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Abstract—Unmanned aerial vehicle (UAV) nowadays are inex-
pensive and can serve as a robust communication platform in
the sky. Using UAV as access point can be particularly helpful
for wireless terminals in areas where terrestrial infrastructure is
absent or damaged. The problem is how to deploy a fleet of UAVs
to efficiently cover scattered terminals while not wasting too much
energy on the deployment process. In this paper, we propose two
autonomous service deployment approaches for UAVs based on
game theory. In these approaches, UAVs adaptively adjust their
locations based on local information rather than instructions
from a control station. Experimental results show that the
proposed approaches outperform existing approach in terms of
average spectral efficiency and UAV travelling distance.

I. INTRODUCTION

Due to high mobility and affordable price, unmanned aerial
vehicle (UAV) has found many civilian applications in the past
decade. These applications include surveillance and monitor-
ing tasks (e.g., traffic monitoring), search-and-rescue, remote
sensing or data collection from remote sensors [1], and deploy-
ment of a micro cloud infrastructure in the sky [2]. UAVs can
also be used to extend communication capability by relaying
wireless signal, disseminating or collecting information, and
providing wireless coverage within a serving area [3].

Wei et al. [4] analyzed the capacity and delay of UAV
networks, where a number of UAVs are used to monitor three-
dimensional environment. Fadlullah et al. [5] considered a
swarm of UAVs which are remotely controlled by a control
station to form a multi-hop network. They proposed a scheme
to enhance the probability of link connections and coverage
area by dynamically adjusting the distance between the centers
of trajectories of two neighboring UAVs.

This paper considers using UAV as access point to provide
wireless access service to terminals on the ground. This
is particularly useful in dangerous or inaccessible areas, or
when network infrastructure is temporarily not functional or
damaged due to attack or natural disaster. We study how to
efficiently and effectively deploy a fleet of UAVs serving as
access points in an area of interest.

A control station that has the visibility over all terminals
may calculate the optimal deployment of UAVs and then
dispatch each UAV to a designated serving spot. However,
such a scheme may not be feasible or scalable. Therefore, we
consider an autonomous approach for UAV deployment, where
each UAV independently finds and moves to a location to
serve ground terminals without human intervention or external
instructions. The objective is two-fold: to minimize energy

consumption of UAVs and to maximize downlink (from UAV
to terminal) spectral efficiency. Energy consumption of a UAV
includes energy spent on communication and maneuver. Spec-
tral efficiency depends on aggregated signal-to-interference
ratios (SIRs) experienced by served terminals. Since we are
primarily concerned with path loss when gauging SIRs, the
efficiency heavily depends on relative distance between UAV
and terminal.

Our work is most closely related to Gruber’s [6], which also
proposed an autonomous navigation scheme for UAV serving
as access points. Both approaches demand no coordination
among UAVs and thus save energy on inter-UAV communica-
tion. A UAV in Gruber’s scheme attempts moving toward some
location where the average SIR experienced by all terminals
associated with it is maximized. However, as UAV cannot
know the resulting SIR value at the next spot before it actually
moves to that spot, UAV in fact decides its next move based on
the spectral efficiency gain of its previous move. It maintains
its current direction if there is a efficiency gain and changes
to a arbitrary direction otherwise.

Gruber’s work has two limitations. First, it does not consider
energy consumption on navigation. As a result, UAV may
circle around a small region without any significant improve-
ment on spectral efficiency. Second, his work assumed that
every terminal is able to detect signal from any UAV in the
deployment field when gauging its SIR value. This is not
possible in practice when the terminal is very far away from
UAV. In that case, a UAV may detect no efficiency gain and
thus waste time and energy on wandering around a region.

The proposed approach overcomes the above-mentioned
limitations by two techniques. First, a UAV stops moving
when it realizes that no performance improvement can be
gained by further move. Second, when a UAV detects no
signal from any terminal, it randomly selects a target desti-
nation to move toward. If it detects any terminal during the
movement, it starts moving toward the terminal and attempts
to increase spectral efficiency. We formulate a generic game
to model the behaviors of UAVs, and derive two practical
schemes from the generic game model. One scheme attempts
reducing the distance from UAV to some associated terminal
without increasing those to others. The other scheme attempts
minimizing the average distance from UAV to all terminals
associated with it. Simulation results show that both schemes
outperform Gruber’s approach in terms of UAV travelling
distance. Concerning spectral efficiency, one of the derived



scheme performs the best.
The rest of this paper is organized as follows: Sec. II reviews

related literature. Sec. III presents the proposed game-theoretic
approaches to UAV deployment problem. Sec. IV presents
experimental results. The last section concludes this work.

II. RELATED WORK AND BACKGROUND

The idea of using UAV as access point is not new. Koulali
et al. [7] proposed an autonomous beacon scheduling scheme
for UAVs to avoid possible overlapping beacon intervals with
neighboring UAVs. Lyu et al. [8] proposed a centralized
UAV dispatch algorithm that attempts to serve a collection
of terminals with known locations using a minimal number of
UAVs. Gruber [6] proposed a decentralized UAV placement
algorithm inspired by bacterial chemotaxis for a fixed number
of UAVs to serve terminals with unknown locations. The goal
of the deployment is to maximize average downlink spectral
efficiency.

Assume that we have n UAVs numbered from 1 to n. For
a terminal t that is associated with UAV i, the SIR from i to
t is defined as

SIRi,t =
Ri,t∑
j 6=iRj,t

, (1)

where Rk,t is the received signal strength (RSS) of signal from
UAV k measured at t. As [6], we ignore shadowing and fading
effects. Therefore, the value of Rk,t is the transmission power
of UAV k subtracted by the path loss from the UAV to the
terminal.

Let d and θ be the distance and elevation angle, respectively,
between a UAV u and a terminal t. Gruber [6] used (2) to
calculate the mean path loss (in dBm) from the UAV to the
terminal, taking into consideration of both d and θ.

PL =

{
98.4 + log(d) + 2.55+θ

0.0594+0.0406θ , if 0◦ ≤ θ < 10◦,

98.4 + log(d) + −94.2+θ
−3.44+0.0318θ , if 10◦ ≤ θ ≤ 90◦.

(2)
We assume that each terminal is associated to the UAV with

the highest SIR value (as in [6]) and reports its SIR to the
UAV via a reverse link. Let Ωi be the set of terminals that
are currently associated with UAV i. The average downlink
spectral efficiency of UAV i is [6]

SEi =

∑
t∈Ωi

log2(1 + SIRi,t)
|Ωi|

. (3)

The performance of UAV deployment algorithm is measured
by the average spectral efficiency as defined in [6].

Λ =

∑n
i=1 SEi · |Ωi|

m
, (4)

where m is the total number of terminals in the deployment
field.

One limitation of Gruber’s work is that it did not consider
minimum detectable signal (MDS). In practice, a receiver
can only detect signal significantly stronger than background
noise. Since in Gruber’s scheme, a UAV has to make random
movements when no terminal is associated to it, UAVs may

Fig. 1. A scenario with one terminal and three UAVs

make a lot of random movements concerning the effect of
MDS. In other words, the performance of Gruber’s scheme
may degrade when the effect of MDS is taken into account.

For example, consider the scenario shown in Figure 1, where
there are three UAVs (U1, U2 and U3) and one terminal (T1).
Suppose that the transmission power of each UAV is fixed
to 46 dBm and the minimal detectable signal strength is -
100 dBm. By (2), R1,1, R2,1, and R3,1 will be -106.9, -120.4
and -126.1 (all in dBm), respectively. In Gruber’s work, T1
will be associated with U1 with SIR1,1 = 17.6. However,
because all the RSS values are below -100 dBm, T1 in practice
probably detects no signal at all and thus is associated to no
UAV.1 Consequently, all UAVs in Figure 1 must make random
movements. In contrast, Gruber’s work assumes that U1 can
maintain its moving direction.

III. THE PROPOSED APPROACH

A. Problem Definition and the Game Model

UAVs are mobile while terminals are assumed stationary
or quasi-stationary. A terminal is associated to no UAV if it
detects no UAV with SIR value equal to or above 0.1. If there
is at least one UAV with SIR value equal to or above 0.1,
the terminal selects a UAV with the highest SIR value. The
above-mentioned setting was originally stated in Gruber [6].

To decide whether to keep the current moving direction, a
UAV in [6] must have the knowledge of the SIR values of
all the terminals associated with it. In contrast, the proposed
approach does not demand that knowledge from UAVs. Only
after the deployment is the spectral efficiency measured. We
do, however, require that each UAV know the distance from
it to every terminal associated with it. We assume that the
distance is calculated based on the location of the terminal.
We assume that terminals inform the UAV they choose to
associate via a uplink channel. During or after association,
terminals then pass their geographic location information (.i.e.,
coordinates) to the UAV through uplink channel.

We assume m terminals and n UAVs deployed in an
r × r area. Let T = {t1, t2, . . . , tm} be the set of termi-
nals, P = {p1, p2, . . . , pn} be the set of all UAVs, and
L = {l1, l2, . . . , ln} be the set of locations corresponding
to P , where li = (i.x, i.y, i.z) represents pi’s coordinate in
three-dimensional space. We define UAV terminal coverage
game as follows. P is the set of players. The strategy set for

1In this case, T1 detects no signal from a UAV once its distance to the
UAV is larger than 15 km.



player represents the set of possible next locations. Given that
the current location of player pi is li, the strategy set for pi
is Si = {si|si = li + oi, oi ∈ O}, where O = {(a, 0, 0),
(−a, 0, 0), (0, a, 0), (0,−a, 0), (0, 0, 0)} is the set of feasible
movements (a is a constant). Note that UAVs do not change
their altitude because Gruber [6] reported that UAV has best
spectral efficiency with altitude fixed at 300 m.

A strategy profile C = {s1, s2, . . . , sn}, where si ∈ Si, is a
tuple of strategies, one from each player. For each pi, 1 ≤ i ≤
n, ui(C) is the utility function defined for pi that determines
the payoff of pi with respect to a specific strategy profile C.
The goal of UAV placement game G = [P ; {Si}ni=1; {ui}ni=1]
is to maximize the utility function of each player. To motivate
each player to increase the number of associated terminals and
also spectral efficiency, a possible definition of ui(C) is

ui(C) = |Ωi| × SEi. (5)

In this way, Λ is proportional to the social welfare (i.e.,∑
i ui(C)) of the game.
A problem with (5) is that a player may be in a situation

where |Ωi| = 0 for every strategy si ∈ Si. In this case, the
player is unable to benefit from altering its strategy and may
have to make an inefficient movement like random walk. To
deal with this situation, we use the notion of random waypoint
(RWP) [9] to escape from the current spot li. The idea is
to let the player randomly pick up a new destination.2 The
player then moves toward that destination with unit step size
a. If the player finds some terminal association before reaching
the destination, the player aborts the RWP process and makes
subsequent moves based on its utility function. If the player
does not have any terminal association before reaching the
destination, it repeats the above RWP process until at least
one terminal is located.

Another problem with (5) is that to evaluate the payoff of
some strategy si ∈ Si, pi has to know the values of |Ωi| and
SEi at the next spot si. However, the only way to get this
information is through the feedback sent by terminals that are
associated with pi when pi is at si. This means pi needs future
information to make a correct decision. In the following, we
show two variants of the game which make decisions based
on current information.

B. Pareto Improvement Approach (PIA)

In this approach, player pi only cares about the distance
from it to every terminal currently associated with it. More
specifically, UAV only considers strategies that decrease its
distance to some associated terminal without increasing the
distance to any associated terminal. If more than one strategies
are qualified, UAV choose the one that yields the most distance
reduction. Formally, let dist(s, t) be the distance from some
spot s to the location of terminal t. Let D = (d1, d2, . . . , dk)
and D′ = (d′1, d

′
2, . . . , d

′
k) be two k-tuples and define D ≺ D′

if ∀i, 1 ≤ i ≤ k : di ≤ d′i and ∃j, 1 ≤ j ≤ k : dj < d′j . Let

2When picking up the destination, the z-coordinate remains unchanged be-
cause altering z-coordinate does not help much in finding terminals compared
with the change of x or y coordinate.

Fig. 2. RSS with respect to the transmitter-receiver distance

Ωi(s) be the set of terminals associated with pi when pi is
at some spot s. Assume that the current location of pi is li
and, without loss of generality, that Ωi(li) = {t1, t2, . . . , tk}.
Let D(s) = (dist(s, t1), dist(s, t2), . . . , dist(s, tk)). In this
approach, the strategy set of pi is Si = {si|si ∈ Si, D(si) ≺
D(li)}. If |Si| > 1, pi chooses si ∈ Si that maximizes∑

1≤j≤k(dist(li, tj)− dist(si, tj)).
If there is only one UAV in the system, the UAV will

eventually reach the location where it cannot further reduce
the distance to any associated terminal. During its movement,
it may attract additional associations from other terminals.
However, as terminals already associated cannot change or
lose their associations and the number of terminals is finite,
the stability of PIA is guaranteed.

Now consider the interactions among UAVs. It is possible
that a terminal originally associated with UAV pi changes its
association to UAV pj if the SIR with pj is higher than that
with pi after pi’s and pj’s movements. It is a concern whether
the dynamics of association change cause instability of the
scheme.

To see the stability of PIA, consider first the case that pi and
pj do not move at the same time. As illustrated in Figure 2,
Ri,t is strictly increasing as the distance between pi and t
decreases. Therefore, after pi’s movement, all terminals in Ωi
are still associated with pi and get shorter distances to pi.

Now consider the case when two UAVs pi and pj move at
the same time (during which all other UAVs do not change
their locations). For any terminal that is still associated with
pi after the movements, its distance to pi decreases. For any
terminal t that changes its association from pi to pj after
the movements, Lemma 1 indicates that Rj,t > Ri,t and
thus dist(sj , t) < dist(si, t) after the movements. Suppose
that pi moves from li to si. Because dist(si, t) ≤ dist(li, t),
the distance of t to the associated UAV decreases after the
movements (despite t’s change of association).

Lemma 1: For any terminal t and any two UAVs pi and pj ,
SIRi,t > SIRj,t if and only if Ri,t > Rj,t.

Proof: (skipped due to space limitation)
Therefore, regardless whether terminals change their asso-

ciations, any UAV’s movement can only reduce a terminal’s
distance to the UAV it is associated with. Let us define distance
vector to be an m-tuple that represents the distance from each



terminal to its associated UAV.3 PIA ensures that every move
taken by a UAV always causes a Pareto improvement (i.e.,
a distance reduction on some terminal without any distance
increase on any others) on the distance vector. This is the
reason why PIA is named so.

However, the claim of Pareto improvement holds only if
no associated terminal ever becomes unassociated (i.e., asso-
ciated with no UAV) due to UAV’s movements. Theoretically
speaking, a terminal associated with some UAV may become
unassociated due to increased interference from other UAVs.
However, this can only occur to terminals on the boundary of
the UAV’s service coverage area. We treat this as a temporary
disturbance in the way to stability.

C. Minimize Average Distance to Terminals (MAD2T)

Although PIA guarantees stability, its performance is not de-
sirable. Thus, we propose another approach which minimizes
the average distance to served terminals. Given that UAV pi is
at some spot s, let avgdi(s) be the average distance between s
and the location of each terminal associated with pi. Formally,
assuming that the current location of pi is li,

avgdi(s) =

∑
t∈Ωi(li)

dist(s, t)

|Ωi(li)|+ 1
. (6)

Note that pi is unable to predict the actual set of terminals that
will make associations with it when it comes to si. That is the
reason why we use Ωi(li) instead of Ωi(si) in the definition
of avgdi(s).

In this approach, the strategy set of pi is Si = {si|si ∈
Si, avgdi(si) < avgdi(li)}. If |Si| > 1, pi chooses si ∈ Si
that maximizes avgdi(li)− avgdi(si).

Note that every feasible move in PIA is also a feasible move
in MAD2T, but the converse does not hold generally. The
reason is that pi using MAD2T may reduce the distance to
some terminal at the cost of increasing some other’s (as long
as the average distance is decreased). This is not allowed in
PIA.

IV. SIMULATION RESULTS

We studied the performance of our approach and the work in
[6] (called Bio-inspired hereinafter) by simulations. We used
20 UAVs with initial locations set to the same as that of [6].
We considered two different terminal distributions, namely,
uniform distribution and clustered distribution, and varied the
area size and the number of terminals. The result of each
configuration was averaged over 50 trials. Each trail consists
of 10,000 iterations (as in [6]) and every UAV makes a single
move in each iteration. The order in which UAVs move was
random. The moving distance (step size) for UAV in one
iteration was 0.1 km.

We measured two metrics: average spectral efficiency and
total traveling distance. The former measures the coverage
quality of UAVs while the latter measures the cost.

3A terminal associated with no UAV has a distance of ∞.

(a) (b)

Fig. 3. (a) Average spectral efficiency versus the number of total terminals.
(b) Percentage of served terminals versus the number of total terminals.

A. Results With Uniform Distribution

We first randomly placed 360 to 3600 terminals in a 60 ×
60 km2 deployment area by uniform distribution. Note varying
the number of terminals effectively changes the density of
terminals.

Figure 3(a) shows how the average spectral efficiency
changes with the number of terminals. Because UAV’s service
coverage is fixed, the expected number of terminals within
the coverage area increases with the terminal density. This
explains the trend of increasing average spectral efficiency for
Bio-inspired and MAD2T. However, UAV using PIA does
not ever attempt increasing the distance to an associated
terminal to increase spectral efficiency or potentially attract
more terminal associations. For this reason, UAV using PIA
may get trapped in a spot when the first time a terminal is
associated with it. Consequently, UAV does not serve more
terminals and thus we got lower average spectral efficiency
with more terminals. Fig. 3(b) showing the percentage of
served terminals confirms this effect.

MAD2T minimizes the average distance to all associated
terminals. This implies that UAV using it tends to move toward
the direction where the number of terminals is comparatively
high. This explains why MAD2T performs better than Bio-
inspired. The performance gap between MAD2T and Bio-
inspired decreases when the number of terminals increases.
The reason is that the percentage of served terminals starts
to saturate after sufficiently many terminals are placed. This
explains why the growth rates of average spectral efficiency
in both approaches become smooth.

Concerning UAV travelling distance, PIA performed the
best while Bio-inspired performed the worst. The reason is that
UAVs using Bio-inspired make a move in every iteration even
if no further improvement can be made. The travelling distance
with MAD2T slightly increased with increased number of ter-
minals. The reason is that increasing the number of terminals
also increases the number of terminals receiving signals from
UAVs when UAVs update their locations. Therefore, it takes
a longer time for UAVs to stabilize.

B. Results With Clustered Distribution

We used clustered terminal distribution to test the robustness
of deployment schemes when there may be no terminals close
enough to guide the movements of UAVs. We placed 360



Fig. 4. Terminal distribution pattern in 60× 60 km2 deployment area

(a) (b)

Fig. 5. (a) Average spectral efficiency versus area size. (b) Percentage of
served terminals versus the area size.

terminals based on the distribution pattern shown in Fig. 4.
We varied the size of the deployment area and scaled up the
coordinates of terminals and UAVs to be proportional to the
area size.

Figure 5(a) shows the average spectral efficiency with
respect to the area size. Bio-inspired performed well in
20 × 20 km2 deployment area because therein 20 UAVs
could effectively cover the entire deployment area. For that
reason, spectral efficiency gain could always be measured
and used to guild the movements of UAVs. As a result, Bio-
inspired outperformed MAD2T. When the area size increases,
UAVs using Bio-inspired might not successfully find nearby
terminals to guide their movements. This can be confirmed
with Fig. 5(b). Even though UAVs using PIA served more
terminals than those using Bio-inspired, many terminals in
the former case might not have good signal quality, as shown
in Fig. 6. This justifies the result that the average spectral
efficiency with PIA was worse than that with Bio-inspired
when the area was not larger than 40× 40 km2.

Concerning travelling distance, Bio-inspired still performed

Fig. 6. Average SIR of served terminals with respect to the area size

(a) (b)

Fig. 7. (a) Average spectral efficiency versus the degree of clustering. (b)
Percentage of served terminals versus the degree of clustering.

the worst. PIA and MAD2T performed nearly the same. Both
incurred worse result with increased area size.

We also used two-dimensional Gaussian distribution with
five given centers as shown in Fig. 4 to generate terminal
locations. We adjusted the standard deviation of the distri-
bution to control the degree of clustering and observed how
the performance was affected. Fig. 7 shows how the average
spectral efficiency and the percentage of associated terminals
change with the standard deviation when 360 terminals was
placed in a 60× 60 km2 area.

V. CONCLUSIONS

We have proposed two approaches to autonomous UAV de-
ployment. One approach, PIA, seeks for Pareto improvements
on the distance from UAV to each associated terminal. The
other approach, MAD2T, attempts to minimize the average
distance from UAV to all terminals associated with it. We have
conducted simulations using both uniform and cluster terminal
distributions to evaluate the performance of the proposed
approaches. The result indicates that, in both distributions,
MAD2T performed the best in terms of average spectral
efficiency while PIA performed the best in terms of travelling
distance.
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