Design and Implementations of non-3GPP Wireline
Access Gateway for 5SG Wireless and Wireline
Convergence

Pai-Hui Wang, Hung-Chang Tsao, Li-Hsing Yen, and Chien-Chao Tseng

Dept. of Computer Science, College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

5G SBA

|NSISF| [I5 | | B | |U[:M| o

| 1 | | Servlc‘e—Based
Interf: SBI.

| AVE | | Swe | [ause] mertaces ser

Non-3GPP 1 —
Wireline !
Access |

3GPP Radio Access

Fig. 1: Architecture of 5G wireless and wireline convergence

Abstract—To support the SG Wireless and Wireline Conver-
gence (5G-WWC) architecture, the Access Gateway Function
(AGF) is defined to serve as an interworking function between
the 5G core (5GC) and fixed network residential gateways (FN-
RG) with a non-3GPP wireline access network. AGF acts as a
proxy to communicate with 5GC on behalf of FN-RG. This
paper presents a design for AGF that realizes control and
user plane separation. Three different implementations based on
user-space, kernel-space, and kernel-bypass (DPDK) softwares
are reported and tested. The results confirm the superiority of
the kernel-bypass approach in terms of latency and throughput
of user-plane traffic.

I. INTRODUCTION

It has been an emerging trend to converge the fifth-
generation (5G) system and non-5G access networks so that
user equipment (UE) can connect to a 5G system through
some access technology not specified in 5G. To this end,
the 3rd Generation Partnership Project (3GPP) has specified
the support for three types of non-3GPP access networks:
untrusted, trusted, and wireline [1]. The first two deals with
untrusted and trusted wireless access systems such as IEEE
802.11 (Wi-Fi), respectively. The last is for the 5G wire-
less and wireline convergence (5G-WWC). The 5G-WWC
not only allows network operators to expand their service
coverage but also eliminates the need to deploy a dedicated
core network for the wireline network.

3GPP has collaborated with the Broadband Forum (BBF)
to develop 5G-WWC-related specifications. A joint effort
is specifying a new network function named the Access
Gateway Function (AGF). AGF enables connectivity to 5G
core (5GC) from the 5G-capable residential gateway (5G-
RG) or the fixed network residential gateway (FN-RG). 5G-
RG is capable of exchanging control-plane messages with

5GC through gNodeB (gNB). On the other hand, FN-RGs are
legacy gateways (such as cable modem) that are not 5G capa-
ble, so AGF should act as a UE proxy for FN-RGs (Fig. 1).
In the control plane, AGF plays the role of a gNB, which
communicates with the Access and Mobility Management
Function (AMF) in 5GC through the N2 interface. AGF also
plays the role of a UE for each FN-RG and communicates
with AMF through the N1 interface. AGF delivers packets
between FN-RG and 5GC in the user plane through the N3
interface.

In this paper, we report on the design and implementations
of an AGF. To provide scalability and align with the 5GC
design principle, we divide AGF into the AGF Control Plane
(AGF-CP) and the AGF User Plane (AGF-UP). Our focus is
twofold:

o Design and implementation of AGF to provide a wired
connection point for FN-RG and act as an agent for FN-
RG to communicate with 5GC.

« Providing line-rate data flow transmission between FN-
RG and 5GC.

We detail three implementations that share most AGF-CP
codes but differ in AGF-UP. The first implementation uses
UERANSIM [2], an open-source software, to implement AGF
in the user space. The second implementation further uses a
kernel module gtp5g [3] to speed up packet encapsulation and
forwarding functions in the user plane. The last implementa-
tion uses DPDK [4] to bypass kernel processing of incoming
packets so that the DPDK AGF-UP application can directly
access and process these packets. We set up an experimental
environment to test the latency and throughput between FN-
RG and the data network (DN). The results demonstrated
the effectiveness of gtpSg and DPDK in accelerating packet
processing in AGF-UP.

The remainder of this paper is structured as follows. Sec. 11
briefs the backgrounds and related work. Sec. III presents
the design and requirements. The following three sessions
present three different implementations. Sec. VII shows the
experimental results, and the last section concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Related Network Functions in 5G Core

5G-WWC benefits from the Service Based Architecture
(SBA) [5] of the SGC, which turns applications and services
of the SGC into fine-grained network functions. This restruc-
turing leverages Network Function Virtualization (NFV) to
enable flexible and agile network deployment [6].

In addition to SBA, 5GC also performs Control and User
Plane Separation (CUPS), which separates the control plane
from the user plane. In the control plane, network functions
communicate with each other by a common service interface
(Service Based Interface; SBI). Among these network func-
tions, the AMF plays a crucial role. It is in charge of the initial
registration, authentication, location tracking, and UE paging.
It also manages the sessions between the UEs and DN. In
particular, the AMF interworks with the AGF to establish
the PDU session for an FN-RG on the wireline network. In
the user plane, the User Plane Function (UPF) processes and
forwards user packets. Our previous work applied CUPS to
UPF to accelerate data plane performance [7].

B. Related Work

Lemes et al. [8] summarized the non-3GPP trusted, un-
trusted, and wireline access systems in the 3GPP standards,
provided analysis and implementation descriptions for vari-
ous access systems, and compared the differences among all
access systems. The paper also presented a untrusted non-
3GPP access using Wi-Fi that allows user devices to connect
to DN through 5GC. Their experiments measured the number
of control messages, packet size, and processing time required
for registration when establishing a connection. The part
of non-3GPP wireline connection that was not implemented
in this study will be the focus of our work. Also, unlike
this study, our work will focus on data layer transmission
performance in the testing part, including bandwidth and
delay.

The study in [9] focused on the authentication mechanism
of UE in the 5GC and the specifications for the authentication
of user devices in the 5G-WWC standard for trusted and
untrusted non-3GPP connections, as well as wireline connec-
tions. For the wireline connection part, this study explained
the authentication for 5G-RG and FN-RG separately.

III. DESIGN OF NON-3GPP WIRELINE ACCESS GATEWAY
A. Functional Requirements

Any implementation of AGF should provide the following
functionalities:

o Enabling FN-RG attachment. AGF needs to provide IP
connectivity for FN-RGs that dynamically attach to it.
This can be achieved via the Dynamic Host Configura-
tion Protocol (DHCP).

o Performing UE registration and authentication. AGF
should perform UE registration and authentication on
behalf of FN-RGs. After completing these procedures,
5GC treats each FN-RG as a registered UE.

o Establishing PDU session. Since the registered UE uses
Protocol Data Unit (PDU) session for data exchange
between the UE and the UPF, AGF should request PDU
session establishment on behalf of FN-RGs.

o Exchanging control messages with 5GC via the N2
interface. This is needed because AGF itself should act
as a gNB.

o Encapsulatiing/decapsulating data stream in N3. For
data delivery through the N3 interface, a tunnel between
gNB and UPF should be established using the GPRS
Tunneling Protocol-User Plane (GTP-U) [10]. Since

AGF acts as a gNB, it should encapsulate user data from
FN-RG and decapsulate user data from UPF using GTP-
U.

Except for the last functionality, which is the main task of
AGF-UP, all the functionalities mentioned above are handled
by AGF-CP.

B. AGF Control Plane (AGF-CP)

Our design further divides AGF-CP into DHCP module,
Proxy UE, and N2 module. DHCP module provides the pars-
ing of DHCPv4 Discover and Request messages according
to the RFC 2152 standard and offers the FN-RG IP address
through Offer and Acknowledge messages, completing the
four-way DHCP handshake, so that FN-RG can attach to
AGF. The DHCP module also tracks the connection status
of FN-RG and determines whether the device is connected
or disconnected through periodic updates of the DHCP lease.
Proxy UE performs UE registration, authentication, and PDU
session establishment request on behalf of FN-RG. Since FN-
RG does not have 5G capability, AGF will launch a Proxy UE
instance for each FN-RG attached. N2 module is responsible
for the exchange of control messages with AMF through the
N2 interface.

C. AGF User Plane (AGF-UP)

AGF-UP provides the encapsulation and decapsulation of
the GTP-U tunneling protocol. The processing speed of
encapsulations and decapsulations significantly affects the
service quality of user traffic such as throughput and delay.
The main objective of this study is to implement AGF-UP
using various approaches and see how their performance
differs.

The endpoints of a GTP-U tunnel are uniquely identified by
tunnel endpoint identifications (TEIDs), which are contained
in the PDU session information obtained when Proxy UE
establishes the PDU session. Therefore, there should be an
interface between AGF-CP and AGF-UP for AGF-UP to
access such information.

IV. USER SPACE APPROACH: UERANSIM AGF

Our first approach to AGF implementation takes advantage
of UERANSIM [2], an open-source software that provides
developers with tools for verifying the SGC functions. The
software consists of UE and gNB simulators. The UE
simulator implements most of the messages used by the
N1 interface. The gNB simulator implements most of the
messages used by the N2 interface and the GTP-U tunneling
protocol of the N3 interface, providing both a message
exchange mechanism for the control plane and encapsulation
and forwarding of user plane data.

The architecture of UERANSIM AGEF is shown in Fig. 2.
AGF-CP consists of the following modules:

e DHCP Module. We implemented a DHCP server using
the Scapy library to parse and reply to DHCP packets.
Furthermore, when receiving a DHCP Discover from
FN-RG, the DHCP module will notify AGF Core (dis-
cussed below) of the device connection information, so
that AGF Core can coordinate other modules to establish

AGF Server -: NIC
AGF-CP

---{ DHCP H AGF Core ‘

/Management

Proxy UE H N2/N3 ‘

UERANSIM UE [7"] UERANSIM gNB
AGF-UP i
IANRIN AGF -
FN-RG FN-RG
——— Data traffic ~ =oereeen : 5G control message
: GTP-U tunnel=====-= : DHCP message

Fig. 2: Architecture of UERANSIM AGF

a PDU session between AGF (on behalf of an FN-RG)
and UPF.

o AGF Core. We implemented this module to coordinate
other AGF modules to help FN-RG establish a con-
nection to SGC. When receiving an FN-RG connection
notification from the DHCP module, AGF Core will
generate a Subscription Permanent Identification (SUPI)
for the FN-RG based on the connection information.
SUPI is assigned by 5G operators to uniquely identify
a subscriber upon UE registration. AGF Core then uses
that SUPI to create a corresponding proxy UE for FN-
RG to establish a PDU session with the 5GC. Regarding
the generation of the SUPI of FN-RG, the standard
[11] demands the use of GLI (Global Line Identifier)
as part of SUPL. Because GLI contains the Line ID
source and the Line ID value, which represent the
machine and the interface of the machine, respectively,
that requirement allows 5GC to use the SUPI to identify
the location of the wired connection point and provide
the corresponding services based on the location. In our
current implementation, AGF Core uses the SHA256
hash algorithm to obtain the hash value of the MAC
address of FN-RG, and takes the first 10 digits as its
SUPI. This shall be corrected in a later version to comply
with the specification.

e Proxy UE. This module uses the UERANSIM UE sim-
ulator to implement the registration and setup of PDU
sessions with SGC. Since the UE simulator also contains
the data stream transmission and reception functions,
it also participates in implementing the user plane in
this AGF implementation, which we will explain when
describing the user plane module.

o N2/N3 Module. This module uses the UERANSIM gNB
simulator to encapsulate Proxy UE control messages
according to the N2 interface standard and send them
to AMF. It also decapsulates the control messages from
AMF through the N2 interface and sends them to the
corresponding Proxy UE. Since the gNB simulator also
contains the data stream transmission and reception
functions, it also participates in the implementation of
AGF-UP.

AGF-UP consists of the following parts:
o Proxy UE (shared with AGP-CP). After the PDU session

AGF Server
@ Notify € Generate SUPI AGF-CP

-{ DHCP -~ AGF Core

@ DHCP Offer/ | T
Request/Ack [1 7

| L~ @ Activate
i > @ Confirm
I Proxy UE “ N2/N3
|
]
]

UERANSIM UE ’_ UERANSIM gNB

AGF-UP

@ AGF - © PDU Session i|iL
S FN-RG establishment -

@ DHCP Discover.

: Data traffic =~ weeeeeeeee : 5G control message
: GTP-U tunnel ------- : DHCP message

Fig. 3: UERANSIM AGF workflow

is established, Proxy UE will use the UE IP address
obtained during the establishment of the PDU session to
create a TUN/TAP virtual device connected to the N2/N3
module. Afterwards, all IP packets from FN-RG will
be directed to the corresponding Proxy UE TUN/TAP
virtual device and will then be forwarded by network
address translation (NAT) to the N2/N3 module.

e N2/N3 Module (shared with AGF-CP). It performs GTP-
U encapsulation-related actions based on the IP address
and TEID obtained by Proxy UE when establishing the
PDU session. This module encapsulates data streams
from Proxy UE as GTP-U packets, which are sent to
UPF via the N3 interface. It also decapsulates UPF GTP-
U packets and sends the data to the corresponding FN-
RG. Due to the limitation imposed by the UE simulator,
the UE IP address assigned by 5GC to Proxy UE in the
creation of the PDU session cannot be assigned directly
to FN-RG. Therefore, we need to assign an extra IP
address to FN-RG (via DHCP), and use NAT to change
the source IP address of the packets from FN-RG (which
is the IP address assigned to FN-RG) to the UE IP
address before forwarding these packets to the N2 / N3
module.

The connection process consists of several steps (see
Fig. 3).

1) Detecting FN-RG attachment. The DHCP module re-
ceives the DHCP Discover message initiated by FN-RG
(Step 1), indicating an attachment of a new FN-RG. The
DHCP module notifies AGF Core of the attachment and
sends the device information of the FN-RG to AGF Core
(Step 2).

2) Deploying Proxy UE. AGF Core hashes the MAC ad-
dress of FN-RG to generate an SUPI (Step 3). After
generating the SUPI, AGF creates a corresponding Proxy
UE instance for the FN-RG and transfers the SUPI to
the Proxy UE to perform the registration (Step 4).

3) Establishing PDU Session. The Proxy UE uses the SUPI
obtained from AGF Core to initiate UE registration and
authentication with SGC. When the Proxy UE completes
the establishment of the PDU session, it obtains a
UE IP address and TEID (Step 5). During the session
establishment process, AGF Core will periodically check

AGF Server

AGF-CP
--{ DHCP H AGF Cort
gtp5g-c
Proxy UE | N2/N3 |
*UERANSIM UE || *UERANSIM gNB 1

(oo

gtpSg

gtp5g AGF-UP

AR /G-
FN-RG) | GBS
: Data traffic =~ s : 5G control message

5 : GTP-U tunnel ------- : DHCP message

Fig. 4: Architecture of gtp5g AGF

the log of the Proxy UE to confirm the establishment of
the connection (Step 6).

4) Assigning FN-RG IP address. After the PDU session is
established, the DHCP module assigns a valid IP address
to the FN-RG (Step 7). Meanwhile, AGF Core installs
the corresponding IP rules and NAT rules, so that the
data flow from FN-RG can be correctly forwarded to
the N2/N3 module through the TAP/TUN virtual device
established by the corresponding Proxy UE.

V. KERNEL SPACE APPROACH: GTP5G AGF

We improved the performance of UERANSIM AGF by
replacing the user-plane packet encapsulation and forwarding
functions in the Proxy UE and N2/N3 modules with gtp5g
[3]. gtpSg is a core module (kernel module) developed by the
free5GC team [12] which provides GTP-U encapsulation and
decapsulation in the kernel space. Since the N3 interface is
now implemented by gtpSg, we renamed the N2/N3 module
in UERANSIM AGF as the N2 module in gtpSg AGF. The
architecture of gtp5g AGF is shown in Fig. 4.

The following are the new modules or modifications to the
original modules in the gtpSg AGF.

e« DHCP module. The DHCP module no longer assigns
an independent IP address to the FN-RG, but directly
assigns the UE IP address obtained from 5GC to the FN-
RG. This modification eliminates the need to implement
NAT in the AGF. The reason for the change is that
gtpSg AGF no longer uses the user plane function of
the UERANSIM UE simulator, so Proxy UE no longer
needs to create a TUN/TAP virtual device.

o AGF Core. AGF Core now reads the PDU session
information stored in AGF-CP by Proxy UE and N2
module, converts the PDU session information into
packet processing rules of gtp5g, and installs the rules
to the gtp5g core module of AGF-UP using libgtpSgnl.
We have named this feature the gtp5Sg controller (gtpSg-
¢). In addition, AGF Core now also passes the UE IP
address allocated by 5GC to the DHCP module, which
further assigns the IP address to the corresponding FN-
RG.

o Proxy UE. Proxy UE follows the implementation of
UERANSIM AGTF, using the UERANSIM UE simulator.

We removed the user plane function from the UER-
ANSIM UE simulator, and only keep the control plane
part of the function, including UE registration and PDU
session establishment. We also added a function to Proxy
UE, which allows it to store the UE IP address allocated
by 5GC in a text file, UE Info, in the system. This file
serves as an interface between AGF-CP and AGF-UP
and is shared among the relevant modules.

o N2 module. The N2 module still uses the gNB simu-
lator. However, all user-plane functions, including the
encapsulation and decapsulation of GTP-U packets, are
now removed. Only the 5G control message forwarding
function is preserved. We also added a new function to
the N2 module, which allows it to store the TEID in UE
Info.

o gtp5g. gtp5Sg provides the core module of GTP-U encap-
sulation and decapsulation for the user-plane data flow
between FN-RG and UPF. We use it directly without
any modification.

The connection process of FN-RG is basically the same
as in the UERANSIM AGF except for the following two
points. First, Proxy UE and the N2 module write the UE IP
address and TEID, respectively, in UE Info after establishing
the PDU session. AGF Core then reads out the information,
converts it into gtpSg rules, and installs the rules into the
gtpSg core module of AGF-UP based on libgtp5gnl. Second,
AGF Core passes the UE IP address to the DHCP module,
which then allocates the address to the corresponding FN-RG,
completing the four-way DHCP handshake.

VI. KERNEL-BYPASS APPROACH: DPDK AGF

DPDK [4] is a development platform and interface that
provides fast packet processing. User programs can access
a network interface card (NIC) in the system through the
application programming interface (API) provided by DPDK.
The following two techniques are taken by DPDK to speed
up packet processing:

o Kernel Bypass. Traditionally, any operation pertaining to
NICs must be processed by NIC driver and TCP/IP pro-
tocol stack in the system kernel, which causes significant
processing delays to applications. The API provided by
DPDK allows a direct exchange of messages between
applications and NICs, reducing processing delay by
bypassing the kernel process.

e Poll Mode Driver. Traditionally, an NIC triggers an
interrupt to the NIC driver located in the kernel when the
NIC receives an incoming packet. By contrast, DPDK
uses a polling mechanism to continuously query the NIC
to retrieve and process packets in real time, significantly
reducing the time required for packets to be processed
by the application. Although the polling mechanism
significantly consumes the CPU power, it is not a serious
problem because CPUs nowadays are powerful enough
to bear the processing pressure caused by the polling
mechanism. For example, a CPU core can be dedicated
to the polling task.

DPDK also proposes the kernel NIC interface (KNI)

technology [13] to allow the coexistence with applications
that interact with NICs through traditional Linux drivers

AGF Server

AGF Core

N2/N3 }

E Proxy UE] L
H *UERANSIM UE || *UERANSIMgNB |}
H i

o)

: Data traffic """ : 5G control message
E===== - GTP-U tunnel ~~7"""~" : DHCP message

Fig. 5: Architecture of DPDK AGF

and TCP/IP protocol stack. This is achieved by creating a
virtual NIC (vNIC) that is managed by a Linux NIC driver.
Thus, traditional applications can access a VNIC through the
corresponding NIC driver.

We used DPDK to implement AGF-UP, which achieves
faster packet processing and provides development flexibility.
The implementation basically follows the gtp5g AGF but
replaces the gtpSg module with a DPDK application, as
shown in Fig. 5. We disconnected the two physical NICs in
AGEF (one to FN-RG and the other to 5GC) from the Linux
core network drivers and reconnected them to the DPDK
polling driver. To reuse the AGF-CP modules, we created two
VvNICs in AGF-UP so that the AGF-CP modules can continue
to run without modification.

In AGF-CP, we removed gtp5g-c from AGF Core. When
detecting an update to the UE Info file, AGF Core notifies the
DPDK application located in AGF-UP to adjust the packet
processing rules. Since the adjustment is now handled by
the DPDK application itself, the time from the establishment
of the PDU session to the completion of AGF-UP rule
adjustments is further reduced.

The DPDK application consists of five functions. The first
is DPDK Init, which is used for program initialization, and
its main functions include NIC configuration and memory
allocation, etc. The second is KNI Manager, which controls
the KNI core module through the DPDK KNI API, helping
to adjust the KNI virtual device. The third is the Packet
Handler, which handles all received packets. This function
is needed because all NICs are no longer managed by the
Linux core due to kernel bypass, so the application must
handle incoming packets by itself. The fourth is the GTP-U
Module, which provides the encapsulation and decapsulation
capabilities of the GTP-U tunneling protocol. It is invoked
when the Packet Handler receives packets that need to be en-
capsulated or decapsulated. When performing encapsulation
and decapsulation, the GTP-U module operates according
to the information provided by its own UE Info Storage
and configuration file. UE Info Storage contains all UE IP
addresses and TEIDs, and the configuration file contains
information such as the MAC addresses of the two physical
NICs in AGF. The last function is the UE Information Loader.
When receiving a notification of an AGF Core update of UE
Info, the UE Information Loader reads the UE Info file and
stores the UE IP address and TEID in the DPDK application

YfreelTaq

PFCP
PFCP Agent
P4Runtime

oo)——{ 22222 f——(:::F o9

DN Emulator

(Ezzz oo ==zzzs f—i:::

FN-RG Emulator L2 Switch

AGF Server
(DPDK/gtp5g/UERANSIM)

Fig. 6: AGP experiment environment

database.

The FN-RG connection process is basically the same as
in the gtpSg AGF except for the following point. After AGF
Core detects and reads out the UE IP address and TEID in
the UE Info file, it notifies the DPDK application of the
information (instead of converting it into gtpSg rules and
installing the rules to the gtp5g core module). The DPDK
application then updates its own database to perform GTP-U
encapsulation and decapsulation for the new connection.

VII. PERFORMANCE EVALUATION

We conducted performance comparisons for the three AGF
implementations. We used freeSGC as the 5GC, and paired
it with P4-UPF to ensure the bandwidth of the user plane in
5GC. We used a server to emulate FN-RG, and connected it to
the AGF server through an L2 switch. On the AGF server, we
ran each AGF implementation for performance comparison.
All connections used an SFP+10G optical fiber cable. Finally,
we used a server to emulate DN and connected it with the
FN-RG emulator. The test environment is shown in Fig. 6.
Tables I and II show the server and switch specifications,
respectively, used in the experiments.

A. End-to-End Latency

We first measured the latency caused by packet forward-
ing and GTP-U encapsulation/decapsulation for each AGF
implementation. We pinged the DN server from the FN-RG
server, sending 100 ICMP ping requests at an interval of 0.2
seconds, and recorded all round-trip times (RTTs). The results
are shown in Table III. We can observe that the UERANSIM
AGF, which is a user-space implementation, exhibited the
highest latency. On the other hand, the gtpSg AGF implemen-
tation, which is based on kernel space, achieved a latency of
approximately 0.3 ms. The DPDK version relies on its kernel
bypass mechanism and achieved the lowest latency among all
three implementations.

B. Throughput of TCP Flows

We ran the iPerf3 [14] client and server on FN-RG and DN,
respectively, and sent TCP messages from FN-RG to DN.
The test lasted 30 seconds, with throughput measured every
second. In addition to this single-flow setting, we also set up
a total of five pairs of iPerf3 client and server between FN-
RG and DN, and established two TCP connections for each
pair, creating a total of 10 TCP connections for a 30-second
test. Fig. 7 shows the throughput of each implementation per
second for both single-flow and ten-flow settings.

As can be seen in the figure, UERANSIM AGF did
not perform well in terms of throughput in both settings.
Regardless of the number of flows, the throughput of DPDK

TABLE I: Server Specification

Machine CPU Memory oS Note
FN-RG Emulator, Intel Xeon E5-2630 v4 128 GB Ubuntu 18.04.1 LTS NIC: Intel X710
AGF Server 2.2~3.1Ghz 10C20T DDR4-2133 (Kernel 5.4.0-87-generic) 10Gbps SFP+
DN Emulat Intel Xeon ES-2630 v4 128 GB Ubuntu 16.04.1 LTS NIC: Intel X710
mu’ator 2.2~3.1Ghz 10C20T DDR4-2133 (Kernel 4.15.0-142-generic) 10Gbps SFP+
free5GC S Intel Xeon E5-2620 v4 128 GB Ubuntu 18.04.4 LTS
ree eIVer 2.1~3.0Ghz 8C16T DDR4-2133 (Kernel 5.0.0-52-generic)
Intel Core i5-8500 32 GB Ubuntu 18.04.4 LTS
PFCP Server 2.1~3.0Ghz 8C16T DDR4-2133 (Kernel 4.15.0-144-generic) ~ ONOS Ver. 2.2.0
TABLE II: Switch Specification 100 100
Switch Hardware Software E ® %g ®
L2 Switch Inventec D10056 Barefoot SDE Ver. 9.3.0 f gE A § gg
P4 UPF Edgecore Wedge 100BF32X Barefoot SDE Ver. 8.9.1 S ol i R b 5 o
e z(ns N I N (y;ec) o
TABLE III: End-to-End Lat C is
REo-End Lafency Lomparisofl (a) Multi-flow TCP (b) multi-flow UDP
UERANSIM gtp5g DPDK Fig. 8: CPU usage in (a) multi-flow TPC and (b) multi-flow UDP during the
Max. 1640 ms 0406 ms 0205 ms test time. Each line represents a logical core (40 cores in total).
Min. 1.130 ms 0213 ms 0.122 ms
Avg. 1.376 ms 0.309 ms 0.169 ms
Mean Deviation ~ 0.074 ms 0.035 ms 0.018 ms to further speed up user-plane data processing. The results

AGF was estimated to be 9.92 Gbps when counting the header
length of each packet (116 bytes, which iPerf3 did not count).
This result can be considered reaching the link rate. gtpSg
AGF reached almost half of the link rate (10 Gbps) with
one flow and achieved a throughput of approximately 1 Gbps
lower than that with ten flows.

To see why gtpSg AGF had a lower throughput with ten
TCP flows, we studied the dynamics of CPU usage during the
test for the ten-flow TCP setting and compared it with another
setting with ten UDP flows. Fig. 8 shows the result. We can
see that gtpSg well utilized the multicore CPU architecture for
UDP flows, but did not do the same to TCP flows. This could
justify the performance degradation observed when gtp5g
AGF handled ten TCP flows.

VIII. CONCLUSIONS

This article reports on a design for AGF with three possible
implementations. The first implementation is based on the
open-source user-space software UERANSIM. The second
implementation uses a kernel module, gtp5g, to handle the
encapsulation and forwarding functions of the user plane
packets. The third implementation bypasses kernel interrupts

@ DPDK-10@ gtp5g-10 A UERANSIM-10
O DPDK-1 O gtp5g-1 A UERANSIM-1

[
o

9
.8
[}
87
S s
Is o . .
£ MWW
g’ 4
£ 2)
2
1
0 A A A A A b A A A A A A A A A A A A A A kA A A A
5 10 15 20 25 30
Time (sec)

Fig. 7: TCP throughputs in single-flow and multi-flow settings

exhibit the benefits of all acceleration techniques.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
and Technology Council, Taiwan, under Grants MOST 110-
2221-E-A49-044-MY3, MOST 110-2221-E-A49-064-MY3,
NSTC 112-2218-E-011-004 and NSTC 112-2218-E-011-
006.

REFERENCES

“Access to the 3GPP 5G core network via non-3GPP access networks
3rd generation partnership project-3GPP,” 3GPP, TS 124.502, V16.7.0,
Release 16, Apr. 2021.

“GitHub: aligungr/UERANSIM: Open source 5G UE and RAN (gN-
odeB) implementation,” https://github.com/aligungr/UERANSIM, ac-
cessed: 2023-05-10.

“gtp5g: 5G compatible GTP kernel
https://github.com/free5gc/gtpSg, accessed: 2023-09-16.
“Data plane development kit,” https://www.dpdk.org/, accessed: 2023-
09-17.

“System architecture for the 5G system (5GS),” 3GPP, TS 23.501,
V16.6.0, Release 16, Sep. 2020.

P. Rost, A. Banchs, I. Berberana, M. Breitbach, M. Doll, H. Droste,
C. Mannweiler, M. A. Puente, K. Samdanis, and B. Sayadi, “Mobile
network architecture evolution toward 5G,” IEEE Commun. Mag., pp.
84-91, May 2016.

T.-H. Wang, M.-C. Hu, L.-H. Yen, and C.-C. Tseng, “Heterogeneous
UPF integration framework and 5G user plane acceleration,” in Proc.
24th Asia-Pacific Network Operations and Management Symp., Sejong,
Korea, Sep. 2023.

M. T. Lemes, A. M. Alberti, C. B. Both, A. C. De Oliveira Junior,
and K. V. Cardoso, “A tutorial on trusted and untrusted non-3GPP
accesses in 5G systems—first steps toward a unified communications
infrastructure,” IEEE Access, pp. 116 662—-116 685, 2022.

T. Wan, Y. Sahin, and M. Pala, “Authentication in 5G wireline and
wireless convergence,” in SCTE-ISBE Cable-Tec Expo, Oct. 2019.
“Universal mobile telecommunications system (UMTS); LTE; 5G;
general packet radio system (GPRS) tunnelling protocol user plane
(GTPv1-U),” 3GPP, TS 29.281, V15.7.0, Release 15, Jan. 2020.
“Numbering, addressing and identification,” 3GPP, TS 23.003, V16.3.0,
Release 16, Jun. 2020.

“freeSge,” https://www.free5Sgc.org, accessed: 2023-09-17.

“DPDK Kernel NIC Interface (KNI),”
https://doc.dpdk.org/guides/prog_guide/kernel_nic_interface.html,
accessed: 2023-09-17.

“iPerf: The ultimate speed test tool for TCP, UDP and SCTP,”
https://iperf.fr/, accessed: 2023-09-17.

(1]

(2]

module,”

(3]
[4]
(5]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

