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Abstract—Unmanned aerial vehicles (UAVs) have been applied
to a wide range of applications. When planning a mission for
battery-powered UAVs, energy replenishment is a factor that can-
not be ignored. This paper considers a decentralized scheduling
scheme for a swarm of UAVs for serving and charging activities,
which is challenging because of the trade-off between service
requirement and energy consumption as well as limited supply of
charging facilities. We propose two decentralized schemes based
on deep reinforcement learning (DRL) with partial observation
that allow the UAV swarm to autonomously learn where to rest,
provide service, or recharge. Although the learning model is for
a single UAV, it applies to each UAV in the swarm. We conducted
simulations for performance measurements. The results show that
the proposed approaches are feasible for distributed serving and
charging scheduling with multiple UAVs.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been applied to a
wide range of applications. Different UAV applications and
services demand different types of UAV deployments. For
example, we may deployment a UAV to make a tour to visit a
set of fixed spots for data collection from sensory or Internet-
of-Thing (IoT) devices. To provide access and relay services
in some area, we may deploy a UAV to hover and stay in a
single, selected spot. Yet another UAV use case is to patrol in
a disaster area to support rescue teams and survivors. In that
application, a UAV may need to autonomously seek serving
spots and figure out its serving priority.

Regardless of the deployment type, battery-powered UAV
needs to fly back to a charging station for energy replenish-
ment when the UAV is about to run out of its battery power.
Energy replenishment can be done by battery exchange in-
air charging, or ground charging. Charging a UAV generally
takes considerable time and may cause service outage to the
application. However, a low-battery UAV may crash in service
or on the way back to the charging station. Therefore, it is
crucial to appropriately arrange serving and charging time of
UAV to maximize its quality of service.

A way to enhance the quality of UAV service is to deploy
a swarm of UAVs. In that case, coordinating UAVs for their
serving and charging activities becomes challenging because
of limited supply of charging facilities. Several studies have
been on the charging and serving schedule of UAVs [1], [2],
[3] for different types of UAV deployments. Most existing
solutions take centralized approaches to ease the coordination
among UAVs, which seems a reasonable design choice and
practical solution. However, centralized approaches are not

always feasible and are subject to a single point of failure.
Therefore, in this work we seek a decentralized approach
where each UAV can autonomously determine its action to
adapt to other UAV’s actions and the dynamic environment.

This study particularly considers UAVs as data collection
points for IoT devices. IoT devices generate service coverage
demands which should be fulfilled by one or more UAVs. To
allow UAVs to recharge and continue their coverage service,
several round charging stations each with multiple charging
slots are set up. For this setting, Li et al. [4] turned the
UAV swarm scheduling problem into an exact potential game
(EPG), where each UAV decides its own trajectory and service
target. The limitation of this work is that each UAV needs the
knowledge of other UAV’s activities when making its decision.

In this paper, we propose two decentralized schemes based
on deep reinforcement learning (DRL) with partial obser-
vations. These schemes allow each UAV in a UAV swarm
autonomously learns where to rest, provide service, or recharge
without the knowledge of other UAV’s activities. The learning
model is for a single UAV but applies to each UAV, thus
achieving scalability. We conducted simulations which consid-
ered the impact of the number of UAVs, clustered distribution
of service demands, and charging capacities. The results show
that the proposed approaches can handle distributed serving
and charging scheduling with adequate charging capacity.

The remainder of this paper is organized as follows. We
review related work in Sec. II. Sec. III presents the system
model and formulates the problem. The proposed approaches,
DQN and DRQN, are presented in Sec. IV. The next section
reports simulation results and that last section concludes this
paper.

II. RELATED WORK

UAV placement is to decide the serving locations for
UAVs. Many UAV placement approaches considered location-
varying energy consumption to maximize service coverage or
transmission rates Hu et al. [5] proposed a sensing-and-send
protocol and subchannel allocation mechanism to maximize
the probability of successful sensory data transmission to
UAVs. Pham et al. [6] proposed a multi-agent reinforcement
learning to maximize the sensing coverage. The approach
proposed by Hu et al. [7] divides users into clusters and finds
UAV trajectories that maximize coverage of the clusters.

Other studies further considered power consumption on
flying for better UAV flight directions [8] or flight trajectories
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Fig. 1: Operation modes of a UAV

[9]. Ding et al. [10] developed a strategy to achieve continuous
coverage and found the optimal speed configuration for path
planing to minimize power consumption of flight. Zhang
et al. [11] took the signal-to-noise ratio received by the
user as a coverage constraint and found the 3D trajectory
to maximize the link capacity while satisfying the coverage
constraint. Game theory can be well applied to the selection
strategy among UAV swarm. Ruan et al. [12], [13] proposed a
distributed approach based on game theory to select a strategy
for UAV swarm that maximizes coverage area and minimizes
flight power consumption.

All above-mentioned studies ignore the need for charging.
Ghazzai et al. [14] and Khosiawan et al. [15] found optimal
schedule for charging, task, flight, and waiting events to meet
both energy constraint and the task requirement. Shakhatreh
et al. [1] proposed a heuristic to find the minimum number
of UAVs for continuous coverage considering both power
consumption on flight and charging. Qi et al. [16] proposed
a DRL-based approach to maximize communication data vol-
ume and minimize UAVs energy consumption while achieving
fair and persistent service coverage on users.

All the above approaches are centralized. For decentral-
ized approaches, many studies applied game theory to solve
the problem [17], [4]. Trotta et al. [17] considered using
rechargeable UAVs to autonomously cover a target area and
replenish energy when needed. They proposed a distributed
game-theoretic scheduling strategy to maximize the stationary
coverage and to guarantee the continuity of the service. Li
et al. [4] extended the work in [17] by considering multiple
subareas, each having a specific coverage requirement, and
different numbers of charging stations. Their experimental
results showed that the game-theoretic approaches can strike
a balance between charging and coverage, and adapt well to
different environmental settings.

This paper follows the system model of Li et al. [4] and
jointly addresses the serving and charging scheduling problem
for a UAV swarm through DRL. The proposed approach differs
from Li et al.’s work [4] in that a UAV in our approach does
not need complete information about all other UAVs and all
working areas to decide its action. Although reinforcement
learning or DRL has been used for various missions in UAV,
our work is unique in the problem setting.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We assume a swarm of n rechargeable UAVs P =
{1, 2, . . . , n} to provide access service over a target area. The
operation time consists of t equal time slots T = {1, 2, . . . , t}.
In each time slot, a UAV can be in one of four operation
modes: serving, charging, flying, and standby. Initially, all
UAVs are standby. A UAV can then ascend, which causes
the UAV to enter flying mode, and fly to a spot to serve
ground terminals (thus entering serving mode). A serving UAV
may decide to cease the service and then fly (entering flying
mode) to another spot for serving or charging. Because the
altitude of charing station is much lower the hovering altitude
of UAV, a UAV needs to descend before it can actually access
the charging facility (entering charging mode). For the same
reason, a UAV after charging needs to ascend first. It can then
stays in the same area or flies to another spot to provide access
service. Fig. 1 shows the operation transition diagram of a
UAV.

The target area is composed of a set of subareas A. The
size of a subarea is sufficiently small to be served by a UAV
while a UAV may serve several subareas simultaneously. The
set of subareas served by UAV p in time slot t ∈ T is denoted
by Covtp ⊆ A, which depends on the location of p in time slot
t. We assume that each UAV has a limited observation range
and use Sent

p to denote the set of subareas that UAV i can
observe in time slot t. Sent

p is generally a superset of Covtp.
We assume that the demand for access service varies in

intensity geographically. To capture the degree of intensity,
we use da to denote the number of UAVs that are needed to
fulfill the service demand in a subarea a ∈ A.

We assume one or more charging stations dispersed over A.
At most one charging station resides in each subarea and we
use M ⊆ A to represent the set of subareas where a charging
station resides. We use C(a) ∈ {0, 1} to indicate whether
a charging station resides in subarea a ∈ A. Each charging
station m ∈ M has sm charging slots, where one charging
slot allows for one UAV to charge. We assume that each UAV
p ∈ P has a battery capacity bMax

p J. and charging rate kp J.
per time slot. The residual battery level of UAV p at the end of
time slot t is denoted by btp, where 0 ≤ btp ≤ bMax

p . The energy
consumption rate of a UAV when providing access service is
eser
p J. per time slot. The energy consumption rate of a UAV

hovering in a subarea or flying to another subarea is efly
p J. per

time slot.

B. Problem Formulation

This subsection formulates the joint serving and charging
scheduling problem for UAV swarm. For each UAV p ∈ P ,
we use xt

p ∈ {0, 1}, ytp ∈ {0, 1}, and f t
p ∈ {0, 1} to indicate

whether p is charging, serving, and flying (or hovering),
respectively, in every time slot t ∈ T . A UAV p is idle in
time slot t if xt

p = ytp = f t
p = 0. As p is in exactly one

of these four possibles operation modes at any time, we have
xt
p+ytp+f t

p ≤ 1 for all p ∈ P and t ∈ T . With these indicator



variables, the residual energy of UAV p at the end of time slot
t can be estimated as follows:

btp = bt−1
p +xt

p×kp−ytp×eser
p −f t

p×ehov
p ,∀p ∈ P,∀t ∈ T, (1)

where bt−1
p is the residual energy of p at the end of time

slot t − 1. The term xt
p × kp represents the energy gain if p

charges in time slot t. The last two terms represent the energy
consumption of p if it serves and flies, respectively, in time
slot t.

Our goal is to maximize the accumulated service coverage
intensity. The service coverage intensity of a subarea a is da
if da or more UAVs cover a and zero otherwise. We use zta
to denote the coverage intensity of subarea a in time slot t.
Formally,

zta =

{
da, if

∑
p∈Ut(a) y

t
p ≥ da,

0, otherwise,
(2)

where U t (a) = {p | p ∈ P : a ∈ Covtp} is the set of the
UAVs that are able to cover subarea a in time slot t.

The objective function sums up the service coverage inten-
sities of the whole area over the entire operation time T :

max
xt
p,y

t
p,f

t
p,Loctpa

∑
t∈T

∑
a∈A

zta, (3)

where Loctpa indicates whether UAV p resides in subarea a ∈
A in time slot t. The objective is subject to the following
constraints:∑

a∈A

Loctpa = 1,∀p ∈ P,∀t ∈ T, (4)∑
p∈P

(
xt
p × Loctpm

)
≤ sm,∀m ∈ M,∀t ∈ T, (5)

(ytp × eser
p ) ≤ btp,∀p ∈ P,∀t ∈ T, (6)

f t
p × ehov

p ≤ btp,∀p ∈ P,∀t ∈ T, (7)

xt
p + ytp + f t

p ≤ 1,∀p ∈ P,∀t ∈ T, (8)

xt
p ≤ C(Loc(p, t)),∀p ∈ p,∀t ∈ T, (9)

xt
p + ytp + f t

p ≥ 1− C(Loc(p, t)),∀p ∈ P,∀t ∈ T, (10)

Loc(p, t+ 1) ∈ Rp(Loc(p, t)),∀p ∈ P,∀t ∈ T, (11)

where Loc(p, t) = a if and only if Loctpa = 1, and Rp(a)
denotes the set of subareas that UAV p can reach in the next
time slot when p is currently in subarea a.

Eq. (4) asserts that each UAV stays in exactly one subarea
in any time. Eq. (5) states that the number of UAVs charging at
a charging station cannot exceed the number of charging slots
there. Eqs. (6) and (7) are the service and flight constrains,
respectively, to prohibit a UAV from serving and flying,
respectively, in time slot t if that action would drain out all
of its battery power. Constrain (8) limits a UAV to be in one
of the four possible modes at any time. Eq. (9) allows a UAV
to charge only in a subarea where a charging station resides
and Eq. (10) disallows a UAV to enter standby mode in a
subarea without any charging station. Eq. (11) is the mobility
constraint, which specifies the set of subareas that a UAV can
reach within a time slot duration.

Assume that UAVs are homogeneous in service capability
(i.e., Rp(a)’s for all UAV p’s are identical). We can form a
undirected graph G = (V,E) where V is the set of subareas
and (a, a′) ∈ E if a′ ∈ Rp(a). If we want to statically place
the fewest UAVs into the working area to meet the coverage
demands of all subareas, the problem becomes the classic
minimum multi-dominated set problem in G, which is NP-
hard. Considering the fact that the static placement problem
is only a special case of our problem, our problem is at least
NP-hard.

IV. PROPOSED APPROACHES

We formulate the problem as a partially observable Markov
decision process (POMDP) with multiple agents. We then
details the proposed approaches to this problem.

A. Multi-Agent Partially Observable Markov Decision Process

A multi-agent Markov Decision Process (MDP) consists of
several essential elements. The first is the set of agents, which
is P in our problem. Second, the set of actions of each agent.
We classify agent’s actions into four types: fly, serve, charge,
and rest. An action actually comprises a sequence of agent’s
movements with a particular intention. The third element of a
Markov game is the state space of each agent, where each state
includes current status of all observable subareas, charging
stations, and UAVs with respective locations relative to the
observing agent. The use of relative (rather than absolute)
coordinates makes the model independent of the size of the
target area yet general enough for every agent to apply. It also
significantly shrinks the state space. Another way to reduce
the state space is to classify btp, the residual energy of agent
p in time slot t, into three levels, namely, high (H), medium
(M) and low (L), which is denoted by Bt

p.
The last component is a reward fed by the environment

to each agent after the agent takes an action. We design a
mechanism to model the environment, which gives a positive
or negative reward to each agent p depending on p’s action and
residual energy Bt

p in time slot t. For example, if p decides
to serve in time slot t but Bt

p = L, p will receive a negative
reward. If Bt

p ∈ {M,H}, p’s reward for service depends on
the number of subareas on which p’s service is effective in
time slot t. An agent’s service on a subarea is effective if
the number of all UAVs serving that subarea does not exceed
the number demanded. In addition, an extra penalty (a negative
reward) will be given to an agent when it drains out its battery,
flies out of the boundary of the target area, or rests in a subarea
where no charging station resides.

As UAVs have limited visibility, we define the observation
space for each UAV. Let Sent

p be the set of subareas that are
withing UAV p’s visibility in time slot t. The observation space
of p is defined as

obstp =
{
d′a, s

′
m | ∀a,m ∈ Sent

p

}
∪
{
btp, a

t−1
p , Bt

p

}
, (12)

where d′a is the number of UAVs currently needed to meet the
service demand of subarea a and s′m is the number of currently
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Fig. 2: Model architecture

available charging slots in m. Note that p’s observation does
not include the status of any other UAV.

Our goal is to design a distributed mission and charging
scheduling for rechargeable UAVs. We use DRL and follow
the the paradigm of centralized training with decentralized
execution. That is, all UAVs collaboratively train a common
learning model offline, which is then used by each UAV to
independently make on-line decisions in execution time.

B. Double-DQN (DDQN)

Deep Q-network (DQN) [18] is a model-free, temporal-
difference, value-based, off-policy reinforcement learning
method. It extends conventional Q-Learning by adding a deep
neural network to non-linearly approximate the Q function
used in Q-learning, i.e., Q(s, a; θ) ≈ Q∗(s, a). The neural net-
work finds the optimal weight θ by minimizing the following
loss function L(θ) through gradient descent.

L(θ) = E

[(
r + γ ·max

a′
Q(s′, a′; θ′)−Q(s, a; θ)

)2
]
, (13)

where r + γ ·maxa′ Q(s′, a′; θ′) is target Q-value.
Fig. 2a shows our DQN architecture. We use two convolu-

tional layers to extract geographic environment information. A
fully connected layer is used to process observations plus UAV
status information such as power level and previous action.
The output of these layers are fed into two fully connected
layers to get the final Q-value of each action.

We also use experience replay and target network to speed
up the convergence rate of DQN. Experience replay accelerates
the convergence speed of the neural network by breaking the
temporal dependency relationship on Q-Learning algorithm.
We use target network to update the evaluation network
during training, and periodically update the target network.
The use of target network can make the network to have better
generalization ability and prevent overfitting. Algorithm 1
details the proposed DQN-based approach.

C. Deep Recurrent Q-Network (DRQN)

When using DQN, a UAV may be trapped in some working
area where no service target is within its observable range.
To this end, we propose Deep Recurrent Q-Network (DRQN)
algorithm [19], which incorporates the DQN algorithm with
the recurrent neural network (RNN). DRQN considers a series
of past observations to learn continuous behaviors, which helps
deciphering the underlying state of the POMDP.

Algorithm 1 DQN for multi-UAV scheduling
Input: Number of UAVs —P—; working area —A—;
Output: Q-value function Q(o, a; θ)

1: Initialize parameter setting
2: Initialize Environment env
3: Initialize primary network Qθ , target network Qθ− , replay buffer D
4: for each episode e do
5: t← 0
6: reset env
7: while t ≤ T do
8: Sequentially select UAV agent p
9: Get observation obstp from UAV p

10: Select random action atp with probability ϵ
11: otherwise atp = argmaxa′ Q(obstp, a

′; θ)

12: Execute action atp then get observation obst+1
p and reward rtp

13: Store transition (obstp, a
t
p, r

t
p, obs

t+1
p ) to D

14: /* experience replay */
15: Sample random mini-batch of transitions (obsjq , a

j
q , r

j
q , obs

j+1
q ) from

D

16: Set y =

{
rjq for terminal state
rjq + γ ·max

a′
Q(obsj+1

q , a′; θ−) for non-terminal state

17: Do a gradient descent with loss
(
y −Q(obsjq , a

j
q ; θ)

)2

18: /* periodic update of target network */
19: Replace target parameters θ− ← θ every N− step
20: if UAV p drains out of energy then
21: break
22: end if
23: if last UAV agent finishes then
24: t← t+ 1
25: end if
26: end while
27: end for

For DRQN, we replace the FC2 layer in DQN with Long
Short-Term Memory (LSTM) as shown in Fig. 2b. LSTM neu-
rons pass hidden state and cell state messages in the temporal
dimension, the former mainly stores short-term memory and
the latter mainly stores long-term memory. We combine low-
level features as the output of the convolution with the UAV
information (past actions included) for each time slot in input
sequence and feed them into the LSTM layer.

Because we incorporate LSTM layer in the algorithm, each
UAV agent has to keep additional information about hidden
state and cell state. The initial values of hidden state and cell
state are all zeros. The UAV agent decides its action based
on obstp, hidden state, and cell state. We keep a sequence of
past behaviors for each agent. The length of a sequence is 10,
which is the farthest distance of the whole working area. The
transition we collect is (obst−10

p , · · · , obstp, atp, r, ot+1
p ).

The algorithm for DRQN is slightly different
from Algorithm 1. First, atp in Line 11 is set to
argmaxa′ Q(obstp), ht, ct, a

′; θ). Second, we store
(obst−L−1

p , · · · , obstp, atp, rtp, obst+1
p ) to D in Line 13.

Third, we sample random mini-batch of transitions
(obsj−L−1

q , ..., obsjq, a
j
q, r

j
q, obs

j+1
q ) from D in Line 15.

Fourth, θ− in Line 16 is replaced with θ. Finally, the loss in
Line 17 is

(
y −Q(obsj+1

q , a; θ)
)2

.

Table I shows the parameters of the two proposed models.



TABLE I: Parameters of the models

DQN

Conv1 2x2, 8
BatchNorm
Relu
Conv2 2x2, 8
BatchNorm
Relu
Fc1 (6,30)
Fc2 (422,128)
Fc3 (128,9)

DRQN

Conv1 2x2, 8
BatchNorm
Relu
Conv2 2x2, 8
BatchNorm
Relu
Fc1 (6,30)
LSTM (422,128)
Fc3 (128,9)

TABLE II: Environment Setting

Parameter Default Value Range
Number of subareas (hexagonal shape) 100 -
Side length of the hexagon (m) 25 -
Whole area size (m2) 162380 -
da: Coverage demand of each subarea 1 [0, 10]
Number of charging stations 5 -
sm: Number of charging slots per station 9 [3, 9]

V. SIMULATION RESULTS

We also compare our proposed approach to the game based
approach proposed by Li et al. [4]. We considered a working
area consisting of 100 hexagonal cells with side length 25 m.
Each subarea demanded service from one UAV by default. Five
charging stations were located, each consisted of 9 charging
slots by default. Tables II to IV show the settings of the
environment, the UAVs, and the training model, respectively.

A. Number of UAVs

We varied the number of UAVs for a performance compari-
son between the proposed approaches and the EPG-based work
by Li et al. [4]. Fig. 3a shows that the coverage ratio generally
increased with the number of UAVs, which was expected. All
the three approaches roughly performed the same when 20
or fewer UAVs were deployed. With those settings, there was
little competition among UAVs for service coverage as UAVs

TABLE III: UAV Setting

Parameter Default Value Range
Number of UAVs 20 [0, 40]
Range of UAV’s service (m) 50 -
Range of UAV’s observation (m) 200 -
Maximum energy budget bmax

p
(kJ)

200 -

Energy consumption for hovering
ehov
p (kJ/time slot)

1 -

Energy consumption for serving
eser
p (kJ/time slot)

1 -

ρ: Charging rate kp, ∀p ∈ P
(kJ/time slot)

0.25 [0.25, 0.5, 1, 2]

TABLE IV: Training Model Parameters

Parameter Default Value Range
Number of episodes 200 -
Maximum time slot per episode 2000 -
Batch size 256 -
Learning rate 0.005 -
Exploration rate of ϵ-greedy 0.1 -
Discount factor γ 0.9 [0, 1]
Replay memory capacity 3000 -
Target network iteration 100 -
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Fig. 4: Results with clustered distribution of service demands

were needed in most subareas. When more than 20 UAVs
were deployed, the EPG-based approach achieved the highest
coverage ratio due to the availability of complete information
for UAVs to contend for service. When more UAVs than
needed were deployed, the coverage ratio of the EPG-based
approach turned to decline. On the other hand, the DRL-based
approaches maintained an increasing trend as the number of
UAVs increased.

Fig. 3b shows the average residual energy of the UAVs in
operation. In the DQN and DRQN approaches, the number of
UAVs had less impact on the average residual energy of the
UAVs. This is because UAVs in our mechanisms do not share
their observations and status. Even if some UAV realized that
service was no longer needed in some area, other UAVs still
spent time and energy in exploring that area. As a result, the
average residual energy of the UAVs was between 25% and
55%.

The EPG approach had a low average residual energy when
fewer than 20 UAVs were deployed. It actually traded energy
for service coverage. When more UAVs were deployed, the
average residual energy improved as UAVs spent more time
in charging. After the coverage reached a peak, extra UAVs
only increased the average residual energy but not the coverage
ratio.

B. Clustered Distribution of Service Demands

We considered a scenario where the demands of UAV
service were clustered together by locations, forming several
hotspots in the target area. We used scikit-learn [20] to ran-
domly pick up two hotspot centers and generate 100 coverage
demands in the target area.
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Fig. 5: Coverage ratios with various charging rates (ρ)
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Fig. 6: Average residual energy with various charging rates (ρ)

Fig. 4a shows the result of coverage ratio with the clustered
demand distribution, where the the values are roughly halved
but the trend is similar compared against the result with a
uniform demand distribution (Fig. 3a). Similar result can also
be found in the case of residual energy (Fig. 4b).

C. Charging Capacity

We fixed the number of UAVs to 30 and varied the charging
capacity by setting ρ to be 0.5, 1, and 2 and sm to be 3, 6,
and 9. Fig. 5 shows the coverage ratios.

When ρ = 0.5 or 1.0, the proposed approaches did not work
with sm = 3. A close examination reveals that when charging
slots were fully occupied, UAVs in the proposed approaches
did not learn to rest and wait at a charging station. Instead,
they attempted exploring other charging stations due to limited
observation. Such actions caused early terminations of the
training episode when a UAV ran out of its battery power. The
situation improved when charging slots were mostly available
either because of using fast charging technology (ρ = 2.0) or
more charging slots were set up (sm = 9). EPG performed
the best, followed by DRQN and then DQN.

Fig. 6 presents the results of average residual energy. The
results also show that the residual energy improved with
adequate charging capacities and fast charging rates.

VI. CONCLUSIONS

We have addressed the problem of distributed serving and
charging scheduling for a UAV swarm to maximize service
coverage intensity. We model the problem as a POMDP and
propose two DRL-based approaches, one based on DQN and
the other on DRQN. The experimental results show that
the proposed approaches can handle distributed serving and
charging scheduling as long as enough charging facility is
provided. Although the proposed approaches are inferior to
the counterpart in terms of coverage ratio and energy savings,
they are more practical as UAVs are assumed to have limited
visibility.
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