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Clustering Coefficient of Wireless Ad Hoc
Networks and the Quantity of Hidden Terminals

Li-Hsing Yen, Member, IEEE,and Yang-Min Cheng

Abstract— Clustering coefficient has been proposed to char-
acterize complex networks. Hidden terminals may degrade the
performance of CSMA (carrier sense multiple access) protocol.
This letter computes analytically the clustering coefficient and the
quantity of hidden terminals for ad hoc networks. The former
turns out to be a constant and the latter is proportional to n3p2,
where n is the number of nodes andp is the link probability. The
connection between them has been established, and simulation
results confirm our analytic work.

I. I NTRODUCTION

NETWORKS of complex topology such as social networks
and the Internet were traditionally modeled as random

graphs [1]. In Watts and Strogatz’s pioneer work [2], they
recognized that many real systems are better described as
‘small-world’ networks rather than random graphs. Small-
world networks differ from random graphs in the tendency of
clustering, or cliqueness, which is the extent to which a node’s
neighbors are also neighbors to each other. Specifically, for
nodei havingmi ≥ 2 neighbors, at mostC(mi, 2) links may
exist between these neighbors. LetEi be the total number
of links that exist amongi’s neighbors. Nodei’s clustering
coefficient,ci, is defined to beEi/C(mi, 2). The clustering
coefficient of the whole network is the average of all individual
ci’s.

Clustering coefficients of random graph, regular network
[2], and small-world network have been well investigated [3].
To the best knowledge of the author, however, the clustering
coefficient of mobile ad hoc (multi-hop) networks (MANETs)
has not yet been known. In this letter, we have computed
analytically the clustering coefficient of MANET under the
assumption of uniform location model (Section II).

Hidden terminals refer to a pair of nodes that cannot sense
each other but have at least one common neighbor node [4].
Transmission collisions may occur between hidden terminals,
which cannot be prevented by carrier sensing. The existence
of hidden terminals thus degrades the performance of CSMA
(carrier sense multiple access) protocol substantially [5]. There
have been extensive schemes proposed to deal with hidden
terminal problems (e.g., RTS/CTS-like handshake [6], [7]).
However, little research has been done on quantifying hidden
terminals for a given MANET. We also have analyzed the
number of hidden terminals and found its connection to the
clustering coefficient (Section III).
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II. CLUSTERING COEFFICIENT OFMANET

Definition 1: An 〈n, r, l, m〉-network is a MANET that
possesses the following properties:

• The network consists ofn nodes placed in anl × m
rectangle area.

• The position of each node is a random variable uniformly
distributed over the given area.

• Each node has a transmission radius of a uniform length
r.

• A link exists between two nodes that are within the
transmission range of each other1.

A wireless node is said to cover a region if every point in
this region is within the node’s radio transmission range. A
node placed near system boundary will cover less system area
than expected, as part of its coverage region is outside the
system. This is referred to as border effects. To avoid clumsy
results brought by border effects, we use torus convention
[8], which turns the rectangle area into a torus such that the
region covered by any node is considered completely within
the system. Torus convention leads to the following property.

Lemma 1:The link probability (namely, the probability of
occurrence of any link) in an〈n, r, l, m〉-network with torus
convention isp = πr2/lm whenr ≤ min(l/2,m/2).

We must further restrict r’s maximum value to
min(l/3,m/3) when torus convention is used. The reason is
that two nodes that are not neighbors but have a common
neighbor can be distanced up to2r from each other. When
torus convention is used and the distance between them is
only slightly less than2r, they may be incorrectly recognized
as neighbors on the opposite direction ifr > min(l/3,m/3),
making our analysis imprecise.

The following two lemmas are essential in our derivation.
Lemma 2: [9] Given m random variablesRi, wherei = 1

to m, E[R1+R2+ · · ·+Rm] = E[R1]+E[R2]+ · · ·+E[Rm]
regardless whetherRi’s are independent to each other.

Lemma 3:The expected area jointly covered by two neigh-
boring nodes is

r2

(
π − 3

√
3

4

)
.

Proof: See Appendix.
Given any nodeA with m ≥ 2 neighbors, letN(A) =

{X1, X2, · · · , Xm} be the set ofA’s neighbors. For anyXi ∈
N(A), let N(A)i = {Xj |Xj ∈ N(A) ∧ Xj ∈ N(Xi)} be
the set of nodes that are both neighbors ofA and Xi. Note

1This is a simplified model as only path loss is taken into account.
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Fig. 1. Measured cluster coefficients in1000 × 1000 rectangle (a) with
torus convention and (b) without torus convention. Each value is averaged
over 100 experiments. Nodes having less than two neighbors are not taken
into account.

that |N(A)i| stands for the number of links connecting two
neighbors ofA such that one end of these links isXi. The
expected number of links connecting any two neighbors ofA
is

1
2
E

[
m∑

i=1

|N(A)i|
]

.

The expected value is divided by two because we count every
link twice (at both ends). By Lemma 2 we have

1
2
E

[
m∑

i=1

|N(A)i|
]

=
1
2

m∑

i=1

E [|N(A)i|] =
1
2

m∑

i=1

EA,i,

where EA,i denotes the expected value of|N(A)i|. By
Lemma 3, the ratio of the region jointly covered byA and
Xi to A’s coverage area is expected to be

1− 3
√

3
4π

.

It follows that

EA,i = (m− 1)

(
1− 3

√
3

4π

)

for any i. Therefore, the expected number of links connecting
any two neighbors ofA is

m(m− 1)
2

(
1− 3

√
3

4π

)
.

Dividing this value by the maximum number of links (i.e.
m(m− 1)/2) yields the expected clustering coefficient.

Theorem 1:The network clustering coefficient in an
〈n, r, l,m〉-network is expected to be a constant

c = 1− 3
√

3
4π

.

We conducted simulations to confirm the accuracy of this
theorem (See Fig. 1). The measured clustering coefficient
data with torus convention have mean 0.5820 (with standard
deviation 0.0313), very close to the theoretical value. The
clustering coefficient without torus convention is also close
to the predicted value but increases slightly withr (mean
= 0.6492, standard deviation = 0.0656). Observe the little
raise of the measured value with torus convention whenr >
min(l/3,m/3).
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Fig. 2. Number of HT-triples in1000 × 1000 rectangle. Each value is
averaged over 100 experiments. (a) Theoretical result. (b) Measured result
with torus convention. (c) Estimation error of (a) with respect to (b). (d)
Measured result without torus convention.

III. QUANTITY OF HIDDEN TERMINALS

Definition 2: For any three nodesX, Y , and Z, an HT-
triple 〈X, Y, Z〉 is formed if bothX andZ can communicate
with Y but they cannot reach each other.Y is said to be the
joint nodeof the HT-triple.
〈X, Y, Z〉 forms an HT-triple ifY located withinX ’s coverage
region andZ located within Y ’s coverage region but not
within X ’s. By Lemmas 1 and 3, the probability of HT-triple
〈X, Y, Z〉 is

πr2

lm
×

πr2 − r2
(
π − 3

√
3

4

)

lm
= (1− c)p2. (1)

Theorem 2:The total number of HT-triples in an
〈n, r, l,m〉-network is expected to be

η = 3
(

n
3

)
(1− c)p2 =

1− c

2
n(n− 1)(n− 2)p2.

Proof: There areC(n, 3) ways to select three nodes
from n nodes without order. Any selection may yield three
possible HT-triples, each corresponding to a distinct joint
node (〈X, Y, Z〉 forms an HT-triple whenever〈Z, Y,X〉 does
and vise versa, so they are treated as one unique HT-triple).
Although some of these HT-triples may be correlated, the
expected number can still be computed (thanks to Lemma 2).

Note that η ∝ n3p2. Fig. 2 compares theoretical result
estimated by Theorem 2 with measured values obtained from
simulations. Fig. 2(c) shows error of the theoretical estimation,
where the error is defined to be

theoretical value−measured value
measured value

.

The error is almost negligible except for the smallestn andr,
where the measured value approaches zero. There is also rather
high error whenr > 350 with torus convention. The measured
result obtained by not using torus convention follows the same
trend as the theoretical estimation, but with a different scale.
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Fig. 3. Two circles intersect each other.

IV. CONCLUSIONS

We have formulated the clustering coefficient of MANETs,
which turns out to be a constant with torus convention. The
number of hidden terminals in a MANET is proportional to
n3p2, where n is the number of nodes andp is the link
probability. Simulation results have confirmed the accuracy
of our computation.
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APPENDIX

Suppose that two nodes of transmission radiusr located
at O and O′ are neighbors, with the distance between them
X ≤ r (X is a random variable). We want to calculate the
expected area of the lens-shaped region that is jointly covered
by these two nodes. LetA andB be two distinct intersecting
points of these two circles (refer to Fig. 3). The area of each
half of the “lens” is equal to the area of sectorOAB minus
the area of triangleOAB. Let θ = 6 AOB be the central angle
given X, where2π/3 ≤ θ ≤ π. We have

X = 2r cos(θ/2).

The area of triangleOAB is
[

2r sin
(

θ
2

)
X
2

2

]
= r2 sin

(
θ

2

)
cos

(
θ

2

)
=

r2 sin θ

2
.

So the area of the lens is

2
[
πr2θ

2π
− r2 sin θ

2

]
= r2(θ − sin θ).

Let F (x) be the probability distribution function (p.d.f.) of
X. Since nodes are uniformly distributed,Pr[X ≤ x] is
proportional to the area of the circle having radiusx and being
centered atO. Therefore,

F (x) = Pr[X ≤ x] =
πx2

πr2
=

x2

r2
.

Sinceθ = 2 arccos(X/2r), the p.d.f. ofθ is

G(y) = Pr
[
2π

3
≤ θ ≤ y

]

= Pr
[
2r cos

y

2
≤ X ≤ r

]

= F (r)− F
(
2r cos

y

2

)
= −2 cos y − 1.

It follows that the probability density function ofθ is g(y) =
G′(y) = 2 sin y. Therefore, the expected area of the lens-
shaped region that is jointly covered byO andO′ is

∫ π

2π
3

r2(θ − sin θ)(2 sin θ)dθ = r2

(
π − 3

√
3

4

)
.


