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Abstract—This paper models access point (AP) selections by
IEEE 802.11 wireless stations (WSs) as a native game, where
each WS’s goal is to maximize its achievable throughput. We
have proven the stability of this game (Nash equilibrium), and
shown that selfish behavior of individual WS in fact improves
overall bandwidth fairness among WSs. Thorough simulations
were conducted to demonstrate the quality of the analytical
results.

I. INTRODUCTION

IEEE 802.11 wireless local area networks have been widely
deployed as wireless infrastructures providing data access
services in home, corporate, and public environments. In such
environments, a wireless station (WS) with an IEEE 802.11
interface sends and receives frames via an access point (AP)
to network infrastructure, and all APs in service constitute
an access network. However, traffic load in an access network
may not be fairly shared by all serving APs due to the uncoor-
dinated nature of AP selections among WSs. More specifically,
WSs typically select and associate with an AP with the highest
received signal strength. This problem motivates many load-
balancing schemes for IEEE 802.11 networks [1] with a design
goal to make WS-AP associations load-aware, preventing WSs
from making associations with congested APs. The ultimate
goal is to either increase overall system throughput or maintain
bandwidth fairness among WSs.

In this paper, we analyze the problem of AP selections
under the framework of game theory. Game theory provides a
mathematical modeling for the study of competition strate-
gies in a game where players have conflicting benefits or
goals. For the last decade, game theory has been used to
analyze duty/resource sharing problems in wireless networks.
In these games, selfish players usually bring in undesired
results (uneven load distribution or unfair resource share), and
researchers have to introduce incentive or punitive mecha-
nisms to force cooperations among players. For example, a
commonly-adopted mechanism is to design a synthetic utility
function for players that penalizes selfish behaviors. The goal
is to let games naturally fall into stable states called Nash
equilibria where system’s interest could potentially benefit.

Our framework differs from previous ones in that we
consider native AP selections. That is, WSs select and re-select
APs merely for their own interest (specifically, achievable
throughput that a WS may receive from a selection). No
other external incentive/punitive mechanisms are introduced
to ensure stability or fairness. We shall prove that a Nash

equilibrium exists even in this context, which eliminates the
possibility of unstable association transitions (change of AP
selections). Furthermore, we show that selfish yet rational
behaviors under the proposed framework naturally improve
bandwidth fairness, which was not expected previously.

II. BACKGROUND AND RELATED WORK

WSs in an IEEE 802.11 access network compete for band-
width offered by APs. Clearly, a WS’s utility depends on not
only its own association choice, but also other WS’s. This
is why game theory becomes a useful tool to apply here.
Intuitively, WSs should select an AP that is the least crowded
to maximize its achievable throughput. Games with player’s
objective defined to minimize the number of other users that
share the same selection are known to be crowding games
[2]. In the literature, crowding games has been used to model
network selections by mobile users [3], [4]. However, this
framework does not well apply to IEEE 802.11 networks as
achievable throughput of WSs in an AP is not necessarily a
homogeneously-decreasing function of WS population there.
The irregularity comes from two design features of IEEE
802.11. One is its non-deterministic MAC (Medium Access
Control) scheme, which does not guarantee any bandwidth
share to participants. The other is the provision of multiple
link rates in IEEE 802.11 a/b/g networks, which may give rise
to an undesirable phenomenon called performance anomaly
[5]. Performance anomaly refers to the effect that when links
operating at different rates coexist within an AP, throughputs
of high-rate links will all degrade to the level of the lowest-
rate link. Performance anomaly not only impairs achievable
throughputs of WSs, but also makes AP’s actual capacity a
variable. Consider the example of Fig. 1, where two IEEE
802.11b APs are serving four WSs. WS3 there could choose
either AP1 or AP2 to associate with. Achievable throughputs
of these two choices, based on the analysis of [5], are shown
in Table I. We can see that selecting AP1 yields a better result,
though AP1 is more crowded than AP2. AP1 is also a better
choice from the perspective of system’s benefit, as selecting
it has a higher total achievable throughput than selecting the
counterpart. Perception of performance anomaly can yield
better performance result. But this cannot be characterized in
crowding games.

The AP selection problem under consideration is modeled as
a noncooperative dynamic game. In a noncooperative game,
players do not cooperate with each other to seek system’s



Fig. 1. A scenario illustrating performance anomaly

TABLE I
ACHIEVABLE THRIUGHPUT IN THE SCENARIO OF FIG. 1

WS3’s choice Achievable throughput (Mbps) Total
WS1 WS2 WS3 WS4 (Mbps)

AP1 2.19 2.19 2.19 8.01 14.58
AP2 3.62 3.62 0.81 0.81 8.86

benefit. A noncooperative game is dynamic if players take
turns to make their decisions, knowing what decisions have
already been done. In our model, an associated WS will re-
associate with another AP if that reassociation improves its
achievable throughput. The achievable throughput in recogni-
tion of the effect of performance anomaly can be computed
with analytical results from prior work in [5], [6]. Here we
assume WSs pursuing its own throughput improvement rather
than the balance of workloads among APs (e.g., [7]). Although
a lightly-loaded AP in principle offers a high achievable
throughput and selecting an AP with the least load helps load
balancing among APs, we argue that, from WS’s perspective,
AP selections based on achievable throughput are direct and
more “natural” than AP selections based on load balancing.
Several other approaches also proposed AP selections based
on achievable throughput (potential bandwidth) [8], [9], [10].
Another issue of load-based AP selections comes from the
fact that the notion of AP’s load is not well defined in IEEE
802.11 networks. It could be the number of WSs associated
with an AP, frame drop rate of AP’s transmission queue during
real-time sessions [11], or the total time that an AP takes to
provide each WS one unit of traffic [12], [7].

Although there have been many approaches proposed for
AP selections, only few of them treat the problem under the
framework of game theory. Mittal et al. [13] introduced an
AP selection game which differs from our setting in that WSs
may need to travel some distance to reach an AP. The cost
of an AP selection is measured by the AP’s load and the
traveling distance required by that selection. With this cost
model, Mittal et al. proposed a simple greedy algorithm that
brings the game to a Nash equilibrium under the condition of
even WS distribution and absence of dynamic WS arrivals and
departures. However, the ability to measure physical distance
between WSs and APs, as required by this model, is not yet
a primitive feature in today’s wireless networks. Shakkottai et
al. [14] studied the problem of a WS associating with multiple
APs and splitting its traffic among these APs (link-layer
multihoming). They used the model of population game [15],

which implies that the impact of individual WS’s selection
on other WS’s utilities is infinitesimal. Although link-layer
multihoming is possible for WSs using a single wireless
interface card [16], this technique is not yet mature and widely
adopted. The population game model also dose not generally
apply to IEEE 802.11 networks. Jiang et al. [17] considered
base station (BS) selections by mobile users, where each user
selfishly chooses a BS that gives her the highest achievable
throughput. This work assumes that the throughput each user
can receive is controlled by the BS, and that the number of
users is enormous so as to apply the population game model.
Both assumptions do not fit in IEEE 802.11 networks.

Besides throughput, fairness is also a typical criterion for
AP selection problems. In the context of bandwidth sharing,
max-min [18] is a commonly-adopted metric for fairness par-
ticularly when bandwidth requestors have different bandwidth
demands. With an objective to maximize the minimum share
of a requestor whose demand is not fully satisfied, basic
principles of max-min fairness are to allocate bandwidth to
requestors in increasing demands, to ensure no requestor
receives bandwidth more than its demand, and to equally
split the remaining bandwidth to requestors with unsatisfied
demands. If we use a tuple to denote the set of allocated
bandwidth of each requestor sorted in a nondecreasing order,
then a bandwidth allocation is max-min fair when the corre-
sponding tuple has the highest lexicographical value among
all. A similar notion, min-max fairness, can be defined if
the share of workloads among APs is concerned. Bejerano
et al. [12] have studied AP selections that achieve min-max
fairness of AP workloads. They proved that, unless link-layer
multihoming is allowed, a min-max load balanced association
does not imply a max-min fair bandwidth allocation and vice
versa.

Max-min fairness well applies to cases where resource
requestors have limited demands. In our problem setting, how-
ever, every WS has an unlimited bandwidth demand; it could
actually consume all bandwidth available to it. For this kind of
bandwidth sharing, balance index [19] can be used to quantify
the fairness of bandwidth share among all competitors. For a
bandwidth allocation consisting of n portions numbered 1 to n,
let Bi, 1 ≤ i ≤ n, denote the amount of bandwidth allocated
to the ith portion. The balance index β is defined as

β =
(
∑

Bi)2

n×∑
B2

i

. (1)

The value of β becomes 1 when all requestors get an equal
share, and it approaches 1/n in case of extremely imbalanced
allocations.

III. NATIVE AP SELECTION GAME

We consider an IEEE 802.11 network consisting of m APs
and n WSs. We assume that each WS can access at least one
AP. Let A = {a1, a2, . . . , am} and W = {w1, w2, . . . , wn}
be the sets of all APs and WSs, respectively. We denote the
set of APs that wi can access (i.e., the strategy set of wi) by
Ai, where 1 ≤ i ≤ n. For a possible AP-WS association, the



WS’s utility is defined to be achievable throughput of the WS
resulted from that association.

We define a configuration (a strategy profile) to be an
n-tuple C = (c1, c2, . . . , cn), where ci ∈ Ai repre-
sents wi’s association choice. For a specific wi, we may
sometimes express C as C = (ci, C−i), where C−i =
(c1, c2, . . . , ci−1, ci+1, . . . , cn) denotes all other WS’s asso-
ciations other than wi’s. Function ui(C) gives wi’s utility
with respect to configuration C. This function is realized by
prior work in [5], [6]. The AP selection game is defined as
Γ = [W ;A; {ui}n

i=1].

A. Stability

Definition 1: Nash Equilibrium: Given a game Γ =
[W ; A; {ui}n

i=1], a configuration C∗ = (c∗1, c
∗
2, . . . , c

∗
n) is a

Nash equilibrium if ∀i ∈ {1..n} : ∀ci ∈ Ai :: ui(c∗i , C
∗
−i) ≥

ui(ci, C
∗
−i).

In other words, Nash equilibrium is a configuration where
no WS can further increase its own utility by unilaterally
changing its choice. Nash equilibrium is not necessarily a
Pareto optimal strategy. A configuration C = (c1, c2, . . . , cn)
is Pareto optimal if and only if there exists no other configu-
ration C

′
= (c

′
1, c

′
2, . . . , c

′
n) such that ∀i ∈ {1..n} : ui(C

′
) ≥

ui(C) and ∃j ∈ {1..n} : uj(C
′
) > uj(C).

Recall that in our model, an associated WS can re-associate
with another AP if that reassociation improves its achievable
throughput. The reassociation action may trigger another WS’s
reassociation and so on. If Nash equilibria do not exist in this
game, reassociation activities will last and the system cannot
enter a stable state. We shall now show the existence of Nash
equilibrium in the native AP selection game.

Let Σ = {C1, C2, . . . , Ck}, where k = |A1| × |A2| ×
· · · × |An|, denote the configuration space, i.e., the set of all
possible configurations. In our game model, a transition from
one configuration to another naturally happens when some WS
discovers that it may benefit from such transition and thereby
conducts an association change. For simplicity, we assume
that only one association change is conducted at a time;
simultaneous transitions are serialized in some arbitrary order.
Denote that transition relation on Σ by ‘;’. Formally, for any
two configurations Ci and Cj , Ci ; Cj if ur(Ci) < ur(Cj),
where wr is the only WS that has different association choices
between Ci and Cj .

If there exists no Nash equilibrium, then for any config-
uration Ci ∈ Σ, there must exist some other configuration
Cj ∈ Σ such that Ci ; Cj . Since the strategy space is finite,
nonexistence of Nash equilibrium implies that there must be
a series of configurations C

′
1, C

′
2, . . . , C

′
p, where p ≤ k, such

that C
′
1 ; C

′
2, C

′
2 ; C

′
3, . . . , C

′
p ; C

′
1. We shall prove

the existence of Nash equilibrium by showing that such series
does not exist.

According to [5], all WSs that associate with the same AP
receive equal amount of throughput that is governed by the
lowest-rate link. Let t(a) be the throughput of any WS residing
in AP a. In case that no WS associates with a, we let t(a) be
a’s real or nominal capacity. For each configuration Ci ∈ Σ,

Fig. 2. Rank mapping from Ti to Tj when v = min{q, y} > p

let Ti = (α1
i , α

2
i , . . . , α

m
i ) be an m-tuple of APs such that

t(α1
i ) ≤ t(α2

i ) ≤ · · · ≤ t(αm
i ). Let Θ = {T1, T2, . . . , Tk}. We

also define a binary relation ≺ on Θ as follows. For Ti, Tj ∈
Θ, we have Ti ≺ Tj if ∃k ∈ {1..m} : t(αk

i ) < t(αk
j ) and, if

k > 1, ∀l : 1 ≤ l < k :: t(αl
i) = t(αl

j). It is not hard to see
that ‘≺’ is a precedence relation [20], i.e., it is antisymmetric
and transitive.

Theorem 1: ∀Ci, Cj ∈ Σ : Ci ; Cj ⇒ Ti ≺ Tj .
Proof: Without loss of generality, assume that Ci ; Cj

because some WS wr changes its AP from ak to al. Let ak

be the pth and qth element in Ti and Tj , respectively. In other
words, ak = αp

i = αq
j . Similarly, let al = αx

i = αy
j . Ci ; Cj

implies that ur(Ci) < ur(Cj), which in turn implies that

t(αp
i ) < t(αy

j ). (2)

t(ak) will be increased due to wr’s association migration,
which means

t(αp
i ) < t(αq

j). (3)

By (2), (3), and the fact that ak and al are the only two APs
whose throughput is changed by Ci ; Cj , the first p − 1
elements in Ti hold their ranks in Tj . Thus we have

∀s : 1 ≤ s ≤ p− 1 :: t(αs
i ) = t(αs

j). (4)

Now consider the relation between v = min{q, y} and p. By
(2), (3), and (4), it is impossible that v < p. If v = p, then we
have the proof by (4) and either (2) or (3). If v > p, then αp

i

must change its rank from the pth element in Ti to at least the
vth element in Tj , and all APs in between change their ranks
accordingly. See Fig. 2. We therefore have

∀s : p ≤ s ≤ v − 1 :: t(αs
i ) ≤ t(αs+1

i ) = t(αs
j) (5)

and
t(αv

i ) = t(αv−1
j ) ≤ t(αv

j ). (6)

If we can eliminate the possibility of condition ∀s : p ≤ s ≤
v :: t(αs

i ) = t(αs
j), then the theorem is proven by (4), (5), and

(6). The condition at hand holds only if t(αs
i ) = t(αs+1

i ) for
all s, p ≤ s ≤ v−1 and t(αv

i ) = t(αv
j ), which in turn implies

that t(αp
i ) = t(αv

j ). The derived result contradicts with (2)
and (3), and we thus prove the theorem.

Since ≺ is a precedence relation, Theorem 1 implies that a
configuration transition loop cannot exist, and suffices to be
a proof for the existence of Nash equilibrium in our game
model.



Fig. 3. Rank mapping from Ui to Uj when v = min{q, y} > p

B. Fairness

We shall now address the fairness issue of the game. The
definition of max-min fairness refers to only one configuration.
To quantify the degree of fairness for other feasible config-
urations, we propose using the lexicographical value of its
bandwidth-share tuple as the measurement of a configuration’s
fairness. More precisely, for each configuration Ci ∈ Σ, let
Ui = (µ1

i , µ
2
i , . . . , µ

n
i ) be a tuple of all terminal’s utilities

(with respect to Ci) sorted in a nondecreasing order. We said
that Cj is fairer than Ci if Ui ≺ Uj .

We can derive Ui from Ti by seeing that all WSs associating
with the same AP receive identical throughput. Let w(αk

i ) be
the number of WSs associating with αk

i in Ti, where 1 ≤ k ≤
m. Define

ρ(αk
i ) =

{
1 k = 1,

1 +
∑k−1

l=1 w(αl
i) 2 ≤ k ≤ m.

(7)

Given Ti, we let each AP αk
i ∈ Ti, 1 ≤ k ≤ m, map

to w(αk
i ) consecutive elements in Ui. These elements, with

ordinal numbers ranging from ρ(αk
i ) to ρ(αk+1

i )− 1, all have
value t(αk

i ).
With the derivation of Ui from Ti, we shall further prove

that if Ti ≺ Tj , then Uj also has a higher lexicographical
value than Ui. By Theorem 1, this means that if Ci ; Cj ,
then Cj is fairer than Ci. The proof is outlined as follows.
Since the first p− 1 APs in Ti hold their ranks in Tj , all the
first ρ(αp

i )− 1 elements in Ui also hold their ranks in Uj . If
v = min{q, y} = p, then the ρ(αp

i )th element in Ui is smaller
than the corresponding element in Uj by either (2) or (3),
and the proof is done. If v > p, then αp

j , α
p+1
j , . . . , αv−1

j are
αp+1

i , αp+2
i , . . . , αv

i , respectively, since αp
i changes its rank to

at least the vth element in Tj . Therefore we have ρ(αl
j) =

ρ(αl+1
i ) − w(αp

i ) for all l, p ≤ l < v. See Fig. 3. From the
proof of Theorem 1 we also know that ∃l : p ≤ l < v ::
t(αl

i) < t(αl+1
i ). Let s be the smallest such l. Let d = ρ(αp

i ),
f = ρ(αs+1

i ), and e = ρ(αs
j) = f − w(αp

i ). If s 6= p, then
µl

j = µl
i for all l, d ≤ l < e. We have the proof by seeing that

µe
j = µf

i > µe
i .

Although the proof is based on the notion of max-min
fairness, in the next section we shall show through simulations
that configuration transitions in the native AP selection game
also improve bandwidth fairness in terms of balance index.

TABLE II
DISTANCE TO LINK RATE CONVERSION

Range of distance d (m) Link rate (Mbps)
0 ≤ d < 50 11
50 ≤ d < 80 5.5
80 ≤ d < 120 2
120 ≤ d < 150 1

d ≥ 150 0
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Fig. 4. Number of reassociations before Nash equilibrium

IV. NUMERICAL RESULTS

We conducted additional simulations to demonstrate our
theoretical findings. The simulation setting is as follows. APs
formed a square grid in a 600 × 600 (m2) area with the
dimension of the sides of the grid squares set to 2 to 15.
Neighboring APs (also a border AP and the border of the
area) were separated with equal distance. WSs were randomly
uniformly distributed over the same region with the number
of WSs varied 10 to 200 in increments of 10. The link rate
between a WS and an AP is based on IEEE 802.11b and
determined by their in-between distance (Table II). We also
preclude unconnected WSs by randomly relocating such WSs.
For each setting, 1000 trials were made for an average result.

We let each WS select an AP based on received signal
strength initially. Here all APs were assumed identical trans-
mitting power, and a simple path-loss model was adopted
where the received signal strength decreases with the square
of the traveling distance of the signal. After its initial as-
sociation, a WS selected an AP to re-associate with for a
higher achievable throughput. Fig. 4 shows the total number
of reassociations before Nash equilibrium for each setting. As
expected, all reassociation activities stopped after a limited
number of times. The reassociation time generally increased
with the number of WSs. The number of reassociations each
WS made has a mean of 0.275 with standard deviation 0.118.

We also measured balance index for each trial twice. The
first was after the initial association and the other after the
Nash equilibrium. The change of the balance index was
considered the improvement of fairness for the trial. Fig. 5
displays the average result. We can see that the degree of
improvement generally increased with the number of WSs,
particularly when the number of APs was few. The increase
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Fig. 6. Change of aggregated throughput after reassociations

of balance index was as high as 0.600, with mean and standard
deviation 0.200 and 0.148, respectively.

The change of aggregated throughput (counting all WSs)
due to reassociations was also investigated. Refer to Fig. 6. We
can see that the activity of associations did not necessarily in-
crease aggregated throughput. We found that for each number
of APs, there was an optimal number of WSs for which the
improvement of aggregated throughput was maximized. De-
viation from this value diminishes the extent of improvement
and might even degrade the aggregated throughput. This can
be explained as, when the number of WSs is below the optimal
value, reassociations help evenly redistribute WSs to other
lightly-loaded APs and thus improves aggregated throughput.
When the number of WSs is larger than the optimal value, a
WS is likely to increase its throughput through associations
at the price of decreasing other WS’s throughput. Overall
throughput may therefore suffer from such associations.

We observed that the optimal number of WSs was in
proportional to the number of APs, which is reasonable. In
case of 4 APs, the optimal number might be below 10; so
reassociations always degraded aggregated throughput. The
optimal number for 25, 49, 81, 121, and 169 APs were 30,
50, 90, 130, and 180, respectively.

V. CONCLUSIONS

This paper considers native AP selection games where WSs
select APs merely to maximize their achievable throughput.
We have proven that a Nash equilibrium exists in such games,
which guarantees the convergence of configuration transitions.
Furthermore, we show that association transitions triggered
by selfish WSs in fact improve fairness of bandwidth share.
Simulation results confirmed our analytical work.
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