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Abstract—In recent decades, unmanned aerial vehicles (UAVs)
have been widely adopted such as serving as flying base stations.
Compared to traditional solutions, the deployment of UAVs
is fast and low-cost. However, due to UAVs’ limited energy
capacity, efficiently utilizing UAVs’ energy is a matter of concern.
One solution is to use rechargeable UAVs, but the challenge of
charging schedule comes in the wake of it. In this paper, this
problem is modeled as a non-cooperative game where a UAV
can choose a strategy in order to maximize its payoff. Also, we
have proved that the proposed game is an exact potential game
(EPG) which ensures a Nash equilibrium (NE) with best-response
dynamics. Numerical results show that the proposed algorithm
has a larger coverage ratio and is more flexible than other
algorithms in most environments; hence, a better performance.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are highly mobile and
flexible. While deploying sensing or communication services
over a large area, UAVs have an advantage over traditional
solutions such as convenient and low-cost deployment as base
stations. Additionally, without a person on board, UAVs can
act autonomously or be controlled remotely. Thus, UAVs are
embraced in wireless communication as wireless base stations
[1], [2]. For example, UAVs can be an ideal solution to provide
network service over a area [1]. And when it comes to a
natural disaster or a military activity occurs that destroys the
network infrastructure, a temporary network environment can
be quickly set up by deploying UAVs. Moreover, in [3], UAVs
are used to collect information in inaccessible areas and an
approach is proposed to support crowdsourcing missions.

Although UAVs have many benefits, owing to UAVs’ lim-
ited energy capacity, energy consumption is one of the chief
factors that impacts the deployment of UAVs. For this reason,
many energy-aware designs (e.g., path planning [4], [5] and
transmissions [6], [5]) have been proposed to improve energy
efficiency of UAV.

Yet another way to prolong UAV service time is to exploit
rechargeable UAVs [7]. Many such applications demand two
or more UAVs, one active and the rest standby, to seamlessly
cover a specific spot or target. The objective is to minimize
the number of demanded UAVs [8], [9] or maximize the
battery level [10]. However, it may not be necessary or
possible to provide every spot or target in the serving area
with full, seamless coverage. We consider the problem of
using a fixed number of rechargeable UAVs to collectively
cover a target area where different subareas may demand
different levels of coverage intensity. The goal is to maximize

the accumulated coverage intensity before all UAVs fail for
battery exhaustion. The problem can be viewed in both spatial
and temporal domains. In spatial domain, we may not have
sufficient UAVs to provide a full coverage over the whole area,
but a sophisticated deployment plan of UAVs could provide
a highest possible coverage intensity. In temporal domain, a
UAV contributes no coverage when it flies back to a ground
charging station for energy replenishment. On the other hand,
a UAV no longer provides any coverage if it runs out of
its battery. Therefore, we need a trade-off between serving
and charging in scheduling UAV actions to maximize the
accumulated coverage.

In this paper, we see each UAV as an independent decision
maker and construct a distributed approach where each UAV
autonomously decides its own action (e.g., serving, charging,
and moving). We model this approach as a non-cooperative
game where UAVs as game players act to maximize their own
utilities. We carefully design the UAV utility function so that
UAVs can balance their serving-charging actions to maximize
the accumulated coverage. The main difference between our
proposal and prior work [11] is that our work allows heteroge-
neous coverage demands and considers overlapping coverage
among UAVs on the same spot. We show that the proposed
game is an exact potential game, so the convergence of player’s
decisions can be ensured by player’s best-response dynam-
ics. We also conducted simulations to evaluate the proposed
approach with various numbers of UAVs, charing stations,
charing slots, and coverage demands. The results show that the
proposed approach can have a higher accumulated coverage
than greedy approaches.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of related works, describes the
system models, and formulates the problems. Sec. III presents
the proposed approach and proves its stability. Sec. IV eval-
uates the performance of the proposed approach and explains
the result of each experiment. Sec. V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Related Work

There are several ways to charge UAVs [7]. Most researches
assumed UAV swapping, where a standby, full-charged UAV
takes over the duty of an energy-exhausted UAV when the
latter UAV must return to a charging station for battery
charging. For this scenario, multiple standby UAVs should
line up at the same charging station to provide long-term yet



seamless coverage services. The minimum number of UAVs
that are needed to provide a full, seamless coverage has been
studied [12], [13]. Some studies were to plan a flying tour
for a swarm of UAVs to visit a sequence of spots and then
return to a charging station. The goal is to maximize energy
efficiency [8], [9] or battery level [10] yet provide a seamless
coverage on these spots.

Unlike the above-mentioned studies, we do not demand
full, seamless coverage on very spot/subarea/target. Instead,
we aim to maximize the coverage provided by a fixed number
of UAVs for as long as possible considering both the benefit
and cost of energy replenishment. To this end, we propose a
distributed, game-theoretic approach. Although several game-
theoretic approaches have been proposed for UAV deployment
problems in the literature [14], [15], [16], these approaches
did not consider energy replenishment. Our work is most
closely-related with that proposed by Trotta et al. [11], who
studied UAV serving-charging schedule (which also involves
the deployment of UAVs to each spot) to ensure a satisfactory
coverage ratio. The goal is to maximize network lifetime,
which ends at time when the first UAV runs out of battery.
Besides a centralized algorithm, they also proposed a dis-
tributed game-theoretic approach. Though our approach shares
some similarities with that of Trotta et al., our approach differs
in that different subareas may demand different intensities of
coverages (i.e., the number of UAVs needed for a satisfactory
coverage) and that neighboring UAVs may have overlapping
coverage on the same subarea.

B. System Model

We assume p rechargeable UAVs P = {1, 2, . . . , p} and t
working time slots T = {1, 2, . . . , t}. For each UAV i ∈ P ,
let ki denote UAV i’s charging rate. Over the whole serving
area, A and M denote the set of coverage subareas and the
set of charging station locations, respectively. For each a ∈
A, da is the number of UAVs required to attain the service
coverage. Also, each charging station m ∈M has sm charging
slots. Here, p UAVs are considered aerial base stations which
provide access services to user equipment across A and charge
at the charging stations in M . Notice that a has at most one
charging station within; therefore, M ⊆ A.

Assuming that UAV i ∈ P is located in subarea a, it also
provide services for neighboring subareas rested on UAV i’s
coverage radius ri. Let la,a′ represent the distance between
subarea a and a′. At the first time slot, each UAV is always
located in the center of a subarea.

Alongside this, ∀j ∈ T and ∀i ∈ P , let bji denote UAV
i’s residual energy at time slot j and UAV i has its own
consumption rate. In our system, only serving and flying are
involved so we let efly

i and eser
i denote the energy consumption

of flying per unit of distance and the energy consumption of
serving in a time slot, respectively. The energy level must be in
[0, bmax

i ] while bmax
i is the capacity of UAV i’s battery. When

i decides to leave a subarea for another one, it must spend at
least one time slot on flying at the average flying speed v. As

a result, the maximum flying distance of i in a time slot is
defined as lmax

i = vρ while ρ is the length of a time slot.

C. Problem Formulation

We assume our UAVs will never crash or malfunction. For
subarea a ∈ A, a function O(a) is defined as follows:

O(a) =

{
1, a charging station in subarea a
0, otherwise (1)

Further, ∀i ∈ P,∀j ∈ T , we define three decision variables
xji , y

j
i and Locjia. xji = 1 if i is charging at time slot j;

otherwise, 0. yji = 1 if i is on duty at time slot j; otherwise,
0. Locjia = 1 if i is located in subarea a at time slot j;
otherwise, 0. Following Locjia, an additional auxiliary function
Loc(j, i) = a if and only if Locjia = 1. In addition, since an
UAV can neither serve nor charge while moving from one
area to another, xji + yji ≤ 1. Another auxiliary variable f ji
is defined as follows:

f ji =
∑
a∈A

(
|Locjia − Locj+1

ia |/2
)
∈ {0, 1} (2)

f ji = 1 if and only if UAV i changes to another subarea at
time slot j+ 1 while f ji = 0 if and only if UAV i stays. With
the above variables and functions, i’s battery power at time
slot j is calculated as below:

bji = bj−1i − yji e
ser
i + xjiki − f

j
i lLoc(j−1,i),Loc(j,i)e

fly
i (3)

On the right-hand side of (3), from the first to the fourth terms
are UAV i’s remaining power at time slot j − 1, the energy
that UAV i spends on serving, that gets from charging and
that spends on flying, respectively.

D. Objective Function

To start with an indicator variable zja defined as follows:

zja =

{
1,

∑
i∈Uj(a) y

j
i ≥ da

0, otherwise.
(4)

zja = 1 signifies that subarea a’s demand is met at time slot
j and U j (a) denotes the set of the UAVs which are able to
cover subarea a at time slot j as below:

U j (a) = {i | i ∈ P, a ∈ Covi (Loc (j, i))} , (5)

where Covi(a) = {a′ | a′ ∈ A, laa′ ≤ ri} is the set of the
subareas where UAV i can provide its service confined by its
coverage radius ri. Hence, to maximize the total profit from
all the subareas over the span of T , our objective function is
defined as follow:

max
xj
i ,y

j
i ,Locjia

∑
j∈T

∑
a∈A

daz
j
a (6)



subject to the following constraints:∑
a∈A

Locjia = 1,∀i ∈ P,∀j ∈ T (7)∑
p∈P

(xji × Locjia) ≤ sa,∀a ∈M,∀j ∈ T (8)

(yji × b
j
i )− ε× (yji − 1) > 0,∀i ∈ P,∀j ∈ T (9)

f ij × e
fly
i × lLoc(j,i),Loc(j+1,i) ≤ bji ,∀i ∈ P,∀j ∈ T (10)

xji + yji + f ji ≤ 1,∀i ∈ P,∀j ∈ T (11)

xji + yji + f ji ≥ 1−O(Loc(j, i)),∀i ∈ P,∀j ∈ T (12)

xji ≤ O(Loc(j, i)),∀i ∈ p,∀j ∈ T (13)
lLoc(j,i),Loc(j+1,i) ≤ lmax

i ,∀i ∈ P,∀j ∈ T (14)

Constraint (7) implies that an UAV can only appear in one
subarea in any time slot. Constraint (8) implies that the number
of UAVs charging at the charging station of subarea a must
not exceed sa. Constraint (9) specifies that if an UAV’s runs
down its battery, it cannot serve. Constraint (10) specifies that
only if UAV i’s remaining power is enough can it moves
from Loc(j, i) to Loc(j + 1, i). Constraint (11) signifies that
an UAV can either serve, charge, fly or stay idle. Constraint
(12) forbids an UAV to rest in a subarea without a charging
station. Constraint (13) signifies that an UAV cannot charge
in a subarea without a charging station. Constraint (14) limits
the maximum distance which an UAV can fly in a time slot.

III. PROPOSED MECHANISM

A. Game Mechanism

To model our problem into game theory, a non-cooperative
dynamic game Γ is defined as Γ = (P, {Zi}pi=1, {ui(·)}

p
i=1)

where all the UAVs in P are considered as players. Strategy
set Zi and strategy zi are defined as follows:

zi ∈ Zi = A× S × C,∀i ∈ P, (15)

where sets S and C are both {0, 1} which signify whether an
UAV is serving and is charging, respectively.

The utility function ui(z, j) = ui(zi, z−i, j) is UAV i’s pay-
off concerning an n-tuple strategy profile z = (z1, z2, ..., zp)
in time slot j. Note that each player is considered selfish and
only maximizes her/his payoff despite other players’, that is
to say, each UAV will take its best-response strategy. Next, we
will embark on two gain functions.

The serving gain function on subarea a is defined as below:

Ga(z, j) =

{
α, if

∑
i∈Uj(a) y

j
i ≤ da

0, otherwise.
(16)

The idea behind Ga(z, j) is that subarea a keeps luring other
UAVs into filling the vacancies with a profit α ≥ 0 until da
is reached. Once reached, Ga(z, j) = 0 so no further UAVs
would want to join a. Instead, they turn to other subareas
where the payoff > 0.

Next, the charging gain function is defined as below:

Ra(z, j) =

{
γ, if

∑
i∈P x

j
iLocjia ≤ sa

−θ, otherwise,
(17)

where θ and γ are both constants. The purpose of Ra(z, j) is
to strictly limit the amount of charging UAVs to sa. Any UAV
which attempts to charge in a full charging station will get a
penalty θ � γ. In the following, we will delve into the utility
function ui(z, j) case by case.

First, zi = (a, 1, 0) means i intends to serve subarea a and
ui(z, j) is defined as follows:

ui(z, j) =

η∑
τ=0

∑
a′∈Covi(a)

Ga′(z, j + Fi(k, a) + τ)

− νehov
i lka − θHj

i (k, a) ,

(18)

where k = Loc(j, i) and Fi (k, a) denotes the time it takes for i

to fly from subareas k to a. i will get
η∑
τ=0

∑
a′∈Covi(a)

Ga′(z, j+

Fi(k, a) + τ) from serving a and its neighboring subareas
in Covi(a) for exactly η time slots, where η is a constant.
However, the cost on flying from k to a is considered, which
is νehov

i lka. Besides, function Hj
i (k, a) tells whether or not

the battery is ample enough as follows:

Hj
i (k, a) =

{
1, if bji < ηeser

i + ehov
i lka + ehov

i D(a)
0, otherwise,

(19)
where function D(a) is the distance to the nearest charging
station from a. Hj

i (k, a) = 0 signifies the residual energy of i
in time slot j is enough to support both the coverage mission
in a and the travel to the nearest charging station. On the other
hand, i gets a penalty θ if its battery comes flat.

Second, when i opts for charging in subarea a, zi = (a, 0, 1)
and ui(z, j) is defined as follows:

ui(z, j) =

µ∑
τ=0

Ra(z, t+ Fi(k, a) + τ) + λB(j, i)

− νehov
i lka − θIji (k, a)− θΛj(i).

(20)

Over the span of µ time slots, i receives
µ∑
τ=0

Ra(z, t +

Fi(k, a) + τ) from charging in a. Also, function B(j, i) with
a weighting factor λ specifies the lower power i has, then the
larger B(j, i) is and the more i benefits from this term.

However, in order to make sure O(a) = 1 and i has enough
power to fly there, a function Iji (k, a) is defined as below:

Iji (k, a) =

{
1, if bji < ehov

i lka or O(a) 6= 1,
0, otherwise.

(21)

Furthermore, to prevent a fully-charged UAV from occupying
a charging slot, function Λj(i) is defined as below:

Λj(i) =

{
1, if bji = bmax

i ,
0, otherwise.

(22)

Third, i decides to rest in a if zi = (a, 0, 0) and uji (z) is
defined as follows:

ui(z, j) = β + λB(j, i)− νehov
i lka − θIji (k, a). (23)

It is worth noticing that if i can charge for µ time slots without

violating Constraint (8),
µ∑
τ=0

Ra(z, t + Fi(k, a) + τ) = µγ >



β > 0. In other words, i profits more from charging than
resting so it will not choose to rest unless the charging station
in a is full.

Finally, i will receive a penalty θ if it chooses zi = (a, 1, 1)
since i cannot charge and serve simultaneously.

B. Proof of Self-Stabilization

We will prove that our game is an exact potential game
(EPG) [17] which guarantees at least one Nash equilibrium
(NE), that is, ∀i ∈ P,∀zi ∈ Zi, ui(z∗i , z∗−i) ≥ ui(zi, z∗−i).

In order to achieve this, our game is decomposed into
three sub-games Γs = (P, {Zi}pi=1, {usi(·)}

p
i=1),∀s = 1, 2, 3.

u1i(z, j) =
η∑
τ=0

∑
a′∈Covi(a)

Ga′ (z, j + Fi(k, a) + τ) if zi =

(a, 1, 0); otherwise, 0. Also, u2i(z, j) =
µ∑
τ=0

Ra(z, j +

Fi(k, a) + τ) if zi = (a, 1, 0); otherwise, 0. As for u3i(z, j),
it is shown as below:

u3i(z, j) =

−νehov
i lka − θHj

i (k, a) , if zi = (a, 1, 0),

−νehov
i lka + λB (j, i)−

θIji (k, a)− θΛj(i), if zi = (a, 0, 1),

−νehov
i lka + λB (j, i)−

θIji (k, a) , if zi = (a, 0, 0),

−θ, if zi = (a, 1, 1),

(24)

Hopefully, we want to prove Γ1 and Γ2 are two congestion
games and Γ3 is a self-motivated game, which they are classes
of EPGs; hence, Γ is also an EPG.

Theorem 1: Suppose that G1 = (N, {Xn}n∈N , {ua}n∈N )
and G2 = (N, {Xn}n∈N , {ua}n∈N ) are two EPGs and the
exact potential functions are π1(·) and π2(·), respectively.
Let α, β ∈ R, the game G = (N, {Xn}n∈N , α{ua}n∈N +
β{ub}n∈N ) is also an EPG with exact potential function
απ1(·) + βπ2(·). [18]

First of all, we seek to equate Γ1 to a congestion game
defined as (P,A, {Zi}pi=1, {W1i(·)}pi=1). On the basis of
Equation (16), Ga(·) can be rewritten as follows:

Ga(z, j) = W1a (nsa(z, j)) =

{
α, if nsa(z, j) ≤ da,
0, otherwise,

(25)
where W1a (·) is subarea a’s payoff function and nsa(z, j) is
the number of UAVs that cover a, i.e.,

∑
i∈Uj(a) y

j
i .

Thus, the payment made by a at time slot j can be

interpreted as
nsa(z,j)∑
l=1

W1a (l). Summing up the payment of

every subarea a ∈ A leads to πser (z, j) as below:

πser (z, j) =
∑
a∈A

nsa(z,j)∑
l=1

W1a (l)

 . (26)

Evidently,
nsa(z,j)∑
l=1

W1a (l) and πser (z, j) fit the utility func-

tion and the exact potential function of a congestion game,
respectively.

Now by Theorem 1, since u1i(z, j) is obviously a linear
combination of

∑
a′∈Covi(a)

Ga′(·), Γ1 is proved to be a conges-

tion game and hence, an EPG. However, unlike traditional
congestion games, UAVs in Γ1 ask for future resources,
i.e., Fi(k, a) time slots before i actually arrives a from k,
i has claimed to serve a for η time slots. We let ε =
maxi∈P ;k,a∈A Fi(k, a) and consequently, exact potential func-
tion π1(z, j) of Γ1 is a linear combination of πser(z, j+ε+τ)
as follows:

π1(z, j) =

η∑
τ=0

πser(z, j + ε+ τ)

=

η∑
τ=0

∑
a∈A

nsa(z,j+ε+τ)∑
l=1

W1a (l)

 .

(27)

Similarly, Γ2 is proved the same way as Γ1 to be an EPG
with exact potential function π2(z, j) defined as follows:

π2(z, j) =

η∑
τ=0

∑
a∈A

nca(z,j+ε+τ)∑
l=1

W2a (l)

 . (28)

According to Equation (17), Ra(·) can be rewritten as follows:

Ra(z, j) = W2a (nca(z, j)) =

{
γ, if nca(z, j) ≤ sa,
−θ, otherwise,

(29)
where W2a (·) is subarea a’s payoff function and nca(z, j)
is the number of UAVs which charge in a, that is,∑
i∈Uj(a) Loc

j
iax

j
i .

Finally, Equation (24) tells us that utility function u3i(z, j)
in Γ3 solely relevant to its own battery so it is not affected by
other UAVs’ strategies, in consequence, it is a self-motivated
game.

All in all, by Theorem 1, Γ1,Γ2 and Γ3 are all EPGs with
their own exact potential functions, our proposed game Γ =
(P, {Zi}pi=1, {u1i}pi=1(·) + {u2i}pi=1(·) + {u3i}pi=1(·)) is also
an EFG, i.e., there exists at least one NE in our game.

C. The Proposed Approach

In our decentralized approach, each UAV i is an independent
decision maker and keeps a local strategy profile at time slot
j defined as zlocal

i,j . All the local strategy profile zlocal
i,0 ,∀i ∈ P

are initialized as z and the game starts from time slot j = 1.
Roughly speaking, in order for the game to converge, all

the UAVs must act sequentially. Thus, we equip each UAV i
a countdown timer Ti to avoid concurrent decisions and an
indicator Di to indicate whether or not i has multicasted its
strategy z

(j)
i at time slot j. When a new time slot j begins,

we set Ti a random value, update zlocal
i,j with zlocal

i,j−1 and set
Di false. If i receives a strategy from another UAV x, i may
change its strategy. Hence, besides updating its local strategy
profile zlocal

i,j [x] = z
(j)
x , i reset Ti a random value and Di false.



Once Ti expires, i first checks Di. If Di is false, it means
that at least one UAV has changed and multicasted its strategy
before Ti expires, i.e., the game has not yet reached a NE.
Under the circumstances, i calculates its best response based
on zlocal

−i,j and replaces its current strategy z
(j)
i with this best

response. Afterwards, i multicasts z(j)i and resets Ti a random
value and Di true. On the other hand, if Di is true, it means
that no other UAV has changed its strategy. The current
strategy is assumed to be the best so i carries out z(j)i .

IV. SIMULATION RESULTS

Table I shows the major simulation parameters with default
setting. We first analyze the various factors in the objective
function and Table II shows the most representative values in
our simulation.

TABLE I: Parameter Setting

Parameter Default Value
The length of a time slot ρ 5 s
The number of subareas 61
The hexagon side length 25 m
The whole area size 99000 m2

The coverage demand of a subarea da, ∀a ∈ A 1
The number of charging stations 1
The number of charging slots sa, ∀a ∈M 9
The number of UAVs 40
The coverage radius of a UAV ri 50 m
The flying speed of a UAV vi 10 m/s
The maximum energy budget bmax

i 200 kJ
The average energy consumption for serving eser

i 1 kJ/time slot
The average energy consumption for hovering ehov

i 0.025 kJ/m
The average charging rate for UAV ki 0.25 kJ/time slot

TABLE II: Simulation parameters in utility function

Name Setting 1
α 10
γ 100
β 5
µ 5
η 5
ν 0.5
λ 30
θ 100000

A. Environment Factors Analysis

In order to assess the performance, we compare our ap-
proach with a greedy algorithm, where a UAV serves, switches
between serving and charging or charges if its residual energy
is higher than 80%, between 20% to 80% or lower than 20%.
Also, we consider two variants of the greedy algorithm, which
are greedy tight and greedy loose, respectively. In greedy tight,
a UAV either serves more than 6 subareas or none; in greedy
loose, a UAV either serves more than 2 subareas or none.
To further analyze, we consider two settings in Table III. We
measured coverage ratio, the ratio of the resulting accumulated
coverage intensity to the largest possible result.

1) Number of Charging Slots: In Fig. 1, Setting 1 appar-
ently outperforms Setting 2 when the number of charging slots
is small. In Setting 1, α is small. Because an UAV does not
benefits much from serving, it would not wait to charge until

TABLE III: Simulation parameters in utility function

Name Setting 1 Setting 2
α 6.25 18.75
γ 25 25
β 5 200
µ 20 20
η 8 8
ν 100 60
λ 350 200
θ 100000 100000
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Fig. 1: Coverage ratio with versus the number of charging slots

its battery is almost flat. On the contrary, α is larger in Setting
2 so an UAV would serve as long as it possibly could. When
there are few charging stations, Setting 2 may lead to intense
competition over charging stations and thus, the performance
is worse. On the other hand, when there are ample charging
slots, UAVs in Setting 1 instead charge too frequently and
hence worse performance. Most importantly, when the number
of charging slots is small, Setting 1 is the best and when
it increases, Setting 2 becomes the best. Thus, in response
to any number of charging slots, our proposed approach can
outperform greedy by adjusting α.

2) Coverage Demand in Cluster Distribution: We use 2D
Gaussian distribution to generate coverage demands so that
coverage demands are clustered in some hot-spot regions as
shown in Fig. 2. We randomly choose tne center locations
for six clusters and gradually increase the standard deviations
along both the x-axis and the y-axis.

Fig. 3 shows that Setting 2 outperforms the greedy algo-
rithm. Under lower standard deviation, there are less than 7
clusters; therefore, UAVs in greedy tight does not serve since
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Fig. 2: Cluster distribution with total 60 coverage demands distributed in 6
clusters
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Fig. 3: Coverage ratio with increasing standard deviations in cluster distribu-
tion
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Fig. 4: Coverage ratio with increasing number of UAVs in cluster distribution
with 30 standard deviation

they serve either more than 7 subareas at once or none.
Next, we fix the standard deviation at 30. Both Fig. 4 and

Fig. 5 are similar to the results under uniform distribution. In
consequence, even if we change the distribution, the impacts
of the number of charging slots and the number of UAVs are
almost the same as in the uniform distribution.

V. CONCLUSIONS

In this paper, so as to maximize UAV swarm’s service
coverage, we model the problem of distributed coverage and
charging scheduling as a game. We not only put forward a
decentralized solution to solve the problem but also prove
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Fig. 5: Coverage ratio with increasing number of charging slots in cluster
distribution with 30 standard deviation

that the proposed game is an EPG such that our game always
converges to a NE.

In the future, we shall devote to a mechanism where
our game can adapt to environment changes by dynamically
adjusting the parameters in the utility function. Moreover, we
will consider a non-linear energy consumption model which
fits real-life situations more.
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