not hold, then the
declaration xi = 1 is false.

• xi = 0 is false. If xi = 0 is correct, bi should be less
than ci. By (14), bi < ci implies the existence of some
ski 6= 0 such that

∑
(sj ,bj)≺(si,bi)

(
xj · skj

)
> qk − ski .

Therefore, any agent in Ak is able to verify whether
the above condition holds. If it does not hold, then the
declaration xi = 0 is false.

Note that we do not need to perform false win declaration
during the auction. It suffices to perform the detection once
when the auction ends.

IV. MUCA PROTOCOL

Designing a MUCA protocol faces two primary challenges.
One is how each bidder locally determines whether the bidder
itself is a winner according to the given BRF. It is not trivial
because bidders competing for a common resource may be
winners at the same time. The other is to make each bidder
independently figure out how much it should pay for the
auction. This is not trivial for critical-value-based payments.
This section addresses these two issues and also discusses
agent’s bidding strategies with respect to different pricing
schemes.

A. Decentralized BRF-based Winner Determination

We now describe the details of the proposed decentralized
winner determination scheme. Because pricing does not affect
the result of winner determination, the proposed scheme works
for both first-price auctions and auctions with critical-value-
based payment.

Each agent ai in the scheme is free to set up bi and xi.
By (15), any agent ai’s best response (the setting of bi and

xi) depends on the relationship between vi = νi(si) and pi
If pi > vi, then declaring a win (i.e., xi = 1) will give ai a
utility ui = vi − pi < 0. Therefore, ai would rather declare
xi = 0. On the other hand, if pi < vi, then declaring xi = 1
and setting bi to a value higher than ci will yield a utility
ui = vi − pi > 0. This is higher than what ai can get by
declaring xi = 0. Therefore, ai’s best response is

BRi =

{
xi = 0, if pi > vi,

xi = 1 and bi ∈ (ci, vi], if pi < vi.
(16)

In (16), ai does not set bi a value higher than vi. The reason
is obvious in case of first-price auctions. For critical-value-
based payment, this can be justified by the following lemma.

Lemma 1: In case of critical-value-based payment, if an
agent ai can win and get positive utility by setting bi to some
value higher than ci, the value of bi should not exceed vi if
ai does not know when the auction will end.

Proof: The premise indicates that pi = ci < vi. If this
is the last bid of the auction, setting bi to some value higher
than ci (say, b′i) and winning the bid gives ai a utility ui =
vi − ci > 0. This holds regardless of whether b′i > vi. That
is, picking up b′i > vi does not give ai extra benefit compared
with another selection ci < b′i < vi. On the other hand, if
this is not the last bid of the auction, other agents may raise
their bids and thus collectively increase bi’s critical value in
the future. It is therefore possible that if ai picks up b′i > vi,
it may face a critical value c′i in the future that is greater than
vi and less than b′i. At that time, declaring xi = 0 is false and
will incur a negative utility by R1 while declaring xi = 1 will
give ai a negative utility ui = vi − c′i. Therefore, ai should
never set bi a value higher than vi.

By Lemma 1, the maximal bid that ai may place is vi.
Different agents may have different ideas about how to place
their initial bids, so we assume that bi is an arbitrary value in
[σ, vi] initially, where σ is the starting bid set by the system.
We also assume a minimum bid increment ε ≥ 1: whenever ai
wants to raise bi to declare a win, bi should be at least ci + ε.
The initial value of xi is not important, so it could be either
0 or 1. We assume that each agent ai broadcasts (si, bi, xi) to
all other agents in the beginning of the scheme so each agent
ai has knowledge of Ni, B, and {xi}ni=1 initially.

We assume that the logical channel between every agent
and any of its neighbor delivers messages without loss and
in a first-in-first-out (FIFO) manner. Each agent ai keeps a
local copy of (bj , xj) for each aj ∈ Ni. When ai receives
a new update of (bj , xj) from another agent aj , it executes
Algorithm 2 as a response. ai first updates its knowledge about
bj and xj (Line 2), and checks whether ai can win with its
current bid by identifying ai’s key predecessor.

Definition 5 (Key Predecessor): If ai can win with its current
bid, ai’s key predecessor is ai itself. Otherwise, ai’s key
predecessor is ak if (sk, bk) is the request that ranks the
lowest among all winning requests whose absence alone would
make (si, bi) granted. Intuitively, ai can make ak “absent” in

Algorithm 2 Best Response of Agent ai
1: On receiving update(b′j , x

′
j) from aj ∈ Ni

2: (bj , xj)← (b′j , x
′
j)

3: C ← {(sj , bj)|aj ∈ Ni ∧ xj = 1 ∧ (sj , bj) ≺ (si, bi)}
4: k ← key predecessor(i, C)
5: if k = i then
6: (b′i, x

′
i)← (bi, 1)

7: else . (sk, bk) ≺ (si, bi)
8: ci ← minb{(si, b) ≺ (sk, bk)}
9: pi ← ci + ε or ci . get payment; ε: minimum allowable

increment
10: if pi < vi then
11: b′i ← b ∈ [ci + ε, vi]; x′i ← 1
12: else . bi ≤ ci and σ ≥ vi
13: (b′i, x

′
i)← (bi, 0)

14: end if
15: end if
16: if (bi, xi) 6= (b′i, x

′
i) then

17: (bi, xi)← (b′i, x
′
i)

18: Send update(bi, xi) to each aj ∈ Ni

19: end if
20: end

determining its win by outbidding ak3.
If ai’s key predecessor is ak 6= ai, we have (sk, bk) ≺

(si, bi) and ak must be a neighboring node of ai in the conflict
graph. Algorithm 3 (Procedure key predecessor) details how
to identify the key predecessor for ai.

Lemma 2: Let j be the value returned by Procedure
key predecessor. If j 6= i, aj is ai’s key predecessor.

Proof: The only place for key predecessor to return
j 6= i is Line 7. This implies that xj = 1 and (sj , bj) ≺
(si, bi) because (sj , bj) ∈ C. Because it is aj that causes
key predecessor to return j 6= i, we know that∑
(sl,bl)≺(sj ,bj)

(
xl · skl

)
+ xj · skj + ski > qk for some ski 6= 0.

(17)
Therefore, ai can become a winner only if it outbids aj . On
the other hand, since key predecessor does not return l for any
bid request (sl, bl) ∈ C that outranks (sj , bj), we know that∑

(sl,bl)≺(sj ,bj)

(
xl · skl

)
+ ski ≤ qk for all ski 6= 0. (18)

Therefore, ai need not outbid any al here to win its bid request.
Thus (sj , bj) is the request that ranks the lowest among all
winning requests such that (si, bi) would be granted if (si, bi)
outranked (sj , bj).

If ai cannot win with its current bid, ai finds out its critical
value ci, i.e., the minimal value of bi that allows (si, bi) to
outrank (sk, bk). Assuming q = (3, 2, 2, 2, 2) and the BRF
defined in (7) with α = 1, Table III shows an example of key
predecessors and critical values. The key predecessor of a3 is
a2 because (s3, b3) would be granted if it outranked (s2, b2).
To let (s3, b3) outrank (s2, b2), b3 should be greater than

c3 =
b2(
∑m
k=1 s

k
3)α

(
∑m
k=1 s

k
2)α

=
70× 4

3
= 93.33. (19)

3ai outbids ak if (si, bi) outranks (sk, bk).

TABLE IV
AN MUCA WITH q = (1, 1) AND BRF =(bi/

∑
k s

k
i)

(a) Parameter
Bidder Request vector Valuation Initial (bi, xi)(ai) (si) (vi)
a1 (1, 0) 9 (2, 1)
a2 (1, 1) 13 (8, 1)
a3 (0, 1) 10 (1, 0)

(b) Running Example (ε = 1)
Step Agent Old (bi, xi) ci New (bi, xi)

1 a3 (1, 0) 4 (5, 1)
2 a1 (2, 1) 4 (5, 1)
3 a2 (5, 1) 10 (11, 1)
4 a1 (5, 1) 5.5 (7, 1)
5 a2 (11, 1) 14 (11, 0)

Therefore, a3’s critical value c3 is 93.33. The key predecessor
of a5 is a1 because a5’s request can be granted only if a5

outbids a1. Neither a2 nor a4 is a5’s key predecessor, even
though both outbid a5.

Algorithm 3 Procedure key predecessor(i, C)
1: total unit[k]← 0 for all k ∈ {1, . . . ,m}
2: while C 6= ∅ do
3: Let (sj , bj) be the request that has the highest rank in C
4: for all k ∈ {1, . . . ,m} do
5: total unit[k]← total unit[k] + skj
6: if ski > 0 ∧ ski + total unit[k] > qk then
7: return j
8: end if
9: end for

10: C ← C \ {(sj , bj)}
11: end while
12: return i

Agent ai can outbid its key predecessor and thus win its
request by setting bi to a value equal to or greater than ci+ ε.
However, whether it is worthy for ai to win depends on the
relationship between pi and vi. If pi < vi, ai can win and
get positive utility by changing bi to some value in the range
[ci + ε, vi] (to be discussed shortly). Otherwise, ai has no
incentive to change bi because winning the request incurs a
negative payoff (as ui = vi − pi < 0). If ai ever changes bi
or xi, ai notifies all ai’s competitors of the update.

Table IV shows a running example of the proposed ap-
proach, where three agents contend for two types of resources.
Two agents turn out to be winners at the end of the auction.

B. Bidding Strategy

Because we design the MUCA protocol to be independent
of the pricing scheme, bi is generally set to be in the range
[ci+ ε, vi] in Line 11 of Algorithm 2. If we set up a particular
pricing scheme, agents may have different bidding strategies
here.

In the first-price payment, each winner ai pays its winning
bid, i.e., pi = bi. For this reason, the best response of each
agent in the protocol is either to declare xi = 0 or to
minimize bi = ci + ε. We call this bidding strategy minimal
bid increment.

TABLE III
KEY PREDECESSOR AND CRITICAL VALUE EXAMPLE WITH q = (3, 2, 2, 2, 2)

Bidder (ai) Demand vector (si) Bid (bi) BRF (bi/
∑

k s
k
i) xi Key predecessor Critical value (ci)

a1 (1, 0, 1, 0, 0) 50 25.00 1 a1 -
a2 (0, 0, 0, 2, 1) 70 23.33 1 a2 -
a3 (0, 1, 0, 1, 2) 93 23.25 0 a2 93.33
a4 (2, 1, 1, 0, 0) 90 22.50 1 a4 -
a5 (1, 0, 2, 1, 0) 63 15.75 0 a1 100

TABLE V
WINNER’S PAYOFF MATRIX IN CRITICAL-VALUE-BASED-PAYMENT

AUCTION

Competitors
Minimal Bid Truthful BiddingIncrement

Agent
Minimal Bid (median, median) (low, high)Increment

Truthful Bidding (high, low) (low, low)

In the critical-value-based payment, setting bi to any value
not less than ci + ε gives ai the same payment pi = ci
if ai wins. To minimize its critical value ci, ai needs to
minimize the bids of non-winning competitors. Consider two
possible bidding strategies: minimal bid increment (placing bid
bi = ci+ ε as a response) and truthful bidding (setting bi = vi
as ai’s initial bid). The former usually causes incremental
increases of competitor’s bids. In contrast, announcing an
agent’s highest possible bid (i.e., its valuation) can make all
non-winning competitors quit bidding at the earliest possible
time in an ascending-price auction. As a result, the bids of
non-winning competitors are minimized. Therefore, truthful
bidding is every agent’s weakly dominant strategy. Refer to
the payoff matrix of winner4 shown in Table V.

When every agent bids truthfully, the outcome of Algo-
rithm 2 will be equivalent to that of Algorithm 1. However,
winner’s payoff will also be low. Later we shall show that
agent’s bidding strategies do not affect the auction outcome
(i.e., winners are always winners irrespective of their bidding
strategies). Therefore, we do not assume any particular bidding
strategy in our protocol design.

C. Payment Determination

After winner determination ends, each winner ai should
independently figure out how much it should pay for the
auction. The task is trivial for first-price auctions (pi = bi).
For the critical-value-based payment, the task is to identify
ai’s key successor.

Definition 6 (Key Successor): Let ai be a winner. Bidder
ak 6= ai is ai’s key successor if (sk, bk) is the request that
ranks the highest among all non-winning requests that would
be granted if (si, bi) were not present. If there is no such
request, ai’s key successor is defined to be ai itself.

If ai’s key successor is ak 6= ai, ai’s payment pi is the
minimal value of bi that makes the rank of (si, bi) equal to or

4Non-winner’s payoff is always zero regardless of the bidding strategy in
use.

higher than that of (sk, bk). If ai’s key successor is ai itself,
then pi = 0. This payment is exactly ai’s critical value.

Let us revisit the example shown in Table III. Table VI
shows the key successor and payment, respectively, for each
winner. The key successor for a2 is a3 because (s3, b3) would
be granted if (s2, b2) were not present. For (s2, b2) to outrank
(s3, b3), b2 should be greater than

c2 =
b3(
∑m
k=1 s

k
2)α

(
∑m
k=1 s

k
3)α

=
93× 3

4
= 69.75. (20)

Therefore, a2’s payment p2 is 69.75. The key successor for
a1 is a1 itself because neither a3’s nor a5’s request would
be granted if a1’s request were not present. Therefore, a1’s
payment is 0.

The relationship between key predecessor and key successor
is not symmetric. For example, a1 is a5’s key predecessor in
Table III but a5 is not a1’s key successor here.

Key predecessor and key successor identifications need
different knowledge of bid requests. In the former case, an
agent ai only needs bid requests from all agents in Ni (C
in Algorithm 3). In contrast, ai in the latter case should
have knowledge of all other agent’s bid requests (C ∪ D in
Algorithm 4). The reason is that for ai to determine whether
aj ∈ Ni is ai’s key predecessor, ai needs to know whether aj
does not win simply because of ai, or there is another winner
that also prevents aj from winning the bid. In the latter case,
aj is not ai’s key successor.

Algorithm 4 Procedure key successor(i,B,x)

1: C ← {(sj , bj)|(sj , bj) ≺ (si, bi)}
2: total unit[k]← 0 for all k ∈ {1, . . . ,m}
3: for all (sj , bj) ∈ C such that xj = 1 do
4: for all k ∈ {1, . . . ,m} do
5: total unit[k]← total unit[k] + skj
6: end for
7: end for
8: D ← {(sj , bj)|(si, bi) ≺ (sj , bj)}
9: while D 6= ∅ do

10: Let (sj , bj) be the request that has the highest rank in D
11: if xj = 1 then
12: total unit[k] = total unit[k] + skj for all k
13: else . a conflicting, non-winning request
14: if total unit[k] + skj ≤ qk for all k, skj > 0 then
15: return j
16: end if
17: end if
18: D ← D \ {(sj , bj)}
19: end while
20: return i

TABLE VI
KEY SUCCESSOR AND PAYMENT EXAMPLE WITH q = (3, 2, 2, 2, 2)

Bidder (ai) Bid (bi) Request vector (si) BRF (bi/
∑

k s
k
i) Result (xi) Key successor Payment (pi)

a1 50 (1, 0, 1, 0, 0) 25.00 1 a1 0
a2 70 (0, 0, 0, 2, 1) 23.33 1 a3 69.75
a3 93 (0, 1, 0, 1, 2) 23.25 0 - 0
a4 90 (2, 1, 1, 0, 0) 22.50 1 a4 0
a5 63 (1, 0, 2, 1, 0) 15.75 0 - 0

Algorithm 4 details how to identify the key successor for
ai. The loop from Lines 3 to 7 first counts in all resource units
that are allocated to winners who outbid ai. We skip resource
allocation to ai to mimic the absence of ai in the auction.
Then, the loop from Lines 9 to 19 checks all potential key
successors aj in the order of their bid-request ranks. If aj is
a winner, it cannot be a key predecessor so we just count in
the amount of resource units allocated to it (Line 12). If aj
is not a winner, aj is ai’s key successor if its request can be
granted with the residual capacity (Line 14).

It is a concern whether a winner ai is possible to claim a
lower payment c′i < ci. If this happens, ai’s key successor,
say, aj , will find out that (sj , bj) ≺ (si, c

′
i) and become a

winner. Therefore, such a false claim is detectable.

V. PROTOCOL ANALYSES

In this section, we analyze whether the proposed protocol
stabilizes (i.e., eventually stops), and, if it does, whether
the outcome is correct (i.e., meeting the capacity constraint
and conforming to the BRF-based winner determination rule)
and consistent (with Algorithms 1 in terms of the set of
winners). We also show the individual rationality property of
the proposed protocol.

A. Stabilization

The protocol may potentially not stabilize because every
time ai changes bi or xi, the rank of its bid request and thus
the key predecessors of other agents may change. That may
cause another agent’s reaction and change the set of (declared)
winners. For convergence, we consider first how each agent’s
knowledge about bids and win declarations evolves with time.
Let bti = (bt1, b

t
2, . . . , b

t
n) and xti = (xt1, x

t
2, . . . , x

t
n) denote

ai’s knowledge of all bj’s and xj’s, respectively, after the t-th
execution of Line 17 of Algorithm 2 by ai. Let b0

i and x0
i be

ai’s initial knowledge. We assume btj = 0 and xtj = 0, where
t ≥ 0, for all aj 6∈ Ni. Because the execution of Line 17 of
Algorithm 2 is triggered by a new update on some (bj , xj)
and changes bi or xi, we have (bti,x

t
i) 6= (bt+1

i ,xt+1
i) for

all t ≥ 0. A sequence ξti = (b0
i ,x

0
i), (b1

i ,x
1
i), (b2

i ,x
2
i), . . . ,

(bti,x
t
i) is a transition path of agent ai that is of length t.

Theorem 3: Any transition path of any agent is finite.
Proof: Consider any agent ai and one of its transition

paths ξi = (b0
i ,x

0
i), (b1

i ,x
1
i), (b2

i ,x
2
i), Since agents

can only raise their bids and no agent places a bid higher
than its valuation, there exists some integer ti such that bti
no longer changes when t ≥ ti. Although the values of ti
may be different for different ai’s, eventually bti will stabilize

TABLE VII
TWO CONFORMING OUTCOMES OF THE MUCA SHOWN IN TABLE IV

Bidder Outcome 1 Outcome 2
(ai) (b̂i, x̂i) (b̂i, x̂i)
a1 (9, 1) (7, 1)
a2 (13, 0) (8, 0)
a3 (10, 1) (3, 1)

for all ai’s. After that, the rank of bid requests is finalized.
Without loss of generality, assume that (sj , bj) ≺ (sj+1, bj+1)
for all 1 ≤ j < n. We already know that no agent aj has
the incentive to falsify xj . It follows that the value of x1

will eventually stabilize. Because of this, the value of x2 will
eventually stabilize, and so on. Therefore, ξi must be finite.

B. Correctness

Because all update messages sent by ai are delivered in the
same order by all agents in Ni, all these agents must have the
same knowledge of (bi, xi) when the auction ends. Let (b̂i, x̂i)
be the last value of (bi, xi) sent by ai. When the protocol
stabilizes, the outcome (i.e., the collective settings of b̂i’s and
x̂i’s) is denoted by O = (b̂, x̂), where b̂ = (b̂1, b̂2, . . . , b̂n)
and x̂ = (x̂1, x̂2, . . . , x̂n). We consider O correct if it meets
the capacity constraint and conforms to the BRF-based winner-
determination rule defined below.

Definition 7 (BRF-based Winner Determination Rule): Let
≺ be a total order defined by a BRF on bid requests B =
{(si, bi}ni=1. An outcome of the CA O = (b̂, x̂) conforms
to the BRF-based winner determination rule if for every x̂i,
where 1 ≤ i ≤ n, x̂i = 1 only if

ski +
∑

(sj ,b̂j)≺(si,b̂i)

(
x̂j · skj

)
≤ qk for all ski 6= 0. (21)

It is possible that two or more outcomes conform to the
BRF-based winner determination rule. Table VII shows an
example with two conforming outcomes. We have (s3, b3) ≺
(s1, b1) ≺ (s2, b2) in the first outcome and (s1, b1) ≺
(s2, b2) ≺ (s3, b3) in the second one. Both outcomes conform
to the rule, though the bids are different.

With the following two theorems, we show that the proposed
protocol always ends up with a correct outcome.

Lemma 3: Let O = (b̂, x̂) be an outcome of Algorithm 2.
O conforms to the BRF-based winner determination rule, i.e.,
for every x̂i, where 1 ≤ i ≤ n, x̂i = 1 only if (21) holds.

Proof: Every execution of Algorithm 2 calls procedure
key predecessor. For every agent ai such that x̂i = 1, the

call to key predecessor in ai’s last execution of Algorithm 2
returns either j 6= i or i.

In the former case, aj is ai’s key predecessor by Lemma 2.
The result x̂i = 1 can only be set in Line 11 of Algorithm 2.
In the same line, ai increases bi to some value b̂i such that
(si, b̂i) outranks (sl, bj). Because (si, b̂i) ≺ (sl, bj), we have∑

(sl,bl)≺(si,b̂i)

(
xl · skl

)
≤

∑
(sl,bl)≺(si,bj)

(
xl · skl

)
. (22)

for all ski 6= 0. By (18), we have∑
(sl,bl)≺(si,b̂i)

(
xl · skl

)
+ ski ≤ qk for all ski 6= 0. (23)

In the latter case, ai must pass the while loop in Algorithm 3
without finding any ski 6= 0 such that∑

(sj ,bj)≺(si,b̂i)

(
xj · skj

)
+ ski > qk, (24)

which is equivalent to (23).
In either case, any agent al 6= ai may later change bl or

xl. If any of those changes ever affected ai’s best response,
(b̂i, x̂i) would not be ai’s final decision. Therefore, (23) still
holds when the protocol ends. That is∑

(sj ,b̂j)≺(si,b̂i)

(
x̂j · skj

)
+ ski ≤ qk for all ski 6= 0. (25)

Lemma 4: Let O = (b̂, x̂) be an outcome of Algorithm 2.
O meets the resource capacity constraint specified in (2), i.e.,

n∑
i=1

(
x̂i · ski

)
≤ qk for all k = 1, . . . ,m.

Proof: For each k, 1 ≤ k ≤ m, let (si, b̂i) be the bid
request that is of the lowest rank in B such that x̂i = 1
and ski 6= 0. This implies for all request (sj , b̂j) ∈ B that
ranks lower than (si, b̂i), we have either skj = 0 or x̂j = 0.
Therefore,

n∑
j=1

(
x̂j · skj

)
= ski +

∑
(sj ,b̂j)≺(si,b̂i)

(
x̂j · skj

)
.

Because x̂i = 1, we know that (21) holds by Lemma 3. We
thus have the proof.

Theorem 4: The outcome of Algorithm 2 is correct.
Proof: It directly follows from Lemmas 3 and 4.

C. Consistency

Even though Algorithm 2 converges and the outcome is
correct, the outcome may deviate from that obtained by
Algorithm 1 with the same BRF. Let b̂ = (b̂1, b̂2, . . . , b̂n)
and b̂′ = (b̂′1, b̂

′
2, . . . , b̂

′
n) be two vectors that represent the

final bids found by Algorithms 2 and 1, respectively. Because
0 ≤ b̂i ≤ vi for all b̂i ∈ b̂ and b̂′i = vi for all b̂′i ∈ b̂′, we
have b̂ ≤ b̂′. Consequently, the ranks of bid requests in these
two algorithms can be different. In fact, Outcomes 1 and 2 in

Table VII are exactly the results found by Algorithms 1 and 2,
respectively. The ranks of bid requests are obviously different.

Despite of the difference in ranks, we shall prove that
Algorithm 2 is consistent in the sense that it identifies the
same set of winners as Algorithm 1 using the same BRF.

Theorem 5: Let b̂ = (b̂1, b̂2, . . . , b̂n) and b̂′ =
(b̂′1, b̂

′
2, . . . , b̂

′
n) be two vectors that represent the final bids

found by Algorithms 2 and 1, respectively. Let x̂ =
(x̂1, x̂2, . . . , x̂n) and x̂′ = (x̂′1, x̂

′
2, . . . , x̂

′
n) be two vectors

that represent the final win declarations of Algorithms 2 and
1, respectively. If these two algorithms use the same BRF, then
x̂ = x̂′.

Proof: Without loss of generality, we assume that
(si, b̂

′
i = vi) is ranked i-th in Algorithm 1. However, the cor-

responding bid request (si, b̂i) is not necessarily ranked i-th in
Algorithm 2. Let c = (c1, c2, . . . , cn) and c′ = (c′1, c

′
2, . . . , c

′
n)

be two vectors that represent the critical values for (b̂, x̂) and
(b̂′, x̂′), respectively.

By way of contradiction, assume that x̂ 6= x̂′. Let k be the
smallest number such that x̂k 6= x̂′k. There are two possible
cases.
• (x̂k, x̂

′
k) = (0, 1). A necessary condition for x̂′k = 1 is
k∑
j=1

(x̂′j · slj) ≤ ql for all l such that slk 6= 0. (26)

Another necessary condition for x̂′k = 1 is c′k < vk.
Because b̂ ≤ b̂′, we have ck ≤ c′k. Together with the
condition that c′k < vk, Algorithms 2 is free to set b̂k
to some value b ∈ (ck, vk] and thus wins the auction.
Therefore, it is impossible that x̂k = 0.

• (x̂k, x̂
′
k) = (1, 0). The result x̂′k = 0 implies that

slk+

k−1∑
j=1

(x̂′j ·slj) > ql for some l such that slk 6= 0. (27)

Let l̄ be one such l. That is,

sl̄k +

k−1∑
j=1

(x̂′j · sl̄j) > ql̄. (28)

If k = 1, which implies sl̄1 > ql̄, then x̂1 must be 0 as
well by Lemma 4. Therefore, k must be greater than 1.
Let A′k = {aj |j < k, sl̄j 6= 0, x̂′j = 1} be the set of agents
that also request rl̄ with bid requests outranking ak’s and
getting granted by Algorithm 1. Let Bk = {(sj , b̂j)|aj ∈
A′k} be the set of bid requests submitted by all the agents
in A′k when running Algorithm 2. If (sk, b̂k) does not
outrank any (sj , b̂j) ∈ Bk in the end of Algorithm 2,
then

sl̄k +
∑

(sj ,b̂j)≺(sk,b̂k)

(x̂j · sl̄j) ≥ sl̄k +

k−1∑
j=1

(x̂′j · sl̄j) (29)

because x̂j = x̂′j for all j < k. By (28) and (29), we
have

sl̄k +
∑

(sj ,b̂j)≺(sk,b̂k)

(x̂j · sl̄j) > ql̄, (30)

which implies that x̂k cannot be 1. Therefore, (sk, b̂k)
must outrank some (sj , b̂j) ∈ Bk to declare x̂k = 1. Let
(sp, b̂p) be the bid request that ranks the lowest in Bk. It
have two properties. First, x̂p = 1 because ap ∈ A′k and
x̂j = x̂′j for all j, 1 ≤ j < k. By Lemma 3, we then
have

sl̄p +
∑

(sj ,b̂j)≺(sp,b̂p)

(x̂j · sl̄j) ≤ ql̄. (31)

Second, the set {(sj , b̂j)|(sj , b̂j) ≺ (sp, b̂p)} includes
(sk, b̂k) (because (sk, b̂k) must outrank (sp, b̂p)) as well
as all bid requests in the set Bk\{(sp, b̂p)}. It may include
other bid requests. Therefore,∑

(sj ,b̂j)≺(sp,b̂p)

(x̂j · sl̄j) ≥
∑

1≤j≤k,j 6=p

(x̂j · sl̄j). (32)

By (31), we have

sl̄p +
∑

1≤j≤k,j 6=p

(x̂j · sl̄j) ≤ ql̄. (33)

Because x̂k = 1, x̂′p = 1, and x̂′j = x̂j for all 1 ≤ j < k,
(33) can be rewritten as

sl̄k +
∑

1≤j<k

(x̂′j · slj̄) ≤ ql̄. (34)

This contradicts with (28).
Therefore, it is impossible that x̂ 6= x̂′.

D. Individual Rationality

An auction scheme provides individual rationality if no
participant receives a negative utility. By (15), any agent ai
not declaring a win (xi = 0) gets zero utility. If agent ai
declares a win (xi = 1), its utility is νi(si) − pi by (15).
By (16), the declaration of xi = 1 implies pi < vi, where
vi = νi(si), since otherwise xi must be 0. Therefore, any agent
ai declaring xi = 1 has a utility νi(si) − pi > 0. Since no
agent receives a negative utility, the proposed protocol ensures
individual rationality.

VI. NUMERICAL RESULTS

We conducted simulations to evaluate the performance of
the proposed scheme in terms of total winning bid, total pay-
ment, and the time to convergence. The first two performace
metrics are compared with those obtained by two centralized
BRF-based greedy allocations. One was proposed by Mito and
Fujita [30] with BRF wn(·) defined in (4), where the value of
β is set to 0.5. The other was proposed by Jia et al. [23] with
BRF wm(·) defined in (7), where the value of α is set to 1.

We assumed n bidders and m types of items. For supply
side, the number of identical instances for any resource type
rj , qj , was distributed over the set of integers in the range
[1, qmax], where qmax is a fixed number. For demand side, the
probability that any agent ai requests any resource type rj
was a tunable parameter ps. If ai did request rj , s

j
i was

distributed over the set of integers in the range [1, qj]. Let

vi,j be ai’s valuation on one instance of resource type rj . The
set {vi,j}ni=1 are i.i.d’s which follows a Gaussian distribution
truncated at 0 and 50 with mean µj , where µj is a random
variable uniformly distributed over the range [10, 20]. Agent
ai’s valuation on si was set to

νi(si) =

m∑
j=1

(sji × vi,j). (35)

As mentioned, the proposed approach does not demand par-
ticular initial value of each xi. We thus tested three possible
settings for the initial values of xi’s: all 1’s, all 0’s, and
randomly selected 1’s and 0’s.

We assumed critical-value-based payments but did not as-
sume any particular bidding strategy. More specifically, the
new bid in Line 11 of Algorithm 2 was randomly selected from
the range [ci+ε, vi]. The value of ε was set to a small number
(0.001) to maximize the range of the new bid selection.

For each possible setting, we generated 100 test data and
performed 10 trials for each data. Each result is an average
over these 1000 trials.

A factor that affects the performance metrics is competition
intensity (CI), the ratio of the total number of edges in the
conflict graph to the maximum (i.e., n(n − 1)/2). We fixed
m, n, and qmax, and varied the value of ps from 0.01 to 0.14
to adjust CI. Fig. 2a shows how CI changes with increasing
ps.

When CI increased, the numbers of winners identified with
both BRFs decreased, as Fig. 2b shows. Here wm slightly
outperformed wn due to the consideration of the number of
instances in its function definition. For a specific BRF, the
centralized greedy approach and the proposed decentralized
approach yielded exactly the same set of winners.

Figure 3 shows how total winning bid changes with respect
to ps. For both BRFs, the centralized approach outperformed
the decentralized counterpart, and the performance of the
decentralized approach was not affected by the initial setting
of xi’s. Although there were more winners with ps = 0.01
than with ps ≥ 0.02 in both BRFs, the total winning bid with
ps = 0.01 was not always higher than that with ps ≥ 0.02.
The reason is that although there were more winners with
ps = 0.01 than with ps ≥ 0.02, each winner with ps = 0.01
generally requested fewer resource instances than that with
ps ≥ 0.02. Because each agent’s bid was roughly in propor-
tional to the number of requested instances, we obtained the
highest total winning bid with ps = 0.02 or ps = 0.03. When
ps increased further, the total winning bid decreased because
the number of winners decreased significantly as Fig. 2b
indicates.

Figure 4 shows how the total payment changes with in-
creasing CI. Here all approaches exhibit behaviors similar to
the result of total winning bid. However, the total payment
is always lower than the total winning bid under any circum-
stance. The performance gap between the centralized and the
proposed decentralized approach becomes smaller when CI is
larger. This trend is also similar to that exhibited in Fig. 3.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Resource Selection Probability (p
s
)

C
o
m

p
e
ti
ti
o
n
 I
n
te

n
s
it
y
 (

C
I)

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

10

20

30

40

50

60

Resource Selection Probability (p
s
)

N
u
m

b
e
r

o
f
W

in
n
e
rs

w
m

 (alpha = 1)

w
n
 (beta = 0.5)

(b)

Fig. 2. Results with qmax = 5, n = 100, and m = 200. (a) Competition intensity (CI) versus ps. (b) Number of winners versus ps.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

Resource Selection Probability (p
s
)

T
o
ta

l
W

in
n
in

g
 B

id

BRF−based Greedy (with w
m

)

Decentralized (x’s are all 1s initially)

Decentralized (x’s are all 0s initially)

Decentralized (x’s are random initially)

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
1500

2000

2500

3000

3500

4000

4500

Resource Selection Probability (p
s
)

T
o
ta

l
W

in
n
in

g
 B

id

BRF−based Greedy (with w
n
)

Decentralized (x’s are all 1s initially)

Decentralized (x’s are all 0s initially)

Decentralized (x’s are random initially)

(b)

Fig. 3. Average total winning bid with (a) wm (α = 1) and (b) wn (β = 0.5). (qmax = 5, n = 100, and m = 200)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
1600

1800

2000

2200

2400

2600

2800

3000

3200

Resource Selection Probability (p
s
)

T
o
ta

l
P

a
y
m

e
n
t

BRF−based Greedy (with w
m

)

Decentralized (x’s are all 1s initially)

Decentralized (x’s are all 0s initially)

Decentralized (x’s are random initially)

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
1200

1400

1600

1800

2000

2200

2400

2600

Decentralized (x’s are random initially)

T
o
ta

l
P

a
y
m

e
n
t

BRF−based Greedy (with w
n
)

Decentralized (x’s are all 1s initially)

Decentralized (x’s are all 0s initially)

Decentralized (x’s are random initially)

(b)

Fig. 4. Average payment with (a) wm (α = 1) and (b) wn (β = 0.5). (qmax = 5, n = 100, and m = 200)

We studied the convergence time of the decentralized ap-
proach by measuring the total number of moves taken by all
bidders before reaching the final result. We did not count the
initial setting and broadcast of bid requests; only changes of
bid requests (sending of updates) count. Fig. 5 shows the
results, which clearly depend on the initial settings of xi’s.
Generally speaking, the all-1s initial setting demanded fewer
moves than the all-0s initial setting when there were more
winners (i.e., when ps is small). On the other hand, the all-0s
initial setting outperformed the all-0s initial setting when there
were few winners (i.e., when ps is large). The random setting
generally lies between these two extremes, and would be the
best choice if we do not know the CI value beforehand.

Regardless of the initial setting of xi’s, on average each

agent took fewer than two moves before stability.

VII. CONCLUSIONS

We have proposed decentralized winner and payment de-
termination protocols based on a given BRF for MUCA. It
allows bidders to locally determine their bid and willingness
to win by identifying their key predecessors. By exchanging
that information with other competitors, other bidders can
take moves so as to reach a consensus. For critical-value-
based payment, winners determine their payments by iden-
tifying their respective key successors. We have proved that
the proposed approach eventually stabilizes and is correct in
the sense that the result meets the capacity constraint and
conforms to the BRF-based winner-determination rule. We
also proved that the proposed approach is consistent with

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
20

40

60

80

100

120

140

160

180

200

Resource Selection Probability (p
s
)

T
o
ta

l
M

o
v
e
s

x’s are all 1s initially

x’s are all 0s initially

x’s are random initially

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
20

40

60

80

100

120

140

160

Resource Selection Probability (p
s
)

T
o
ta

l
M

o
v
e
s

x’s are all 1s initially

x’s are all 0s initially

x’s are random initially

(b)

Fig. 5. Average number of moves with (a) wm (α = 1) and (b) wn (β = 0.5). (qmax = 5, n = 100, and m = 200)

the centralized counterpart using the same BRF in the sense
that both approaches identify the same set of winners. The
proposed approach also ensures truthful bidding and individual
rationality. Simulation results confirms the correctness and
consistency of the proposed approach at the cost of lower total
winning bid and payment.

REFERENCES

[1] C. Xu, L. Song, Z. Han, Q. Zhao, X. Wang, X. Cheng, and B. Jiao, “Effi-
ciency resource allocation for device-to-device underlay communication
systems: A reverse iterative combinatorial auction based approach,”
IEEE Trans. on Parallel and Distributed Systems, vol. 31, no. 9, pp.
348–358, Sep. 2013.

[2] F. Wu, T. Zhang, C. Qiao, and G. Chen, “A strategy-proof auction
mechanism for adaptive-width channel allocation in wireless networks,”
IEEE Journal on Selected Areas in Communications, vol. 34, no. 10,
pp. 2678–2689, Oct. 2016.

[3] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A PTAS mechanism for
provisioning and allocation of heterogeneous cloud resources,” IEEE
Trans. on Parallel and Distributed Systems, vol. 26, no. 9, pp. 2386–
2399, Sep. 2015.

[4] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu,
“A framework for truthful online auctions in cloud computing with
heterogeneous user demands,” IEEE Trans. on Computers, vol. 65, no. 3,
pp. 805–818, Mar. 2016.

[5] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos, “An online
mechanism for resource allocation and pricing in clouds,” IEEE Trans.
on Computers, vol. 65, no. 4, pp. 1172–1184, Apr. 2016.

[6] K. Li, C. Liu, K. Li, and A. Y. Zomaya, “A framework of price bidding
configurations for resource usage in cloud computing,” IEEE Trans. on
Parallel and Distributed Systems, no. 8, pp. 2168–2181, Aug. 2016.

[7] A.-L. Jin, W. Song, P. Wang, D. Niyato, and P. Ju, “Auction mechanisms
toward efficient resource sharing for cloudlets in mobile cloud comput-
ing,” IEEE Trans. on Service Computing, vol. 9, no. 6, pp. 895–909,
2016.

[8] H. Zhang, F. Guo, H. Ji, and C. Zhu, “Combinational auction-based
service provider selection in mobile edge computing networks,” IEEE
Access, vol. 5, pp. 13 455–13 464, Jul. 2017.

[9] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. on Robotics, vol. 25,
no. 4, pp. 912–926, Aug. 2009.

[10] K. Zhang, E. G. Collins, and D. Shi, “Centralized and distributed task
allocation in multi-robot teams via a stochastic clustering auction,” ACM
Trans. on Autonomous and Adaptive Systems, vol. 7, no. 2, Jul. 2012.

[11] N. Sullivan, S. Grainger, and B. Cazzolato, “Sequential single-item
auction improvements for heterogeneous multi-robot routing,” Robotics
and Autonomous Systems, vol. 115, pp. 130–142, May 2019.

[12] Z. Duan, W. Li, and Z. Cai, “Distributed auctions for task assignment
and scheduling in mobile crowdsensing systems,” in Proc. IEEE 37th
Int’l Conf. on Distributed Computing Systems, Atlanta, GA, USA, Jun.
2017.

[13] X. Wang, Y. Sui, J. Wang, C. Yuen, and W. Wu, “A distributed truthful
auction mechanism for task allocation in mobile cloud computing,” IEEE
Trans. on Services Computing, in press.

[14] J. Murillo, V. Muñoz, B. López, and D. Busquets, “A fair mechanism for
recurrent multi-unit auctions,” in Lecture Notes in Artificial Intelligence
5244, R. Bergmann, G. Lindemann, S. Kirn, and M. Pechoucek, Eds.
Springer-Verlag, 2008, pp. 147–158.

[15] M. Esteva and J. Padget, “Auctions without auctioneers: Distributed
auction protocols,” in Lecture Notes in Artificial Intelligence 1788,
A. Moukas, F. Ygge, and C. Sierra, Eds. Springer-Verlag, 2000, pp.
220–238.

[16] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason,
“Auction protocols for decentralized scheduling,” Games and Economic
Behavior, vol. 35, pp. 271–303, 2001.

[17] P. R. Lewis, P. Marrow, and X. Yao, “Resource allocation in decen-
tralised computational systems: an evolutionary market-based approach,”
Autonomous Agents and Multi-Agent Systems, vol. 21, no. 2, pp. 143–
171, 2010.

[18] D. Lehmann, L. I. O’Callaghan, and Y. Shoham, “Truth revelation in ap-
proximately efficient combinatorial auctions,” Journal of the Association
for Computing Machinery, vol. 49, no. 5, pp. 577–602, Sep. 2002.

[19] S. de Vries and R. V. Vohra, “Combinatorial auctions: A survey,”
INFORMS Journal on Computing, vol. 15, no. 3, pp. 284–309, 2003.

[20] M. Nanjanath and M. Gini, “Repeated auctions for robust task execution
by a robot team,” Robotics and Autonomous Systems, vol. 58, no. 7, pp.
900–909, Jul. 2010.

[21] S. Koenig, C. Tovey, M. Lagoudakis, V. Markakis, D. Kempe, P. Ke-
skinocak, A. Kleywegt, A. Meyerson, and S. Jain, “The power of
sequential single-item auctions for agent coordination,” in Proc. of the
21st National Conf. on Artificial Intelligence, 2006, pp. 1625–1629.

[22] K. Leyton-Brown, Y. Shoham, and M. Tennenholtz, “An algorithm for
multi-unit combinatorial auctions,” in Proc. 17th Nat’l Conf. on Artificial
Intelligence and 12th Conf. on Innovative Applications of Artificial
Intelligence, Jul. 2000, pp. 56–61.

[23] J. Jia, Q. Zhang, Q. Zhang, and M. Liu, “Revenue generation for truthful
spectrum auction in dynamic spectrum access,” in Proc. 10th ACM Int’l
Symp. on Mobile Ad Hoc Networking and Computing, New Orleans,
Louisiana, USA, May 2009.

[24] S. Zaman and D. Grosu, “Combinatorial auction-based allocation of
virtual machine instances in clouds,” Journal of Parallel and Distributed
Computing, vol. 73, no. 4, pp. 495–508, Apr. 2013.

[25] ——, “A combinatorial auction-based mechanism for dynamic VM pro-
visioning and allocation in clouds,” IEEE Trans. on Cloud Computing,
vol. 1, no. 2, pp. 129–141, 2013.

[26] P. Cramton, Y. Shoham, and R. Steinberg, Combinatorial Auctions. MIT
Press, 2006.

[27] W. Vickrey, “Counterspeculation, auctions and competitive sealed ten-
ders,” The Journal of Finance, vol. 16, no. 1, pp. 8–37, Mar. 1961.

[28] E. Clarke, “Multipart pricing of public goods,” Public Choice, vol. 11,
no. 1, pp. 17–33, 1971.

[29] T. Groves, “Incentives in teams,” Econometrica, vol. 41, no. 4, pp. 617–
631, Jul. 1973.

[30] M. Mito and S. Fujita, “On heuristics for solving winner determination
problem in combinatorial auctions,” Journal of Heuristics, vol. 51, no. 5,
pp. 507–523, 2004.

[31] D. C. Parkes, “iBundle: An efficient ascending price bundle auction,” in
Proc. 1st ACM Conf. on Electronic Commerce, Nov. 1999, pp. 148–157.

[32] X. Zhang, H. Tang, D. Yang, M. A. El-Meligy, and Z. Li, “Comparative
analysis of sequential and combinatorial auctions based on Petri nets,”
IEEE Access, vol. 6, pp. 38 071–38 085, Jun. 2018.

[33] P. J. Brewer, “Decentralized computation procurement and computa-
tional robustness in a smart market,” Economic Theory, vol. 13, no. 1,
pp. 41–92, Jan. 1999.

[34] E. Kutanoglu and S. D. Wu, “On combinatorial auction and lagrangean
relaxation for distributed resource scheduling,” IIE Transactions, vol. 31,
no. 9, pp. 813–826, 1999.

[35] D. Hausheer and B. Stiller, “PeerMart: The technology for a distributed
auction-based market for peer-to-peer services,” in Proc. IEEE Int’l
Conf. on Communications, May 2005.

[36] T. Sandholm, “Algorithm for optimal winner determination in combina-
torial auctions,” Artificial Intelligence, vol. 135, no. 1-2, pp. 1–54, Feb.
2002.

[37] T. Sandholm, S. Suri, A. Gilpin, and D. Levine, “CABOB: A fast
optimal algorithm for winner determination in combinatorial auctions,”
Management Science, vol. 51, no. 3, Mar. 2005.

[38] B. Lehmann, D. Lehmann, and N. Nisan, “Combinatorial auctions with
decreasing marginal utilities,” Games and Economic Behavior, no. 2,
pp. 270–296, May 2006.

[39] H. H. Hoos and C. Boutilier, “Solving combinatorial auctions us-
ing stochastic local search,” in Proc. 17th Nat’l Conf. on Artificial
Intelligence and 12th Conf. on Innovative Applications of Artificial
Intelligence, Jul. 2000, pp. 22–29.

[40] E. Zurel and N. Nisan, “An efficient approximate allocation algorithm
for combinatorial auctions,” in Proc. 3rd ACM Conf. on Electronic
Commerce, Tampa, Florida, USA, Oct. 2001, pp. 125–136.

[41] N. Fukuta and T. Ito, “Fine-grained efficient resource allocation using
approximated combinatorial auctions: A parallel greedy winner approx-
imation for large-scale problems,” Web Intelligence and Agent Systems:
An International Journal, vol. 7, no. 1, pp. 43–63, 2009.

[42] V. Avasarala, H. Polavarapu, and T. Mullen, “An approximate algo-
rithm for resource allocation using combinatorial auctions,” in Proc.
IEEE/WIC/ACM Int’l Conf. on Intelligent Agent Technology, Dec. 2006,
pp. 571–578.

[43] S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms
for the maximum weighted independent set problem,” Discrete Applied
Mathematics, vol. 126, pp. 313–322, 2003.

[44] M. M. Nejad, L. Mashayekhy, and D. Grosu, “Truthful greedy mech-
anisms for dynamic virtual machine provisioning and allocation in
clouds,” IEEE Trans. on Parallel and Distributed Systems, vol. 26, no. 2,
pp. 594–603, Feb. 2015.

[45] Y. M. Teo and M. Mihailescu, “A strategy-proof pricing scheme for
multiple resource type allocations,” in Proc. 38th Int’l Conf. on Parallel
Processing, Vienna, Austria, Sep. 2009, pp. 172–179.

