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Distributed Lifetime-Maximized Target Coverage Game
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Wireless sensor nodes are usually densely deployed to completely cover (monitor) a set of targets. Con-

sequently, redundant sensor nodes that are not currently needed in the covering task can be powered off
to conserve energy. These sensors can take over the covering task later to prolong network lifetime. The
coverage problem concerns picking up a set of working sensors that collectively meet the coverage require-
ments. The problem is complicated by the possibility that targets may have different coverage requirements

while sensor nodes may have different amounts of energy. This paper proposes a game-theoretic approach
to the coverage problem where each sensor autonomously decides its state with a simple rule based on local
information. We give rigorous proofs to show stability, correctness, and efficiency of the proposed game.

Implementation variants of the game consider specific issues such as game convergence time and differ-
ent amounts of sensor energy. Simulation results show significant improvement in network lifetime by the
proposed approach when compared with representative alternatives.
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1. INTRODUCTION
Wireless sensor nodes are electronic devices capable of collecting, storing, and process-
ing environmental information, and communicating with other sensor nodes through
wireless communications. Hundreds or thousands of wireless sensor nodes deployed
in a region of interest comprise a wireless sensor network (WSN), where all members
cooperatively monitor the whole region, barriers, or targets (points) within the region
[Cardei and Wu 2004]. In this paper, we are interested in complete coverage of a set of
monitored targets at all time, a requirement known as target coverage. In this problem,
a sensor node is said to cover some target if that target is under the surveillance of the
sensor. Since sensor nodes are usually densely deployed, covering all targets demands
only a small subset of sensor nodes. The rest can enter sleep mode to conserve precious
energy. These sensors can be powered on later to take over the covering task and thus
prolong network operation time. Determining whether individual sensors should be ac-
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tive or in sleep mode while retaining the desired target coverage is termed a coverage
problem. All the active sensor nodes constitute a set cover. If set covers are formed in a
periodic manner, the coverage problem becomes a work scheduling or sleep scheduling
problem.

The coverage problem faces the situation that not all sensors in a WSN are of the
same importance, as not every sensor covers the same set of targets and/or has the
same amount of energy. Furthermore, in some applications, the number of sensors
required to cover a target may differ from target to target [Gu et al. 2007; Chaud-
hary and Pujari 2009]. In the literature, the problem under discussion has been for-
mulated in various ways. Most research consider uniform coverage requirement (1-
coverage or k-coverage) and assume uniform sensor energy. A few studies take account
of non-uniform coverage requirement (Q-coverage) or non-uniform sensor energy, but
not both. Many variant forms of the problem (which demand a minimal number of
active sensors) have been proven NP-hard, for which many heuristics have been pro-
posed. However, little has been done on the coverage problem with the consideration
of different amounts of sensor energy and coverage requirements.

This paper tackles the coverage problem with the goal to develop a feasible dis-
tributed mechanism for energy-constrained sensor devices. Sensor devices are typi-
cally numerous in a WSN and locations of sensors cannot be engineered due to practi-
cal constraints. Therefore, a centralized work scheduling algorithm that demands full
knowledge of coverage relationship between sensors and covered regions/targets would
not scale well. Distributed schemes based on special structure of sensor nodes such as
grids or clusters incur additional cost in planning or managing such a structure. Fur-
thermore, sensor devices generally have a limited computation capability due to the
needs to reduce the hardware complexity and power consumption of these devices.
Computation-intensive methods such as linear programming and genetic algorithms
are therefore not favored.

The proposed distributed approach is based on game theory and does not demand
any special organization of sensors into a specific topology such as grid or cluster. In
this approach, sensor devices as autonomous participants seek their own interest and
need only status information of neighboring sensors that have overlapping coverage
with them to make their own decisions. Although neighboring sensors have conflicting
interest and there is no centralized mechanism to coordinate actions among sensors,
we are able to prove the stability, correctness, and efficiency of the proposed approach
under the game theory framework. This game design demands only simple arithmetic
computations and is therefore practical for implementation in hardware-constrained
sensor devices. Besides the basic game design, utility-aware and power-aware real-
izations of the game in WSNs are proposed to shorten game convergence time and to
balance sensor energy consumption, respectively. A hybrid implementation that con-
siders both utility and power is then investigated. Simulation results indicate that
the proposed approach provides a significant improvement in network lifetime when
compared with existing greedy heuristics.

The remainder of this paper is organized as follows. Background knowledge and re-
lated work are presented in Section 2. Section 3 presents the proposed game-theoretic
approach to the coverage problem with rigorous correctness proof. In Section 4, perfor-
mance evaluations of the proposed approach are presented in comparisons with other
alternatives. Section 5 concludes this paper.
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Fig. 1. Classifying coverage requirement definitions

2. BACKGROUNDS AND RELATED WORK
2.1. Backgrounds
It is required that any solution to the coverage problem be subject to some coverage
requirement. Such requirement has a broad definition as the term coverage carries
different meanings in the literature. The object of sensor coverage could be an area,
a number of targets (points), or others. Different applications may demand different
degrees of coverage from WSNs. The requested coverage degree is often expressed as
“every object should be covered by at least one (1-covered) or k > 1 (k-covered) sensor
nodes.” When targets are of interest, requested coverage degrees may differ from one
target to another, leading to the definition of Q-coverage [Gu et al. 2007]. Fig. 1 shows
a brief classification of coverage requirement definitions.

Since more sensors than needed are usually deployed, it is not difficult to find a set
cover that meets the coverage requirement. A greedy set-formation heuristic typically
works by adding nodes into an initially-empty set cover on a node-by-node basis. In
each round of the heuristic, the node with the highest remaining energy, the node that
contributes the most coverage, or the node that covers the most critical object can be
added into the set cover. However, finding the best node among all candidates a rank
sorting based on global information, which is not easy to implement as a distributed
protocol. A naive implementation may rely on one special sensor node to collect the
necessary information from all others, form a set cover based on the collected informa-
tion, and dispatch selected sensors. This creates a performance bottleneck as well as a
single point of failure at that node.

Set covers can be disjoint or non-disjoint. When sensor nodes have uniform power,
all nodes in a set cover exhaust their power at about the same time and all set cov-
ers operate for the same amount of time. In this case, finding the maximal number of
disjoint set covers essentially maximizes network lifetime and corresponds to the op-
timal solution to the work scheduling problem. When sensors have different amounts
of energy, not all set covers work for the same amount of time and other sensors may
still have energy when the first node in the same set cover exhausts all its energy. The
residual energy can be utilized if set covers are not disjoint. Consequently, a solution to
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Fig. 2. An example where {p1, p2, p3, p4, p5} are sensors and {t1, t2, t3} are targets. An arrowed line from
a sensor to a target represents the ability of the sensor to cover that target. All targets request 1-coverage.

the work scheduling problem that consists of disjoint set covers may not be optimal. In
general, non-disjoint set covers are expected to produce longer network lifetime than
disjoint set covers.

Figure 2 illustrates the difference between disjoint and non-disjoint set covers. If all
sensors have uniformly one unit of energy, then the solution consisting of the maximal
number of disjoint set covers (i.e., {p1, p4}, {p2, p3}, and {p5}) is the best solution in
terms of network lifetime. The network lifetime is 3τ , where τ is the amount of time
corresponding to dissipating one unit of energy. Suppose now both p1 and p2 have two
units of energy while the others remain intact. The original solution yields the same
network lifetime, while there exists a better solution that consists of four non-disjoint
set covers (for example, {p2, p3}, {p1, p4}, {p5}, and {p1, p2}).

Game theory provides a mathematical framework for the study of strategies in a
competition where players have conflicting benefits or goals. A game consists of the
following components: player set, strategy set, and utility functions. All competitors in
a game comprise the player set. All feasible decisions of a player comprise the strategy
set for the player. A strategy profile is a tuple of strategies, one from each player’s
strategy set. Each player can have a unique utility function, which returns the player’s
payoff (utility) with respect to a particular strategy profile. Players are usually selfish
in the sense that the only goal of all the players is to maximize their own payoff.

In traditional sensor networks where all sensor nodes are deployed and controlled
by one entity, a game-theoretic approach may simply represent a utility-based algo-
rithm design. The utility itself need not have any physical meaning. In a participatory
sensing framework where individual sensors may be controlled by different entities,
the utilities should be connected to some type of payoffs in the physical world (such
as payments or credits given to players/sensors) to motivate sensors to offer their cov-
erage. In this case, how to prevent or identify fraud becomes an issue. The approach
proposed in this paper is general in the sense that various meanings can be applied to
the utilities in practice.

For the last decade, game theory has been used in resource/duty sharing problems
in wireless networking environments. It has been used to model packets forwarding
tasks among nodes in wireless ad hoc networks [Han et al. 2005; Félegyházi et al.
2006]. Another application of game theory is to analyze the competition for radio re-
sources among terminals in a wireless data network [Yaı̈che et al. 2000; Han et al.
2005; 2007; Yen et al. 2011]. The problem of power control in Code Division Multi-
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ple Access (CDMA) wireless data systems has also been modeled as a non-cooperative
power control game [Saraydar et al. 2002; Xiao et al. 2003; Rasti et al. 2009].

2.2. Related Work
Concerning area coverage, Chamam and Pierre [2007] proposed a greedy approach
that finds set covers based on residual energy of sensors. The goal is to balance energy
consumption among all set covers so as to prolong network lifetime. In [Simon et al.
2007], an approach to k-coverage was proposed where each sensor has its own sleep
interval such that sleep intervals of sensors may vary in length. The length is set
such that sensors with less energy or sensors that are in critical positions have longer
sleep intervals than others. The idea is to conserve energy of these sensors until their
participations become inevitable. Li and Gao [2008] studied work scheduling for k-
coverage with a goal to maximize network lifetime. This problem is proven NP-hard
by the authors, and two greedy heuristics were proposed for the formations of disjoint
and non-disjoint set covers, respectively. The authors also considered adjusting sensing
range to further conserve energy.

Cardei and Du [2005] studied target coverage under the constraint that every target
should be 1-covered. Their approach partitions sensor nodes into disjoint set covers,
each of which meets the coverage constraint. In this way, to maximize network life-
time is essentially to maximize the number of disjoint set covers. They showed that
this problem is NP-complete, and proposed a heuristic based on an solution to the clas-
sic maximum-flow problem. This work was extended to consider non-disjoint set covers
[Cardei et al. 2005], where the problem was proven NP-complete as well. For an effi-
cient formation of non-disjoint set covers, the authors applied linear programming and
greedy techniques.

Hefeeda and Bagheri’s study [2007] aimed at area coverage, but they assumed dense
sensor network such that covering all sensor locations approximates covering the
whole area. The problem of selecting the minimum number of sensors to cover all
sensor locations such that every location is k-covered was modeled by the authors as
a problem of finding an optimal hitting set, and an approximation algorithm for the
optimal hitting set problem was adapted for the coverage problem under consideration.

In [Fan et al. 2008], the authors discussed how to place a minimal number of sensors
to make every target k-covered. The authors proposed an approach based on Compu-
tational Geometry and Combinatorics. This approach is unique in that the locations to
place sensor nodes need not be exact.

Gu et al. [2007] are the first to define the Q-coverage problem and prove its NP-
completeness. Although the problem can be converted into a linear programming prob-
lem, the difficulty lies in the nonexistence of a polynomial-time algorithm that is able
to generate all possible set covers. The authors presented an approach that gener-
ates set covers randomly. A greedy heuristic proposed in [Chaudhary and Pujari 2009]
prefers sensors with a higher energy level when forming a set cover for Q-coverage.
When a set cover is found, a pruning technique is then applied as an attempt to fur-
ther reduce the size of the set cover.

Comparatively little work has been done toward the scheduling problem under the
framework of game theory. Zhu and Martinez [2009] defined a coverage game, which
assumes visual sensors for which orientation and focal length of the camera can be
adjusted. Consequently, the visual sensing area of a camera is directional with a finite
angle of view and has a limited-range. By visually covering an area ∆, a sensor earns a
profit proportional to the number of interesting events in ∆ but inversely proportional
to the number of all sensors that cover the same area. On the other hand, the cost of
processing visual data (in terms of energy consumption) for a visual sensor is assumed
proportional to the area of the region covered by it. The game has a goal to maximize
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overall payoff (profit minus cost). This game is a variation of the congestion games
[Rosenthal 1973].

To the best of our knowledge, the closest related work to ours is [Ai et al. 2008],
where the authors considered work schedule of sensor nodes under a game-theoretic
framework. This work assumes that the lifetime of the whole network is known and
given and consists of k duty periods. The problem is to arrange the work schedule
of sensors to maximize average area coverage. In this model, every player (sensor) is
required to select and join one of k duty periods. Thus all duty periods comprise a
strategy set for a player. The coverage level in a duty period is defined by the size of
the area collectively covered by all active sensors in that period. The payoff associated
with a player’s strategy corresponds to the additional coverage level resulting from the
sensor’s participation in the chosen duty period. The authors proved that the proposed
game is a potential game [Monderer and Shapley 1996] as well as a congestion game.

The main issue associated with [Ai et al. 2008] comes from the assumption that k is
known and given. The value of k in fact trades the lifetime of the whole network with
average coverage level. If k is too large, the average coverage level in all duty periods
will be lowered. On the other hand, a small k will shorten network lifetime and waste
sensor energy. If duty periods are thought of as set covers, finding the maximal k such
that full coverage in every set cover (duty period) is NP-complete [Cardei and Du 2005].
This is not a problem to [Ai et al. 2008] as that study did not demand a 100% coverage
level in every duty period.

Our work differs from [Ai et al. 2008] in many ways. Coverage is a requirement in
our work but a performance metric to maximize in [Ai et al. 2008]. On the other hand,
network lifetime is assumed known in [Ai et al. 2008] but is a performance metric to
maximize in this study. Finally, we consider non-uniform coverage requirement and
sensor energy while the authors in [Ai et al. 2008] did not.

3. THE PROPOSED APPROACH
3.1. Problem Definition
We assume n sensors and m targets in a closed region. The ability of a sensor to cover
some target is deterministic rather than probabilistic. This can be determined by, for
example, applying the commonly-adopted notion of sensing range (all targets within
the sensing range of some sensor are covered by that sensor.) We decompose the work
schedule problem into independent coverage problems, each corresponding to the task
of forming a set cover. We consider both disjoint and non-disjoint set covers.

We define target coverage game as follows. Let P = (p1, p2, . . . , pn) denote the player
set, which consists of all sensor nodes. For a tuple of all targets T = (t1, t2, . . . , tm),
let Q = (q1, q2, . . . , qm) denote the coverage requirement of each target, where qi is the
number of sensors demanded by target ti. A player’s choice of being active or not is
represented by 1 or 0, respectively, so each player pi has a strategy set Si = {0, 1}.
A strategy profile is thus an n-tuple C = (c1, c2, . . . , cn), where ci ∈ Si represents pi’s
choice. In this paper, strategy profile (c1, c2, . . . , cn) is sometimes coded as a bit string
b1b2 · · · bn, where bi = ci, 1 ≤ i ≤ n. For a specific pi, we may express C as C = (ci, C−i),
where C−i = (c1, c2, . . . , ci−1, ci+1, . . . , cn) denotes the set of all other player’s choices
other than pi’s. Function ui(C) gives pi’s utility (payoff) with respect to strategy profile
C. We shall explore how to design ui(C) in the next subsection. The target coverage
game Γ = [P ; {Si}ni=1; {ui}ni=1] can be formally defined by maxci∈Si ui(ci, C−i) for all
i = 1, 2, . . . , n.

The game under consideration is a noncooperative dynamic game. In a noncoop-
erative game, players do not cooperate with each other to seek the system’s bene-
fit. A game is dynamic if players take turns to make their decisions, knowing what
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Table I. Partial list of notations

Notation Meaning
Γ The proposed target coverage game
n Number of sensor nodes
m Number of targets
P The tuple of all sensor nodes; P = (p1, p2, . . . , pn)
T The tuple of all targets; T = (t1, t2, . . . , tm)
Q Coverage requirement; Q(q1, q2, . . . , qm), where

qi is the number of sensors demanded by target ti
Ti The set of targets that pi can cover
Pj The set of sensors that can cover tj
Si Strategy set of player pi; Si = {0, 1} for all i
Y Strategy space; Y = S1 × S2 × · · · × Sn

C Strategy profile; C = (c1, c2, . . . , cn) ∈ Y
ui(C) pi ’s utility with respect to strategy profile C

decisions have already been made. That definition corresponds to the myopic be-
havior that a sensor node will change its strategy (being active or not) whenever
that change increases its utility. Formally, the best response function for sensor pi is
ri(C−i) = {ci ∈ Si|∀c′i ∈ Si : ui(ci, C−i) ≥ ui(c

′
i, C−i)}.

To compute ui during the proposed game, pi needs to know the present strategy pro-
file (i.e., the current state of the game). If the game state is maintained by a particular
entity or infrastructure, then all players can update and access the state information
without interactions with each other. However, in a fully decentralized environment
where the whole game state is collectively kept by all players in a distributed man-
ner, players need to share their local game states (i.e., their own choices) with each
other. Therefore, while the game is designed to be a noncooperative game, running the
game may demand cooperative efforts from players. This type of cooperation causes
no problem in a traditional sensor network since all sensors are controlled by one en-
tity. In a participatory sensing framework where individual sensors may be controlled
by different entities, sensors may have the incentive to cheat on or deny cooperation
with their neighbors. Extra efforts are needed to deal with such misbehaviours. To
simplify the algorithm design, this paper assumes a fully decentralized environment
in a traditional sensor network. Implementation details about the cooperation under
this environment are presented in Sec. 3.4.

We assume that the sensor density is sufficiently high such that Q-coverage can
be guaranteed initially if all sensor nodes are active. The goal of the proposed target
coverage game is to maximize the network lifetime while respecting the Q-coverage
requirement by powering off redundant sensors. We shall first present a game design
that respects the Q-coverage requirement while disregarding the sensor energy. We
then show how to convert the game design into a practical distributed algorithm (pro-
tocol) that takes into account of sensor energy and game convergence time. For the
ensuing discussions, most of the symbols used are summarized in Table I.

3.2. Game Design
This subsection presents our game-theoretic approach to the target coverage problem.
Energy issue and other practical concerns will be addressed in Sec. 3.4. A critical mis-
sion of our work is to design a utility function for every player. This task centers on
how much profit a sensor should gain when it covers some target. That profit should be
high enough to motivate sensors to contribute their coverage so as to meet the coverage
requirement. On the other hand, the profit should be sufficiently low to avoid possible
activation of redundant sensors. How to distribute the profit among all contributors is
also an issue. If all the credit goes to the last one that fills the gap between requested
coverage and offered coverage, then no sensor would have the incentive to be the first
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Fig. 3. Possible transitions of strategy profiles for the scenario shown in Fig. 2

few contributors. An even or uneven distribution of profit among all contributors may
bring in some desired effects such as motivating the first few contributors, but it may
also cause some other unexpected side effects. Generally speaking, the design should
meet the following requirements:

Stability. The game should eventually enter a state where every player is satisfied
with her/his payoff. Without this requirement, the game may not end up with a
deterministic result.
Correctness. All possible final states of the game should meet the coverage require-
ment.
Efficiency. There should not be any active yet redundant sensors in any final state
of the game in order to avoid unnecessary energy waste.
Feasibility. Any player’s payoff should be defined as a function that only depends
on information accessible to the player. Existence of any parameter in the utility
function that involves global knowledge causes difficulties when turning the game
into a feasible solution. The computation of the utility function should be as simple
as possible so as to minimize the demand of computing resource on sensor devices.

We present first our design for the utility function and then the rationale behind the
design. Let gj(C) be the profit that a player can gain with respect to a strategy profile
C if it covers target tj :

gj(C) =

{
α if 0 < (

∑
pi∈Pj

ci) ≤ qj
0 otherwise, (1)

where α > 0 is a constant. The utility function of pi is defined as

ui(C) =

{ (∑
tj∈Ti

gj(C)
)
− β if ci = 1

0 if ci = 0,
(2)

where β is another constant such that 0 < β < α. Clearly, the payoff of a sensor’s choice
depends not only on the set of targets it covers, but also the choices of other sensors
that have overlapping coverages with it.

In (1), the profit of any active sensor that covers tj becomes zero when more sensors
than needed are active. This is to prevent redundant sensors from being active. The
condition β < α ensures that a sensor enters sleep mode only if it does not contribute
any coverage.
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For the scenario shown in Fig. 2, Fig. 3 shows all possible transitions of strategy
profiles starting from 00000 with the defined utility function1. It is not difficult to
verify that sensors choose to enter sleep mode if and only if they do not contribute any
coverage. For example, strategy profile 01011 may change to 01001 or 00011 because
both p2 and p4 contribute no coverage. Player p5, on the other hand, will not revise its
decision here because covering t1 gives it a positive payoff α − β. It is also not hard
to see that all transitions converge to four possible final results: 10010, 11000, 01100,
and 00001. The coverage requirement is satisfied in all these results.

3.3. Properties of the Game
We have already verified that the stability, the correctness, and the efficiency require-
ments are met in the particular scenario shown in Fig. 2. This subsection shall prove
that these requirements are universally met with the designed utility function.

The stability requirement corresponds to Nash equilibria in our game. A Nash equi-
librium is a strategy profile where no player can further increase its own utility by
unilaterally changing its choice.

Definition 3.1 (Nash equilibrium). Given a target coverage game Γ =
[P ; {Si}ni=1; {ui}ni=1], a strategy profile C∗ = (c∗1, c

∗
2, . . . , c

∗
n) is a Nash equilibrium

if ∀i ∈ {1, 2, . . . , n} : ∀ci ∈ Si :: ui(c
∗
i , C

∗
−i) ≥ ui(ci, C

∗
−i).

Recall that in our model, a player can change its choice if that change increases its
payoff. The change may trigger another player’s change and so on. If a Nash equilib-
rium does not exist in this game, activities of changing choices will persist and the
game cannot enter a stable state.

To prove Nash equilibrium of the proposed game, we need to introduce some partic-
ular types of games. In a potential game [Monderer and Shapley 1996], we can find
a potential function whose value increases whenever a player increases her payoff by
changing strategy.

Definition 3.2 (Potential game). Γ = [P ; {Si}ni=1; {ui}ni=1] is a potential game if there
exists a potential function π(ci, C−i) such that ∀pi ∈ P : ∀ci, c∗i ∈ Si, ci ̸= c∗i ::
sgn(ui(c

∗
i , C−i)− ui(ci, C−i)) = sgn(π(c∗i , C−i)− π(ci, C−i)), where

sgn(ρ) =

{
1 if ρ > 0
0 if ρ = 0
−1 if ρ < 0.

Exact potential game [Monderer and Shapley 1996] is a particular type of potential
game as defined below.

Definition 3.3 (Exact potential game). Γ = [P ; {Si}ni=1; {ui}ni=1] is an exact potential
game if it admits a potential function π(ci, C−i) such that

∀pi ∈ P : ∀ci, c∗i ∈ Si, ci ̸= c∗i :: ui(c
∗
i , C−i)− ui(ci, C−i) = π(c∗i , C−i)− π(ci, C−i). (3)

Potential functions that satisfy (3) are exact potential functions.
These definitions indicate that we need to find a potential function or an exact po-

tential function to show some game being a potential or an exact potential game. This
is the most difficult part of our analytic work. Note that a summation of all the player’s

1The possible transitions of strategy profiles are sensitive to the starting strategy profile. For example,
transitions of strategy profiles starting from 11111 (not shown here) are different from those shown in
Fig. 3.
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payoffs f(C) =
∑

i=1..n ui(C) in the proposed game is not a potential function: a transi-
tion from strategy profiles 01010 to 11010 results in a change of the payoff summation
from α− 2β to α− 3β, a negative increase.

THEOREM 3.4. The proposed target coverage game Γ = [P ; {Si}ni=1; {ui}ni=1] is an
exact potential game.

PROOF. Consider the following function:

π(C) =

 m∑
j=1

v(j)∑
k=0

δ(j, k)

− β

n∑
i=1

ci, (4)

where

v(j) =
∑
l∈Pj

cl

and

δ(j, k) =

{
α if 0 < k ≤ qj
0 otherwise.

We shall prove that Γ is an exact potential game by showing that π(C) is an exact
potential function. Let C = (ci, C−i) and C̄ = (c̄i, C−i) be two strategy profiles before
and after some pi changes its strategy from ci to c̄i, respectively. The transition from
C to C̄ is possible only if ui(ci, C−i) < ui(c̄i, C−i). There are two possibilities in such a
transition.

Case 1: ci = 1 and c̄i = 0. For all tj ∈ T , let υj and ῡj be the values of v(j) in C and
C̄, respectively. Clearly,

ῡj =

{
υj − 1 if tj ∈ Ti

υj if tj ̸∈ Ti.
(5)

Let σ =
∑n

i=1 ci in C. (4) can be rephrased as

π(ci, C−i) =
∑
tj∈Ti

υj∑
k=0

δ(j, k) +
∑
tj ̸∈Ti

υj∑
k=0

δ(j, k)− βσ, (6)

where ∑
tj∈Ti

υj∑
k=0

δ(j, k) =
∑
tj∈Ti

υj−1∑
k=0

δ(j, k) +
∑
tj∈Ti

δ(j, υj). (7)

If ∃tj ∈ Ti such that gj(C) ̸= 0, then ui(C) ≥ α−β > 0 = ui(C̄) and the transition from C
to C̄ is not possible. Therefore,

∑
tj∈Ti

gi(C) = 0. It follows that ui(c̄i, C−i)−ui(ci, C−i) =

0− (0−β) = β. Another implication is that δ(j, υj) = 0 for all tj ∈ Ti, and (7) reduces to

∑
tj∈Ti

υj∑
k=0

δ(j, k) =
∑
tj∈Ti

υj−1∑
k=0

δ(j, k). (8)

By (8), (6) becomes

π(ci, C−i) =
∑
tj∈Ti

υj−1∑
k=0

δ(j, k) +
∑
tj ̸∈Ti

υj∑
k=0

δ(j, k)− βσ. (9)
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On the other hand,

π(c̄i, C−i) =
∑
tj∈Ti

ῡj∑
k=0

δ(j, k) +
∑
tj ̸∈Ti

ῡj∑
k=0

δ(j, k)− β(σ − 1)

=
∑
tj∈Ti

υj−1∑
k=0

δ(j, k) +
∑
tj ̸∈Ti

υj∑
k=0

δ(j, k)− β(σ − 1) (10)

by (5). Therefore,

π(c̄i, C−i)− π(ci, C−i) = β, (11)

which is equal to the value of ui(c̄i, C−i)− ui(ci, C−i).
Case 2: ci = 0 and c̄i = 1. Since ui(ci, C−i) = 0,

ui(c̄i, C−i)− ui(ci, C−i) =
∑
tj∈Tj

gj(C̄)− β. (12)

Let υj , ῡj , σ be defined as in Case 1. We have

ῡj =

{
υj + 1 if tj ∈ Ti

υj if tj ̸∈ Ti.
(13)

By (13),

π(c̄i, C−i) =

m∑
j=1

ῡj∑
k=0

δ(j, k)− β(σ + 1)

=
∑
tj∈Ti

υj+1∑
k=0

δ(j, k) +
∑
tj ̸∈Ti

υj∑
k=0

δ(j, k)− β(σ + 1). (14)

Since

π(ci, C−i) =
∑
tj∈Ti

υj∑
k=0

δ(j, k) +
∑
tj ̸∈Ti

υj∑
k=0

δ(j, k)− βσ, (15)

we have

π(c̄i, C−i)− π(ci, C−i) =
∑
tj∈Ti

δ(j, υj + 1)− β

=
∑
tj∈Ti

δ(j, ῡj)− β. (16)

By (12) and (16), we have ui(c̄i, C−i)− ui(ci, C−i) = π(c̄i, C−i)− π(ci, C−i).

Let Y = S1 × S2 × · · · × Sn be the strategy space of Γ. Since Y is finite, Γ is a finite
(exact) potential game. It has been proven [Monderer and Shapley 1996] that every
finite potential game possesses a Nash equilibrium. In fact, it is also not difficult to
see that every strategy profile in a finite exact potential game eventually leads to a
Nash equilibrium through a series of improvements, where an improvement refers to
a positive increase in the value of the exact potential function due to a transition of
strategy profile caused by the myopic behavior of a single player.

COROLLARY 3.5. Starting from any strategy profile, Γ eventually ends up with a
Nash equilibrium.
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Corollary 3.5 confirms the stability of the proposed game. The following theorem
proves the correctness of the proposed game.

THEOREM 3.6. Q-coverage is ensured at every Nash equilibrium in Γ.

PROOF. Since Q-coverage is guaranteed by turning on all sensors, we have |Pj | ≥ qj
for all tj ∈ T . We shall prove the theorem by way of contradiction. Suppose that there
exists some Nash equilibrium C = (c1, c2, . . . , cn) in Γ where Q-coverage is not met.
It follows that there must be some target tj ∈ T in C for which

∑
pi∈Pj

ci < qj and
∃pi ∈ Pj : ci = 0. For any such pi, changing ci from 0 to 1 can cause a payoff change
from 0 to at least α − β > 0 (which comes from the new coverage on tj). Therefore, C
cannot be a Nash equilibrium, which contradicts with the assumption.

It is well known that Nash equilibria are not necessarily desired results. In fact,
global optima in games may not even exist. Nevertheless, we can seek Pareto optimal
results. These results are desired when utilities defined in a game have direct physical
significance such as payments or credits that someone is willing to give to individual
players.

Definition 3.7 (Pareto optimal). A strategy profile C = (c1, c2, . . . , cn) is Pareto opti-
mal if and only if there exists no other strategy profile C ′ = (c′1, c

′
2, . . . , c

′
n) such that

∀i ∈ {1, 2, . . . , n} : ui(C
′) ≥ ui(C) and ∃j ∈ {1, 2, . . . , n} : uj(C

′) > uj(C).

THEOREM 3.8. Every Nash equilibrium in Γ is also Pareto optimal.

PROOF. First note that for all player pi, its payoff is either 0 (iff ci = 0) or
kα − β > 0 (iff ci = 1), where k = 1, 2, . . . , |Ti|. Suppose, by way of contradiction,
that C = (c1, c2, . . . , cn) is a Nash equilibrium but not Pareto optimal. This implies
that there exists some strategy profile C ′ = (c′1, c

′
2, . . . , c

′
n) such that ∀i ∈ {1, 2, . . . , n} :

ui(C
′) ≥ ui(C) and ∃i ∈ {1, 2, . . . , n} : ui(C

′) > ui(C). Consider every player pi such
that ui(C

′) > ui(C). Since ui(C) ≥ 0, ui(C
′) must be greater than 0 and hence c′i must

be 1. The condition ui(C
′) > ui(C) and c′i = 1 implies that there must exist some

target tj ∈ Ti for which gj(C) = 0 and gj(C
′) > 0. The condition gj(C) = 0 implies

either
∑

pi∈Pj
ci = 0 or

∑
pi∈Pj

ci > qj . However, it is impossible that tj is not covered
at all in C (i.e.,

∑
pi∈Pj

ci = 0) because C is a Nash equilibrium where Q-coverage is
assured by Theorem 3.6. If tj is over-covered in C (i.e.,

∑
pi∈Pj

ci > qj) but not in C ′

(because gj(C
′) > 0), then there must exist some player pk ∈ Pj such that ck = 1 and

c′k = 0. By definition, uk(C) > uk(C
′), which contradicts with our assumption that

∀i ∈ {1, 2, . . . , n} : ui(C
′) ≥ ui(C).

Pareto optima are good and desired results in games, but they do not necessarily
correspond to the best solution to our problem. For example, all the four Nash equilib-
ria shown in Fig. 3 are Pareto optimal, but one of the equilibria, 11000, seems worse
than the others because there is one target (t2) that is over-covered in this equilib-
rium. Whether our game will end up with such a result is a probability problem. If we
view each strategy profile as a state, transitions of strategy profiles can be modeled
as a discrete-time Markov chain. In this way, Nash equilibria in our game correspond
to absorbing states in the chain. Fig. 4 shows the state diagram of the Markov chain
corresponding to Fig. 3 under the assumption of equal transition probability among
all possible next states of any state. Observe that the chain is an absorbing Markov
chain, which is already implied by Corollary 3.5. Starting from state 00000, the proba-
bility that the chain will enter absorbing states 00001, 10010, 01100, and 11000 are 0.5,
0.175, 0.1729, and 0.1521, respectively. We can see that the probability of reaching the
equilibrium in question is only 0.1512.
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Fig. 4. Markov diagram when modeling the transitions in Fig. 3 as a Markov chain

The possibility of over-covered targets renders our method not optimal. Neverthe-
less, concerning the efficiency of the proposed game, we can at least ensure that there
are no active redundant sensors in Nash equilibria. The reason is that if there is any
such sensor, its payoff will be −β as it is redundant. Changing its choice from 1 to 0
will give it a payoff of 0, a positive gain which contradicts with the definition that any
player cannot further improve its payoff in a Nash equilibrium.

We summarize our theoretic work by the following corollary.

COROLLARY 3.9. Starting from any strategy profile, the proposed target coverage
game eventually ends up with a Nash equilibrium which guarantees Q-coverage and is
Pareto optimal. Also no redundant sensors are active in the Nash equilibrium.

3.4. Implementation Details
Several issues remain to be solved when applying the game design to WSNs. The utility
function in the proposed game does not take into account of sensor energy. This may
not be optimal when sensors have different amounts of energy. Although the game
always ends up in a Nash equilibrium, the convergence time may be too long. The
correctness of the proposed game model relies on the assumption that no two or more
players make or change their decisions simultaneously, which may not be guaranteed
when we turn the game design into a protocol running in the real world. All these
issues will be addressed in this subsection.

To implement the utility function locally in every sensor node, every sensor pi should
know the set of targets it can cover (Ti) and the choices taken by all other sensors that
have overlapping coverage with it ({cj |pj ∈ P, Tj ∩ Ti ̸= ϕ}). Ti is essentially the set
of targets that pi is able to monitor or detect, so the knowledge of Ti is intrinsic to
pi. To obtain the latter information, pi should be able to communicate with all pj for
which Ti ∩ Tj ̸= ϕ. With the assumption of uniform sensing range, this requirement
can be met by having a transmission range that is twice of the sensing range. More
specifically, whenever pi makes a new decision ci, pi broadcasts ci together with Ti to
all its neighboring nodes. The setting of transmission range ensures that all sensors pj
for which Ti∩Tj ̸= ϕ will receive Ti and update ci. With that information, any pj is able
to react accordingly. The same setting has been used to ensure network connectivity
while maintaining full area coverage [Xing et al. 2005; Zhang and Hou 2005].

The above-mentioned protocol can be refined in several ways. First, since Ti for all
i is static, it needs to be broadcast only once in the very beginning. Second, since ci
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has only two possible values, pi can transmit a special signal that uniquely identifies
pi itself in two different frequency channels, one for each value of ci. Alternatively, pi
can use two orthogonal codes in a code-division multiple access system to represent
the binary value of ci.

The theoretic results presented in the previous subsection implicitly assume that no
two or more sensors with overlapping coverage make or change their decisions simulta-
neously. This may not be the case if simultaneous decision makings are not prohibited
by the protocol. Fortunately, the correctness of the proposed game model does not rely
on any particular decision sequence made by players. This means that we can arbi-
trarily serialize concurrent decisions without breaking any desired properties, which
can be achieved by a backoff scheme.

The backoff scheme operates as follows. Every player has a backoff timer. After mak-
ing or updating a decision, a player pi sets up her backoff timer with a randomly
determined value. The decision will be announced by broadcasting after the backoff
timer counts down to zero. If, before the backoff time expires, pi receives a decision
announcement from another player pj for which Ti ∩ Tj ̸= ϕ, pi aborts the scheduled
announcement and re-evaluates its payoff. If the re-evaluation still supports the to-
be-announced decision, pi reloads its backoff timer with a new randomly determined
value, and restarts another backoff countdown. Note that all other players pj for which
Ti ∩ Tj = ϕ are not affected by pi’s announcement. This means that the backoff-based
serialization is local. Decision parallelism among sensors that do not have overlapping
coverage is still allowed by the proposed scheme.

The introduction of backoff timers can also make our game design power-aware. In-
stead of setting up backoff timers with randomly determined values, we can give a
shorter backoff time to sensors with more energy, which effectively gives priority to
these sensors in decision makings. Such a design can hopefully prolong network life-
time as it preserves the largest possible number of living sensors. The same technique
can be used to speedup the convergence time to Nash equilibrium. Here the idea is
to give a shorter backoff time to players with higher utility gains. It works as higher
utility gains lead to greater improvements on the value of the exact potential function
and thus shorter convergence time. Consequently, several implementation variants of
our game can be derived, which only differ in the setting of the backoff timer. Let ei de-
note the power level of sensor pi, gi denote the utility gain due to pi’s current decision
change, and Tb(i) be the value of pi’s backoff timer for announcing pi’s decision. These
variants include the following.

— Random, where Tb(i) is randomly chosen from a fixed range,
— Utility-Based (UB), where Tb(i) ∝ 1/gi,
— Utility-Based Random (UBR), which is a hybrid of Random and UB in the sense that

Tb(i) is randomly determined but the range of the random value is proportional to
1/gi,

— Power-Based (PB), where Tb(i) ∝ 1/ei,
— Power-Based Random (PBR), where Tb(i) is a random number with range propor-

tional to 1/ei,
— Joint-Utility-Power (JUP), which is a hybrid of UB and PB as Tb(i) is proportional to

a weighted sum of gi and 1/ei.

Since all these variants only alter the decision sequences, all the desired properties
proven in the previous subsection are still preserved. We shall study the performance
of these variants through simulations in the next section.

Finally, we comment on the computation resource requirement of the proposed game.
Evaluation of the utility function defined in (1) and (2) involves only additions and com-

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



Distributed Lifetime-Maximized Target Coverage Game A:15

Table II. Parameter setting

Parameter Range Default
n: Number of sensors [150, 500] 300
m: Number of targets [10, 60] 25
qi: Coverage requirement of target ti [2, 6] 3
rs: Sensing range (m) [100, 300] 150
rc: Transmission range (m) 2rs
ei: Residual energy of sensor pi (units) [10, 70] 20
t: Length of duty period [4, 36] 20
α in (1) [2, 18] 10
β in (2) 1
ω used by JUP [0,1] 0.2
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Fig. 5. Comparisons among Random, UB, and UBR in (a) average convergence time and (b) network lifetime
with qi randomly chosen from [2,Kmax]

parisons. The introduction of a backoff scheme demands additional one or two multi-
plication and/or division operations. Overall computation resource demand is trivial.

4. SIMULATION RESULTS
We studied the performance of the proposed game through simulations. We were inter-
ested in the performance gains realized by different settings of the backoff time in our
game implementations and how well the proposed game-theoretic approach performs
compared with prior work.

We assumed a 600× 600 m2 area, within which n sensor nodes and m target objects
were randomly placed by a uniform distribution. Table II lists the parameter setting
for the simulations. Unless otherwise specified, all parameters were set to their de-
fault values. Each result is an average over 500 runs. For the proposed game-theoretic
approach, the initial choice of each player is set to sleep mode.

Two metrics were of interest in the experiments: network lifetime and game conver-
gence time. Network lifetime measures the length of the time from the very beginning
to the first time the coverage requirement is not met. To simplify the representation,
we assumed that power dissipation in sensors is linear and running out one unit of
power takes one unit of time. Game convergence time counts the number of strategy
profile transitions in a game. It stands for the cost of the proposed approach. Set covers
yielded are disjoint by default.

4.1. Comparisons Among Implementation Variants
The first experiment was to study whether utility-aware implementations (UB and
UBR) improve convergence time of the game and whether such improvement, if any,
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Fig. 6. Comparisons among Random, PB, and PBR in (a) network lifetime and (b) average convergence time
with ei randomly chosen from [40−∆, 40 + ∆]

comes at the cost of degraded network lifetime. The coverage requirement of each tar-
get ti was varied by setting qi to be a random integer within the range [2,Kmax]. Fig. 5
shows the experimental results with n = 150. We can see that UB significantly reduces
the convergence time when compared with Random, which indicates that giving deci-
sion priority to players with high utility gains effectively shortens game convergence
time. This also explains the intermediate performance of UBR. On the other hand,
Random and UBR are hardly distinguishable concerning network lifetime, while UB
is slightly worse than both. This result suggests that the order of decision announce-
ments does not significantly alter network lifetime (when sensors have uniform power)
and utility-aware designs are beneficial if game convergence time is of concern.

The next experiment investigated whether network lifetime benefits by power-aware
designs (i.e., PB and PBR) when sensors have non-uniform energy levels. The energy
level of each sensor pi is varied by setting ei to be a random integer within the range
[40 − ∆, 40 + ∆]. The results shown in Fig. 6(a) confirm the superiority of PB over
Random in terms of network lifetime when sensors have non-uniform energy levels.
However, PB also incurs a longer convergence time than Random (Fig. 6(b)), where
the gap seems independent of the difference of energy. This is reasonable as the util-
ity function does not take energy level into consideration. This suggests that PB is
preferable when network lifetime is of concern while sensors have different amounts
of energy.

As the utility-aware designs reduce convergence time while the power-aware de-
signs prolong network lifetime, we studied the joint effects of utility- and power-aware
backoff time by testing JUP. Here Tb(i) for each sensor pi is set to proportional to
ω × 1/gi + (1 − ω) × 1/ei, where 0 ≤ ω ≤ 1 is a weighting factor. Fig. 7 shows the re-
sults with respect to various settings of ω under the most different setting of coverage
requirements and energy levels. Observe that an increased ω leads to a lower network
lifetime but also a shorter convergence time. This is expected as a large ω gives priority
to UB which benefits convergence time. On the other hand, a small ω gives priority to
PB and thus results in a higher network lifetime. In the following experiments, JUP
with ω = 0.2 is used as our approach.

Parameter α in (1) was set to 10 in our experiments. We were also interested in
whether this setting has a significant effect on our performance metrics. Fig. 8 shows
the results of our investigations. We can see that when ∆ = 0, the setting of α seems
irrelevant to the performance metrics. When ∆ = 30, network lifetime slightly in-
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Fig. 7. (a) Network lifetime and (b) game convergence time in JUP with respect to the value of ω (Kmax = 6
and ∆ = 30)
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Fig. 8. (a) Network lifetime and (b) game convergence time in JUP with respect to the value of α.

creases and game convergence time significantly increases as α increases. In general,
the setting of α = 10 is not biased.

4.2. Comparisons With Centralized Heuristics: Using Disjoint Set Covers
We compared the proposed game-theoretic approach with three commonly-adopted
greedy heuristics that all work in a centralized manner. These heuristics all construct
a set cover by incrementally adding sensor nodes into the set cover:

— Maximal Coverage First (MCF), where sensors that cover the most targets are added
into the set cover with priority.

— Most Power First (MPF), where sensors with the most power (energy) are included
into the set cover with priority. This policy was adopted in [Chaudhary and Pujari
2009].

— Most Critical Sensor First (MCSF), where sensors that have the least overlapping
coverage with other sensors, i.e., those in argmini{

∑
j ̸=i Oi(j)}, where

Oi(j) =

{
0 if Ti ∩ Tj = ϕ
1 otherwise,

are added into the set cover with priority. A similar principle was adopted for area
coverage in [Li and Gao 2008].
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Fig. 9. Network lifetime with ei randomly chosen from [40−∆, 40 + ∆]

When there were multiple sensors with the same priority, an arbitrary one was chosen.
An additional pruning process was applied to all constructed set covers, where every
sensor node in the set cover was rechecked to remove any redundant sensors from the
final set cover [Chaudhary and Pujari 2009; Li and Gao 2008].

This set of experiments considered only disjoint set covers, where a set cover oper-
ates for the longest possible time (i.e., until the first sensor in the set cover exhausts
its energy) before the next set cover takes over. No sensors in the current set cover can
be included in any subsequent set cover even if these sensors still have energy when
the current set cover retires.

Figure 9 shows how variances of energy level in sensor nodes affect network lifetime
in all approaches under discussion. We can see that network lifetime generally de-
creases as the variance of energy level increases. MPF performs better than the other
two heuristics when sensors do not have uniform energy and the performance gap in-
creases as the variance of energy level increases, thanks to its power-aware design.
JUP with ω = 0.2 outperforms both MCF and MCSF. However, its superiority over
MPF disappears when ∆ > 10.

When sensors have identical energy level but targets have different coverage re-
quirements, all the counterparts perform the same (Fig. 10). This is justifiable since
none of these methods considers non-uniform coverage requirements in set cover for-
mations. Network lifetime generally decreases as Kmax increases. This is because the
mean of the requested coverage level, which is (2 + Kmax)/2, is proportional to Kmax.
Nevertheless, JUP with ω = 0.2 outperforms its counterparts in all settings.

We also investigated the combined effects of non-uniform energy levels (with ∆ = 30)
and non-uniform coverage requirements (with Kmax = 6). Fig. 11 shows the resulting
network lifetime versus the number of sensors. It is reasonable and desirable that
adding more sensors in general leads to an increased network lifetime. Here MPF ex-
hibits its superiority over the others, which is due to its power-aware design which
works well when sensors have different energy levels. We argue that the setting of dis-
joint set covers also contributes to the advantage of MPF in lifetime. We shall explore
more on this in the next subsection.
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Fig. 10. Network lifetime with qi being randomly chosen from [2,Kmax]
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Fig. 11. Network lifetime with ∆ = 30 and Kmax = 6

4.3. Comparisons With Centralized Heuristics: Using Non-Disjoint Set Covers
When set covers can be non-disjoint, the results are expected to be different from those
of disjoint set covers. To test non-disjoint set covers, we let a set cover operate for at
most a fixed length of duty period t. After that time (or right before any sensor in the
current set cover exhausts its energy, whichever is earlier), the set cover is off duty,
and another set cover is formed to take over. Any sensors that have residual energy
are eligible to be included in the subsequent set cover.

It was unknown whether the setting of t affects the resulting network lifetime.
Therefore, we conducted an experiment to study the relationship between network
lifetime and the length of duty periods for non-disjoint set covers. This experiment
took the most extreme settings in energy level and coverage requirement (∆ = 30 and
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Fig. 12. Network lifetime versus the length of duty periods for non-disjoint set covers (∆ = 30 and Kmax =
6)
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Fig. 13. Network lifetime for non-disjoint set covers with ei being randomly chosen from [40−∆, 40 + ∆]

Kmax = 6). The results, as shown in Fig. 12, provide no evidence that network lifetime
and the length of duty periods are closely related. We therefore took a default setting
of 20-unit duty period and repeated all the experiments that had been done for disjoint
set covers.

Figure 13 shows how network lifetime changes with the variance of sensor energy
levels. Although the result still exhibits a decrease of network lifetime with ∆, the de-
creasing rate is much lower than the result of disjoint set cover (Fig. 9). The advantage
of MPF over JUP in the case of disjoint set covers disappears in the case of non-disjoint
set covers. In fact, the performance gap between the best (JUP) and the worst (MCSF)
methods is shrunk in the case of non-disjoint set covers. The results indicate that for-
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Fig. 14. Network lifetime for non-disjoint set covers with qi being randomly chosen from [2,Kmax]

mation rules for non-disjoint set covers are less important to network lifetime than
they are for disjoint set covers.

To study the relationship between network lifetime and the variance of coverage
requirements, we fixed sensor’s energy level to 20 units and varied Kmax. If the length
of duty period had been uniformly set to 20 units, the result would have been identical
to that shown in Fig. 10 because no sensor of a set cover can have residual energy
when the set cover is off duty. Therefore, we let t = 4 and the result is shown in
Fig. 14. Here the trend of decreasing network lifetime with increasing Kmax remains.
The performance of MPF is close to that of JUP, but JUP still outperforms all the
counterparts.

Figure 15 shows the network lifetime for non-disjoint set covers with the most ex-
treme settings in our experiments (∆ = 30 and Kmax = 6). These results exhibit
improved network lifetime (as expected) when compared with the results shown in
Fig. 11. A distinct difference is that JUP now slightly outperforms MPF, in contrast to
the superiority of MPF over JUP as indicated in Fig. 11. Generally speaking, JUP and
MCF both score the highest, followed by MCF and then MCSF. However, the perfor-
mance gap between the best and the worst methods is shrunk due to better utilization
of energy by all methods when non-disjoint set covers instead of disjoint set covers are
generated. This again confirms that formation rules for non-disjoint set covers are less
important to network lifetime than they are for disjoint set covers.

5. CONCLUSIONS
We have proposed a target coverage game for work scheduling in WSNs. The utility
function of each player (sensor) has been designed to guarantee that the game al-
ways ends up with a state of Nash equilibrium that meets the Q-coverage requirement
and is Pareto optimal. Also, no redundant sensors are active in this state. Implemen-
tation issues such as acquisition of neighbor status, simultaneous decision making,
non-uniform energy levels, and game convergence time have been addressed, which
makes the game design more practical. When turning the game into a practical proto-
col, backoff timers are introduced to give decision priority to players with a high utility
gain or high energy level. Such a design can respectively shorten the game convergence
time or prolong the network lifetime. Extended simulations were done to investigate
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Fig. 15. Network lifetime for non-disjoint set covers with ∆ = 30 and Kmax = 6

the performance of various design alternatives and to compare the proposed game
approach with existing greedy-based heuristics. For disjoint set covers, the proposed
approach is inferior only to the power-based heuristic in terms of network lifetime. For
non-disjoint set covers, the proposed approach results in the longest network lifetime
among all alternatives considered in all settings. In short, we have demonstrated the
feasibility and efficiency of applying game theory to the target coverage problem with
non-uniform coverage requirements and sensor energy levels.
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FÉLEGYHÁZI, M., HUBAUX, J.-P., AND BUTTYÁN, L. 2006. Nash equilibria of packet forwarding strategies

in wireless ad hoc networks. IEEE Trans. on Mobile Computing 5, 5.
GU, Y., LIU, H., AND ZHAO, B. 2007. Target coverage with QoS requirements in wireless sensor networks.

In The 2007 Int’l Conf. on Intelligent Pervasive Computing. Jeju City, 35–38.
HAN, Z., JI, Z., AND LIU, K. J. R. 2005. Fair multiuser channel allocation for OFDMA networks using Nash

bargaining and coalitions. IEEE Trans. Commun. 53, 8, 1366–1376.
HAN, Z., JI, Z., AND LIU, K. J. R. 2007. Non-cooperative resource competition game by virtual referee in

multi-cell OFDMA networks. IEEE Journal on Selected Areas in Communications 25, 6, 1079–1090.
HAN, Z., PANDANA, C., AND LIU, K. J. R. 2005. A self-learning repeated game framework for optimizing

packet forwarding. In IEEE Wireless Communications and Networking Conference. 2131–2136.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



Distributed Lifetime-Maximized Target Coverage Game A:23

HEFEEDA, M. AND BAGHERI, M. 2007. Randomized k-coverage algorithms for dense sensor networks. In
Proc. IEEE INFOCOM. Anchorage, USA, 2376–2380.

LI, Y. AND GAO, S. 2008. Designing k-coverage schedules in wireless sensor networks. Journal of Combina-
torial Optimization 15, 127–146.

MONDERER, D. AND SHAPLEY, L. S. 1996. Potential games. Games and Economic Behavior 14, 124–143.
RASTI, M., SHARAFAT, A. R., AND SEYFE, B. 2009. Pareto-efficient and goal-driven power control in wireless

networks: A game-theoretic approach with a novel pricing scheme. IEEE/ACM Trans. Networking 17, 2,
556–569.

ROSENTHAL, R. W. 1973. A class of games possessing pure-strategy Nash equilibria. International Journal
of Game Theory 2, 1, 65–67.

SARAYDAR, C. U., MANDAYAM, N. B., AND GOODMAN, D. J. 2002. Efficient power control via pricing in
wireless data networks. IEEE Trans. Commun. 50, 2, 291–303.
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