
IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 1

Optimal Storage Placement for Tree-
Structured Networks with Heterogeneous

Channel Costs
Ge-Ming Chiu, Member, IEEE, Li-Hsing Yen, Member, IEEE, and Tai-Lin Chin, Member, IEEE

Abstract—This work considers data query applications in tree-structured networks, where a given set of source nodes generate
(or collect) data and forward the data to some halfway storage nodes for satisfying queries that call for data generated by all
source nodes. The goal is to determine an optimal set of storage nodes that minimizes overall communication cost. Prior work
toward this problem assumed homogeneous channel cost, which may not be the case in many network environments. We
generalize the optimal storage problem for a tree-structured network by considering heterogeneous channel costs. The
necessary and sufficient conditions for the optimal solution are identified, and an algorithm that incurs a linear time cost is
proposed. We have also conducted extensive simulations to validate the algorithm and to evaluate its performance.

Index Terms—Algorithm/protocol design and analysis, Information Storage and Retrieval, Network problems.

—————————— ——————————

1 INTRODUCTION

REE topology is a network architecture commonly
adopted by distributed networking applications due
to its simple routing rules and ease of management.

In addition, tree structure provides a baseline connection
paradigm for a given set of communicating nodes. For
instance, operations of wireless sensor networks are fre-
quently based on tree topology.

Data query is one of the most important services for
many networking applications. In such a service, a given
set of nodes, called source nodes, are responsible for col-
lecting or generating data periodically or in response to
certain type of events. These data are required for an-
swering queries issued by requesters in the network. In
particular, a query often calls for data generated by all
source nodes. For example, a query may ask for average
of the collected temperature readings in certain timeframe
in a wireless sensor network.

If each source node places its data in its own storage, a
requesting node has to retrieve needed data from all
source nodes, in order to satisfy its query demand. This is
called pull mode of data query [8]. Alternatively, source
nodes may forward their data to all possible requesters
every time they generate new data, which is called push
mode [8]. In general, source nodes may forward their da-
ta to some halfway nodes referred to as storage nodes,
where data are stored for serving query demands from
requesters. With this scheme, a requester only needs to
issue a query message to the closest storage node to re-

trieve needed data. This operating mode is, in fact, a hy-
brid of push and pull services.

One major concern of the hybrid mode operation is to
determine the optimal locations of storage nodes such
that overall communication cost is minimized, a problem
called optimal storage problem. Note that the optimality
here is defined under the premise that the operation of
data query is based on the existence of storage nodes. In
this regard, the overall communication cost is the sum of
communication costs introduced by transporting source
data as well as query results. This problem is critical for
networks where communication cost is a dominant metric
for network performance. The aim of this work is to ad-
dress the optimal storage problem for a tree-structured
network.

The optimal storage problem has earlier been studied
in the domain of database systems [5], [6], in which a da-
tabase is optimally replicated under the assumption that
each write to the database must be forwarded to all repli-
cas, while a read from a node is satisfied by a replica that
is nearest to the node. Prior approaches toward this prob-
lem were based on the notion of tree median. Basically, a
median is a node in the tree that minimizes the sum of
distances to the other nodes [27]. An optimal storage set
can be found by starting with a median node and itera-
tively adding new neighboring node to the set as long as
the addition results in cost reduction [13]. However, the
optimality property associated with medians holds only if
transmitting a unit of data over a given communication
link costs the same for both directions. In other words, the
validity of the previous work relies on the assumption of
homogeneous channel cost.

While homogeneous channel cost may seem a reason-
able assumption for some networks, heterogeneous channel
costs are more common to tree-based networks. More spe-
cifically, data transmission from a node to a neighboring

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

G.-M. Chiu and T.-L. Chin are with the Department of Computer Science
and Information Engineering, National Taiwan University of Science and
Technology, Taipei, Taiwan 106. E-mail: {chiu,tchin}@mail.ntust.edu.tw.

L.-H. Yen is with the Department of Computer Science and Information
Engineering, National University of Kaohsiung, Kaohsiung, Taiwan 811.
E-mail: lhyen@nuk.edu.tw.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

T

2 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

node along a communication link and that in the opposite
direction may experience different degrees of contentions,
induce different levels of interference, or progress with
different priorities in MAC (medium access control) layer.
For example, it is common that, in a tree network, up-
stream communication is treated differently from the
downstream one. In addition, for wireless communica-
tion, two end nodes of a communication link may operate
at different levels of transmission power when they
communicate with each other, thus leading to different
degrees of interference to the network. These differences
should be reflected by distinction of the associated com-
munication costs. However, it remains unknown how to
find an optimal storage set for networks with heterogene-
ous channel costs.

In this paper, we generalize the optimal storage prob-
lem for a tree-structured network by considering hetero-
geneous channel costs. We have identified necessary and
sufficient conditions for an optimal storage set for the
network. In particular, we introduce the notion of fully-
covered node for this purpose in the case of multiple
sources. The proposed algorithm only incurs a linear time
cost. Extensive simulations have been conducted to vali-
date the algorithm and evaluate its performance.

Rest of this paper is organized as follows. Section 2
surveys related work and Section 3 presents network
model and problem definition. In Section 4, we discuss
how to deal with the problem with only one source node.
Then in Section 5, we tackle the problem for the case of
multiple sources. Correctness of the proposed algorithm
is rigorously proved. Performance of the proposed algo-
rithm is evaluated by extensive simulations in Section 6.
Section 7 discusses related issues that are not specifically
addressed in previous sections. The last section concludes
this paper and discusses future research directions.

2 RELATED WORK

The storage placement problem can be found in various
contexts of research areas such as the warehouse location
problem in operations research [1], [2], [29], the file as-
signment problem for database systems [4], [5], Web cach-
ing and peer-to-peer (P2P) applications in computer net-
works [7], [26], and data query in sensor networks [10],
[11]. These studies resolve the storage location problem
on different facilities or network platforms with a variety
of purposes and restrictions.

The warehouse location problem has been studied ex-
tensively in the literature. The aim of the problem is to
select a number of cites on a map as warehouse locations
such that cost of transporting goods from factories to cus-
tomers is minimized [1], [2], [14]. The problem has been
proven NP-complete for general graphs and solvable in
polynomial time for trees [14]. Our problem differs from
the warehouse location problem in that, in our problem,
each storage node must store data originated from all
source nodes and one request node simply retrieves data
from the storage node that is closest to itself. In contrast,
in the warehouse location problem, goods produced by a
particular factory may be transported and stored in dif-

ferent warehouses. A customer can get goods from differ-
ent warehouses as long as total amount of the goods satis-
fies its demands.

The file assignment problem has also been investigated
for distributed database systems [5], [12], [13], [30]. In this
problem, data generated by a set of source nodes in a
network are replicated to a number of storage nodes. A
query node can retrieve replicas from the nearest storage
node to increase retrieval speed. A number of cost evalua-
tion models have been studied for this problem. For in-
stance, Fisher and Hochbaum considered a simple write
policy, where a separate copy of the data generated by a
specific source node is sent to each storage node [5]. The
total write cost is, therefore, sum of the distances from
each source node to each of the storage nodes. In [13], the
write policy is modeled similar to multicast in the sense
that each piece of data is sent to multiple storage nodes
via multicast communication. While most of the studies
consider only data transmission cost, data storage cost is
specifically included in the cost model in [12]. These stud-
ies are closely related to ours in that they also address the
problem of storage placement in a network and have
similar objective to ours. However, all of them assume
that the communication cost is homogeneous in either
direction between two neighbor nodes, while heterogene-
ous communication costs are considered in our network
model to reflect realistic network environments.

Along with pervasive use of the Internet, Web and P2P
applications are gaining popularity among today’s Inter-
net users who are desperate for increasing download
speed. Web proxies are used to cooperatively cache and
share Web contents [15], [17], [31], [32], [33]. For P2P
overlay networks, Distributed Hash Table (DHT) has
been exploited to place contents at specific locations and
queries are directed to the associative locations [24], [25].
If contents are placed at random locations, queries are
typically flooded to the peers in order to locate needed
data [26], [34]. These studies, unlike ours, focus on search-
ing locations for content placement in order to facilitate
content dissemination.

Data replication and caching have also been widely
studied for improving data accessibility in wireless envi-
ronments [18], [20], [35]. Recently, considerable efforts
have been made for reducing the cost of data dissemina-
tion and retrieval in wireless sensor networks [3], [10],
[16], [21]. A typical usage of sensor networks is to collect
data by tens of thousands of sensors which have limited
computation and communication capability. The inher-
ited limitations make the problem of efficient data re-
trieval a major challenge in sensor networks. In [10], a
data-centric storage scheme based on DHT is proposed to
locate certain type of data by the properties of the data.
Queries for the same type of data can be served by one or
a few nodes without resorting to flooding mechanism.
GEM, which is another approach for data-centric storage,
maps data to sensor nodes by embedding a logical graph
of storage nodes to a physical network [21]. Hierarchical
data storage and retrieval methods, which introduce an
intermediate tier between sources and data-retrieval
nodes, are also proposed for wireless or mobile sensor

CHIU ET AL.: OPTIMAL STORAGE PLACEMENT FOR TREE-STRUCTURED NETWORKS WITH HETEROGENEOUS CHANNEL COSTS 3

networks [22], [23]. These studies focus on the design of
data dissemination and retrieval schemes.

Tree-structured networks are usually exploited in
wireless sensor networks [11], [19], [36]. An energy-
conserving data placement scheme proposed for sensor
networks is introduced in [3], [9]. The authors propose a
greedy heuristic that places multiple copies of data in the
network and transfers the data from sensors to observers
using multicast. Essentially, storage locations are the me-
dians concerning communication costs among the sender
and observers. In [11], a data storage placement scheme is
proposed for a tree-structured sensor network where data
are eventually gathered at the sink. Storage nodes are
placed between the sink and the sensors to reduce energy
consumption for data transmission. In sensor networks,
queries always originate from the sink. This work is simi-
lar to ours but queries in our setting can be issued by any
network node.

3 NETWORK MODEL AND PROBLEM DEFINITION

We consider a tree network T where each source node s
generates source data at a rate of gs (times per unit time).
We refer to gs as the source rate of s. A non-source node
simply has a source rate of zero. Each node i in the net-
work issues queries for the collected data at a query rate ri

(times per unit time). We assume that each query calls for
source data from all source nodes. Such requirement is
very common for many practical applications. In light of
this, a storage node is required to collect and store source
data originated from all source nodes, and a node is made
a storage node if all source nodes push source data to it.
Data queries issued by a node are answered by a storage
node that is the nearest to the querier. Without loss of
generality, we assume that the sizes of source data and
the data returned, as a result of a query, are both equal to
one unit. In practice, these sizes may be different, in
which case this difference can be captured by introducing
a constant factor between gs and ri’s.

As described earlier, different communication links
may be situated in different transmission environments in
a network. Moreover, communications across a commu-
nication link may operate differently in opposite direc-
tions in many cases, thus inducing different levels of im-
pact on the network. To account for this characteristic of
heterogeneity, we use ci,j to represent communication cost
of transmitting one unit of data over a communication
channel from node i to node j. Note that cj,i can be differ-
ent from ci,j.

Our goal is to find a set of storage nodes in T that mi-
nimizes overall communication cost. To facilitate our dis-
cussion, we refer to the communication cost for transmit-
ting source data to storage nodes as data push cost and the
communication cost for transmitting query results as data
query cost. For a data query, the size of retrieved data is
much larger than that of a query message in many net-
work applications. In this case, data query cost is domi-

nated by transmission of query result, rather than deliv-
ery of the query message. In fact, in some network appli-
cations, query requests are predetermined such that no
explicit query messages need be transmitted to storage
nodes. Rather, storage nodes may simply send query re-
sults to querying nodes in a proactive manner. This situa-
tion normally happens for applications with periodic
query demands. Hence, we ignore the cost of transmitting
query messages for now. However, we will consider in-
cluding such cost in the cost model later in Section 5.3.

Suppose a query issued by node i travels through a
path i = n0, n1, n2,…, nl-1, nl = j to retrieve data from stor-
age node j. The query result is returned from j to i in the
reverse direction. Hence, the associated data query cost is
the sum of communication cost induced by traversal of
the query result from node j to node i.

The optimal storage problem can be illustrated by a
sample tree shown in Fig. 1. Suppose that only nodes b
and f are source nodes. If node a is the single storage node
in the network, transmitting source data from b to a will
incur cost gbcb,a. Similarly, the data push cost from f to a
will be gf (cf,d+ cd,a), resulting in a total data push cost of
amount gbcb,a+ gf (cf,d+ cd,a). On the other hand, the data
query cost for node e will be re(ca,d+ cd,e), and data query
costs for other nodes can be derived similarly. Now con-
sider adding d as an extra storage node. It incurs addi-
tional data push cost amounted to gbca,d. In return, data
query costs for nodes d, e, f, and g are reduced as these
nodes can now retrieve data from node d, instead of node
a. Since every node could be a storage node, a naïve ap-
proach that examines every possible combination of stor-
age nodes will suffer from combinatorial explosion prob-
lem.

We observed that the problem can be simplified if only
one source node is present. In that case, the source node is
a storage node by nature. Accordingly, there is only one
possible direction in which source data could be passed to
a particular storage node. In case of multiple sources,
however, data are pushed from every source to every
storage node. In the following sections, we present first a
solution for the case of single source, which is inspired by
the above-mentioned observation, followed by another
approach which deals with cases with multiple sources.

Fig. 1. A sample tree.

4 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

The key to the proposed solutions is to focus on links
rather than nodes of the tree. Consider a link (i, j) between
two neighboring nodes i and j. Observe that if (i, j) is de-
leted, T will be divided into two disjoint subtrees. We
denote the one that contains node i by T(i, j) and the other
by T(j, i). Link (i, j) is treated as two directional channels,
ch(i, j) from node i to node j and ch(j, i) from j to i. For
each ch(i, j), two quantities are defined:

 R(i, j): sum of query rates of all the nodes in T(i, j).
 S(i, j): sum of source rates of all the source nodes

that are located in T(i, j).
These two quantities are crucial to our solutions. The

key idea is: if R(i, j) > S(j, i), all source data in T(j, i) must
be pushed to node i. Detailed analysis will be presented
in the following two sections. For the ensuing discussion,
symbols that are mostly used are summarized in Table 1.

4 SINGLE SOURCE OF DATA GENERATION

In this section, we consider a tree network T in which
there is only one source node s with source rate gs. Let N(x)
denote the set of node x’s neighboring nodes. For a node x
(≠s), we call the unique node y N(x) that is located on
the path from x to s the source-bound neighbor of x, denoted
by sn(x). We define Rx as the sum of query rates of all the
nodes in T(x, sn(x)), that is, Rx = R(x, sn(x)). Rx possesses
the property of rate aggregation, as stated by the following
lemma.

Lemma 1. Let n0, n1, …, nl = s, l 2, be the path in T from
node n0 to the source node s. For all i, where 0 i l–2, we
have Ri Ri+1.

Proof. We have sn(ni) = ni+1 for all 0 2i l . Hence, the
lemma can be directly derived from the fact that, for all
0 2i l , T(ni, sn(ni)) T(ni+1, sn(ni+1)) and all query
rates are non-negative.

As stated earlier, a node is a storage node if source da-
ta is pushed to the node. A storage node may further for-
ward the source data onto other storage nodes. In light of

this, we have the following property.

Property 1. If j is a storage node, then all nodes on the path
from j to s are also storage nodes.

Lemma 2. Let H be a non-empty set of storage nodes and i H.
If node j (j H) is a neighbor of i and Rj > gs, then the set H
∪{j} offers a communication cost that is less than H.

Proof. Since i and j are neighbors, either i = sn(j) or j = sn(i)
is true. Property 1 implies that j cannot be sn(i), so i
must be sn(j). Property 1 also implies that there is no
storage node in T(j, i), since otherwise j will be a stor-
age node. Since j H, H∪{j} is the result of adding j to
H. It adds an extra data push cost of ci,jgs, but cuts
data query cost by an amount of ci,j Rj. Since Rj > gs,
overall communication cost is reduced as of adding
node j to H.

Lemma 3. Node j (≠s) must be included in any optimal set of
storage nodes if Rj > gs.

Proof. Let j = n0, n1,…, nl = s, l 1, be the path from j to s.
Since Rj > gs, we have Rn > gs, for all 0 i l –1, by
Lemma 1. Suppose, by contradiction, that P is an opti-
mal set of storage nodes and j P. Obviously we have
s P. By Property 1, there is a uniquely-defined i, 0 i
l –1, such that n0, n1,…, ni are not in P while ni+1,…,
nl are all in P. Applying Lemma 2 to ni, ni-1,…, n0 in se-
quence, we can easily see that P cannot be an optimal
solution, a contradiction.

Lemma 3 gives a necessary condition for an optimal
solution. We now show that the same criterion also serves
as a sufficient condition in the following lemma.

Lemma 4. There always exists an optimal set of storage nodes
that does not contain any node j (≠s) with Rj gs.

Proof. Let P be any optimal set of storage nodes that con-
tains some node j (≠s) with Rj gs. Let Pj ={i | i P
and i T(j, sn(j)) }. Apparently, we have j Pj. Two
cases are considered here.
Case 1: |Pj| = 1
In this case, j is the only node in Pj. Consider P* = P–{j}.
P* adds an extra data query cost of csn(j),jRj but cuts da-
ta push cost by an amount of csn(j),jgs. Since Rj gs, the
overall communication cost of P* is no greater than P.
Case 2: |Pj| > 1
Let i Pj be a node such that there is no other node x
Pj for which sn(x) = i. The path from i to s has to pass
through j. Lemma 1 leads to the fact of Ri gs. From the
argument of case 1, we can remove i from P to obtain
another solution whose communication cost is no
greater than P. Repeatedly applying such pruning
process to all nodes in Pj, we eventually obtain a set P*

= P –Pj with overall communication cost no greater
than P. Therefore, we can always remove j from P to
obtain another optimal solution.
Based on Lemmas 3 and 4, we can proceed to find an

optimal set of storage nodes for T. The only issue is how
to compute Rx efficiently for all node x ≠ s. Let dT(x) rep-
resent the degree of node x in T. Since

TABLE 1
PARTIAL LIST OF SYMBOLS

Symbol Semantics
gs Source rate of node s
ri Query rate of node i
ch(i, j) The directional communication channel from

nodes i to j
ci,j The communication cost of ch(i, j)
T(i, j) The subtree containing i when link (i, j) is re-

moved from T
R(i, j) Sum of query rates of all nodes in T(i, j)
S(i, j) Sum of source rates of all source nodes in T(i, j)
N(x) Set of node x’s neighboring nodes
sn(x) The source-bound neighbor of node x
Rx R(x, sn(x))
dT(i) Degree of node i in tree T
F Set of fully-covered nodes
 {j | S(j, i) < R(i, j)}; set of nodes that cover some

neighbor
 Optimal set of storage nodes

CHIU ET AL.: OPTIMAL STORAGE PLACEMENT FOR TREE-STRUCTURED NETWORKS WITH HETEROGENEOUS CHANNEL COSTS 5

otherwise,
,1)(if

)}({)(xsnxNy
yx

Tx

x Rr
xdr

R

computation of all Rx values must follow some particular
order. For any two nodes x and y, we define y x if y
N(x)–{sn(x)}. Clearly, the transitive closure of relation
is a precedence ordering that captures computation de-
pendency among nodes. If we represent as a directed
acyclic graph G = (V, E), where V is the set of nodes in T
and (y, x) E if y x, computation of all Rx values
should follow a topological ordering on G. It turns out
that a topological sorting algorithm with slight modifica-
tion can be utilized for the computation, which has a lin-
ear computation time.

5 MULTIPLE SOURCES OF DATA GENERATION

We now focus on the case in which two or more source
nodes in T can independently generate source data. Our
single-source solution benefits from the property of uni-
directional data flow: data originate from a single source
and are pumped to all storage nodes. The lack of such
property with multiple sources invalidates applicability
of our single-source solution for multiple-source cases. In
particular, unlike the single-source case in which the
source node is by default a storage node, we do not know
any pre-existing storage node to start with in multiple-
source situations. In this section, we present a general yet
efficient algorithm, which is mainly based on the notion
of fully-covered node, to identify an optimal set of storage
nodes for multiple-source scenarios.

Recall that in the single-source setting, any path from a
non-source node to the source possesses the rate aggrega-
tion property (Lemma 1). The rate aggregation property
founds a basis upon which locations of storage nodes can
be determined. This property can be generalized to any
path in the tree as stated in Lemma 5.

Lemma 5. Let n0, n1, …, nl be a path in T. For all i, 0 < i < l,
we have R(ni-1, ni) R(ni, ni+1), R(ni, ni-1) R(ni+1, ni), S(ni-1,
ni) S(ni, ni+1), and S(ni, ni-1) S(ni+1, ni).

Proof. It can be directly derived from the fact that T(ni-1, ni)
T(ni, ni+1), T(ni, ni-1) T(ni+1, ni), and all query and
source rates are non-negative.

Corollary 1. Let n0, n1,…, nl be a path in the tree. For all i, j, 0
i < j l, we have R(ni, ni+1) R(nj-1, nj), R(ni+1, ni) R(nj,
nj-1), S(ni, ni+1) S(nj-1, nj), and S(ni+1, ni) S(nj, nj-1).
Source data must flood all storage nodes. If there is

more than one storage node in T, all of these nodes must
cluster together, forming a subtree. This property is simi-
lar to Property 1 but the correctness of the property is not
trivial to see. Lemma 6 gives proof for the property.

Lemma 6. Given any two storage nodes u and v, all nodes on
the path connecting u and v are also storage nodes.

Proof. Let u = n0, n1,…, nl = v be the path from u to v. The
lemma trivially holds when l = 1. Now consider any
node ni, where 0 < i < l and l > 1. If there is any source

node in T(ni, ni+1), source data generated by the source
node must pass through ni in order to reach v. Simi-
larly, the source data generated by any source node in
T(ni, ni-1) must pass through ni to reach u. Conse-
quently, all source data will reach ni, and therefore ni

will become a storage node as well.

5.1 Notion of Fully-Covered Nodes
The design of our optimal algorithm is based on the fol-
lowing definition.

Definition 1. Let node i be a neighbor of node j. Node i is said
to cover j if S(i, j) < R(j, i). Node j is said to be fully-
covered if it is covered by all of its neighbors.

Take Fig. 2 as an example, where two source nodes s1

and s2 with source rates g1 and g2, respectively, are pre-
sent. The number beside each node represents query rate
of the node. Source node s1 covers node c since s1 is a
neighbor of c and S(s1, c) = 8 < R(c, s1) = 20. Node d also
covers node c because d is a neighbor of c and S(d, c) = 10
< R(c, d) = 18. In addition, both nodes g and h cover c.
Hence, c is fully-covered. Meanwhile, it is easy to see that
node d is also fully-covered. However, no other nodes are
fully-covered in the network.

In what follows, we first show that, if there exists any
fully-covered node, the set of all fully-covered nodes con-
stitutes an optimal solution for T. The situation in which
there is no fully-covered node in the network will be in-
vestigated in Section 5.2.

Lemma 7. Let i and j be two neighboring nodes. If node i cov-
ers node j, then there must be a storage node in T(j, i) for
any optimal solution.

Proof. By definition, we have S(i, j) < R(j, i). Suppose, by
way of contradiction, that there is an optimal set of sto-
rage nodes that contains no node in T(j, i). Consider
the storage node x in the optimal set that is closest to j.
Let x = n0, n1, n2,…, nl-1 = i, nl = j be the path from x to j,
where l 1. Note that there is no storage node in T(n1,
x), since otherwise x cannot be the storage node in the
optimal set that is closest to j by Lemma 6. Now con-
sider including n1 as an additional storage node in the
optimal set. It adds a data push cost of amount
cx,n1S(x, n1). On the other hand, the addition of n1 as a
storage node cuts data query cost of amount cx,n1R(n1,
x). By Corollary 1, we know that S(x, n1) S(i, j) and
R(n1, x) R(j, i). Since R(j, i) > S(i, j), we then have R(n1,

d

a
i

g h
5

4

c

f5
1

2

2

3

33

1 8g

2 10g

1s
2s

Fig. 2. An example having fully-covered nodes with s1 and s2 being
source nodes. g1 and g2 are source rates of s1 and s2, respectively.

6 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

x) > S(x, n1). Hence, adding n1 to the optimal set of sto-
rage nodes will further decrease overall communicate
cost, a contradiction.

Corollary 2 is a derivation from Lemma 7, and Corol-
lary 3 follows.

Corollary 2. If j is covered by node i, all source nodes (if any)
in T(i, j) must have their source data pushed to node j for
any optimal solution.

Corollary 3. If node j is fully-covered, any optimal set of stor-
age nodes must include j.

Corollary 3 shows that the set of all fully-covered
nodes must be included in any optimal storage set. We
now prove that, if this set is not empty, it alone suffices to
be an optimal solution.

Lemma 8. Let i and j be two neighboring nodes. If node i cov-
ers node j and i is not fully-covered, then j does not cover i.

Proof. If j is i’s only neighbor, since i is not fully-covered,
then j apparently does not cover i. Now consider the
case in which i has more than one neighbor. Consider
any neighbor k of i, k≠j. Since i covers j, we have S(i, j)
< R(j, i) by definition. Considering the path k, i, to j, by
Lemma 5, we have S(k, i) S(i, j) and R(j, i) R(i, k);
thus S(k, i) < R(i, k) follows. In other words, k covers i.
Since i is not fully-covered, it must be true that j does
not cover i.

Theorem 1. If there is at least one fully-covered node in the
network, then the set of all fully-covered nodes is an optimal
set of storage nodes.

Proof. Let F represent the set of all fully-covered nodes.
For any optimal solution F*, we must have F F* by
Corollary 3. Let Q = F* –F. If Q = , then F is an opti-
mal solution. Otherwise, one can readily see that Q
consists of one or more disconnected tree fragments,
each of which is a subtree. Consider any one such sub-
tree, denoted as T1. According to Lemma 6, there must
be a node, say y, in T1 such that y is a neighbor of some
node x F. Two cases are considered here.
Case 1: T1 contains only one node
This case happens when y is the only node in T1. Con-
sider the set F－ = F* –{y}, i.e. deleting y from F*. In
comparison with F*, F－ cuts a data push cost of amount
cx,y S(x, y) and increases the data query cost by an
amount of cx,yR(y, x). Since x F, y must cover x. The
fact of y F implies that y is not fully-covered. Accord-
ing to Lemma 8, we have that x does not cover y,
which means that S(x, y) R(y, x). We conclude that F－

offers a communication cost that is no greater than F*.
Case 2: T1 contains more than one node
In other words, T1 includes at least one more node than
y. Let z be a node in T1 such that z y, zF*, and z has
only one neighbor in T1, that is, z is an edge node in T1.
Apparently, z F. Consider the set F－= F*－{z}. F－ is
still a connected subtree. Let z = n0, n1,.…, nl-1 = y, nl= x,

l 2, represent the path from z to x. In comparison
with F*, deletion of z from F* will cut a data push cost
of amount cn1,zS(n1, z). On the other hand, it will in-
crease data query cost by an amount of cn1,zR(z, n1). By
Corollary 1, we have S(n1, z) S(x, y) and R(y, x) R(z,
n1). From case 1, we have S(x, y) R(y, x), which then
leads to S(n1, z) R(z, n1). In other words, F－ offers a
communication cost that is no greater than F*. By re-
peatedly applying the same pruning operation to
nodes in T1, one-by-one starting from edge nodes
(nodes that has only one neighbor), and by the argu-
ment of case 1, we conclude that the set F*–{j | j is a
node in T1} gives a communication cost that is no
greater than F*.
Applying the above argument to all of the subtrees of
Q, we eventually obtain the set F, which offers a com-
munication cost no greater than F*. Therefore, F is also
an optimal storage set.

Theorem 1 founds the basis for locating an optimal set
of storage nodes in a network. To turn this theorem into a
practical algorithm, we need to compute S(i, j) and R(i, j)
for every channel ch(i, j). A channel ch(i, j) is said to be
saturated if and only if the values of S(i, j) and R(i, j) are
both known. In general, ch(i, j) is saturated only if all ch(k,
i) for which k N(i)–{j} are saturated. For such a channel,
we have

}{)(

),(),(
jiNk

i ikSgjiS (1)

and

}{)(

),(),(
jiNk

i ikRrjiR . (2)

For any channel ch(i, j) where dT(i) = 1, Eq. (1) reduces to
S(i, j) = gi and Eq. (2) reduces to R(i, j) = ri. We define ch(k,
i) ch(i, j) if k N(i) –{j}. Given T, we can construct a
directed graph GT = (V, E), where V is the set of all chan-
nels in T and x, yV: (x, y) E if x y. Fig. 3 shows
such a graph for the tree shown in Fig. 2. Clearly, compu-
tations of R(i, j) and S(i, j) should follow a topological or-
dering on GT.

s1, c g, c

h, c

d, c

c, d c, h c, g c, s1

d, s2

s2, f

s2, i

s1, a

a, s1 s2, df, s2

i, s2

Fig. 3. Graph GT for the tree in Fig. 2.

CHIU ET AL.: OPTIMAL STORAGE PLACEMENT FOR TREE-STRUCTURED NETWORKS WITH HETEROGENEOUS CHANNEL COSTS 7

A straightforward approach to the computation is
therefore constructing GT from T first and then perform-
ing a topology sorting on GT. This approach, however,
can be further optimized. The proposed algorithm,
Rate_Comp, shown in Fig. 4, computes R(i, j)’s and S(i,
j)’s from T directly. The key point is to count the number
of incoming channels that are saturated for each node,
and to accumulate the amount of source and query rates
that have been pumped to each node during the compu-
tation. Array in_count serves for the former purpose
while S_sum and R_sum together serve the latter. The
algorithm also involves maintaining a working queue WQ,
where each entry contains the identification of a saturated
channel. When in_count[y] reaches dT(y) –1, we know
that all but one channels pointing to y are saturated. Let
ch(z, y) be the only channel coming to y that is not yet sa-
turated. At this moment we have R(y, z) and S(y, z) com-
puted and stored in R_sum[y] and S_sum[y], respectively.
In that case, ch(y, z) becomes saturated and is added to WQ
for later computation. When in_count[y] equals dT(y),
meaning that all channels coming into y are saturated, we
are ready to compute R(y, w) and S(y, w) for all channel

ch(y, w) leaving y. The algorithm simply repeats the re-
moval-and-addition process until WQ becomes empty.

After S(i, j) and R(i, j) for all ch(i, j) have been com-
puted, we are able to determine whether u is fully-
covered by Definition 1 for any node u T. This is
achieved by algorithm Multiple_Source (Fig. 5). It
uses to indicate the set of nodes that cover some neigh-
bor. The optimal set of storage nodes is given by the set
of fully-covered nodes (recorded in F) if there exists at
least one such node. However, if F is empty, the algo-
rithm will proceed to execute a special function called
NoFullCov in order to find an optimal solution. Discus-
sion about such a scenario, along with details of NoFull-
Cov, is subsequently presented in Section 5.2. The set
will be used by function NoFullCov.

5.2 Scenarios of No Fully-Covered Node
Theorem 1 states that an optimal set of storage nodes is
comprised of all fully-covered nodes in the network, if
any fully-covered node can be identified. Unfortunately,
there may be cases where no fully-covered node can be
found. Take Fig. 6 as an example. The figure is the same
as Fig. 2 except that now g1 is 21 and g2 is 20. In this ex-
ample, none of the nodes in the network is fully-covered.
In this case, we resort to function NoFullCov to locate an
optimal set of storage nodes that offers minimum com-
munication cost. This subsection describes the idea be-
hind and details of NoFullCov.

Consider two neighboring nodes i and j. Suppose that i

Algorithm Rate_Comp(T) {
1. WQ ←;
2. for (each node i T) {

in_count[i] ← 0;
if (dT(i) = 1) { /* i is an edge node */

R(i, j) ← ri, where j is i’s single neighbor;
S(i, j) ← gi, where j is i’s single neighbor;
WQ← WQ ∪ {(i, j)};

} else {
R_sum[i] ← ri;
S_sum[i] ← gi;

}
}

3. P ; /* records all channels that are already saturated */
4. while (WQ ≠) {

remove an entry (x, y) from WQ;
R_sum[y] ← R_sum[y] + R(x, y);
S_sum[y] ← S_sum[y] + S(x, y);
P P ∪ {(x, y)};
in_count[y] ← in_count[y] + 1;
if (in_count[y] = dT(y)–1) { /* one out-channel saturated */

let z be the neighbor of y such that (z, y) P
R(y, z) ← R_sum[y];
S(y, z) ← S_sum[y];
WQ← WQ∪ { (y, z) };

} else if (in_count[y] = dT(y))
for (each z N(y)–{x}) { /* ch(y, x) already saturated */

R(y, z) ← R_sum[y]–R(z, y);
S(y, z) ← S_sum[y]–S(z, y);
WQ← WQ∪{(y, z) };

}
}

}

Fig. 4. Algorithm Rate_Comp.

Algorithm Multiple_Source(T) {
1. F the set of all nodes in T;

;
for (each ch(i, j) T) {

if (S(j, i) < R(i, j))
∪ {j};

else
F F –{i}; /* i is not fully-covered */

}
2. if (F)

 F;
else /* no fully-covered node */

 NoFullCov();
}

Fig. 5. Algorithm Multiple_Source.

Fig. 6. An example having no fully-covered node. s1 and s2 are source
nodes.

8 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

covers j. Lemma 7 states that there must be a storage node
in T(j, i) for any optimal solution. Furthermore, by Lem-
ma 8, we see that node i cannot be covered by node j in
the case of no fully-covered node. This observation leads
us to ignore all the nodes in the subtree T(i, j) when find-
ing an optimal solution for the network.

Recall that, in Multiple_Source, j if node j cov-
ers any of its neighbors. If j , j shall be considered by
function NoFullCov as a possible storage location. In the
example of Fig. 6, three nodes, namely s1, c, and d, do not
cover any of their neighbors. We now prove that all nodes
in T–form a connected subtree.

Lemma 9. Let U = T–. The nodes in U form a subtree in T,
i.e., the nodes in U are connected.

Proof. If there is only one node in U, the lemma trivially
follows. Let x and y be any two nodes in U and x = n0,
n1, n2, …, ni-1, ni, ni+1,…, nl = y be the path from x to y
with l 1. If l = 1, the lemma also trivially follows.
Now consider the case of l > 1. We prove the lemma by
contradiction. Assume that ni is the node that is the
closest to x in . Since ni , ni must cover some other
neighbor node z and thus S(ni, z) < R(z, ni). For the case
of z ≠ ni-1, since S(ni, z)≥S(ni-1, ni) and R(z, ni)≤R(ni, ni-

1) by Lemma 5, it is obvious that S(ni-1, ni) < R(ni, ni-1).
Therefore, ni-1 covers ni and thus ni-1, which contra-
dicts the assumption. Consider the case of z = ni-1. By
Lemma 5, we have S(ni, z)≥S(ni+1, ni) and R(z, ni)≤R(ni,
ni+1). Since S(ni, z) < R(z, ni), we then have S(ni+1, ni) <
R(ni, ni+1). Hence, ni+1 covers ni. By the same token, we
have that ni+2 covers ni+1, and so on. Eventually, one
obtains that y covers node nl-1. Therefore, y must be in
, which also contradicts the assumption.

We call the subtree formed by the nodes in U a residual
tree and denote it by TU. TU has the following properties.

Lemma 10. Let x be a node in TU and y is a neighbor of x that
is not in TU. Consider the path n0, n1,…, nl-1 = y, nl = x, l 1,
from node n0 to x. We have ni covers ni+1 for all 0 i l–1.

Proof. By Lemma 9, we know that none of n0, n1,…, nl-2 is
included in TU if l > 1, since y is not in TU. Note that y
covers some of its neighbors as y . Assume that w is
a neighbor covered by y and w x. We have S(y, w) <
R(w, y). By Lemma 5, we have that S(x, y) S(y, w) and
R(w, y) R(y, x). Thus S(x, y) < R(y, x) follows. There-
fore, x covers y, a contradiction with x . Hence, we
show that y has to cover x. This result also implies that
S(y, x) < R(x, y). Consider node nl-2. Again, by Lemma 5,
we have S(nl-2, y) S(y, x) and R(x, y) R(y, nl-2), thus
S(nl-2, y) < R(y, nl-2) follows, which implies that nl-2 cov-
ers y. By the same token, we can prove that ni covers
ni+1 for all 0 i l–3.

Corollary 4 follows from Lemmas 10 and 8.

Corollary 4. Let x be a node in TU and y is a neighbor of x that
is not in TU. Consider the path n0, n1,…, nl-1 = y, nl = x, l 1,
from node n0 to x. Then ni+1 does not cover ni for all 0 i
l–1.

We now proceed to show that there exists an optimal
solution that contains only one node in TU.

Lemma 11. In the case of no fully-covered node, there exists an
optimal solution that contains only nodes in the residual
tree TU.

Proof. We prove the lemma by contradiction. Assume
that all of the optimal sets of storage nodes must con-
tain at least one node that is not in TU. Consider any
optimal solution P. Let Q = P –{i|i is a node in TU}.
Obviously, Q≠. In fact, one can readily see that Q
consists of one or more disconnected tree fragments,
each of which is a subtree. Consider any one such sub-
tree, denoted by T1. Let b TU and c T1 be the closest
nodes among all. Two cases are considered here.
Case 1: T1 contains only one node
This case happens when c is the only node in T1. Let c =
n0, n1,…, nl = b, l 1, be the path from node c to node b.
Two subcases are further considered below.
Case 1.1: Nodes b and c are not neighbors in the net-
work
This case occurs when l > 1. Note that node n1 belongs
to neither P nor TU. Consider the set P＋ = P ∪ {n1}, i.e.
adding n1 to P. In comparison with P, P＋ increases a
data push cost of amount cc,n1 S(c, n1) and cuts data
query cost by an amount of cc,n1 R(n1, c). From Lemma
10, we know that c covers n1. That is, S(c, n1) < R(n1, c).
Thus, P＋ offers a communication cost that is less than
P, which is a contradiction.
Case 1.2: b and c are neighbors in the network
This case occurs when l = 1. If b P, by the same ar-
gument given in case 1.1, we can show that the set P ∪
{b} offers a communication cost that is smaller than P, a
contradiction. Now consider the case of b P. In this
case, consider the set P* = P–{c}. In comparison with P,
P* increases a data query cost of amount cb,c R(c, b)
and cuts data push cost by an amount of cb,c S(b, c).
From Corollary 4, we know that b does not cover c.
That is, S(b, c) R(c, b). Therefore, P* gives a communi-
cation cost that is no greater than P.
Case 2: T1 contains more than one node
In other words, T1 includes at least one more node than
c. Let z be a node in T1 such that z P and z has only
one neighbor in T1, that is, z is an edge node in T1.
Consider the set P－= P–{z}. P－ is still a connected sub-
tree. Node z must traverse through node c to reach b.
Let z = n0, n1,…, ni = c,…, nl = b, l 2, represent the path
from z to b. In comparison with P, P－ cuts a data push
cost of amount cn1,zS(n1, z) and increases data query
cost by an amount of cn1,zR(z, n1). From Corollary 4,
we see that n1 does not cover z, thus S(n1, z) R(z, n1).
Hence, P－ gives a communication cost that is no great-
er than P.

By repeatedly applying the same pruning operation
to nodes in T1, one-by-one starting from edge nodes,
and by the argument of case 1, we conclude that either
P is not an optimal solution or the set P –T1 gives a
communication cost that is no greater than P. Apply-
ing the above arguments to all of the subtrees of Q, we
eventually obtain that either P is not an optimal solu-
tion or the set P –Q offers a communication cost less
than or equal to P. Since P–Q contains only nodes in
TU, thus a contradiction arises.

CHIU ET AL.: OPTIMAL STORAGE PLACEMENT FOR TREE-STRUCTURED NETWORKS WITH HETEROGENEOUS CHANNEL COSTS 9

The following theorem states that there exists an opti-
mal solution that contains only one node in the residual
tree for the case of no fully-covered node.

Theorem 2. In the case of no fully-covered node, there exists
an optimal solution that contains only one node in TU.

Proof. From Lemma 11, we see that there exists an opti-
mal solution that contains only nodes in TU. Let P be
an optimal solution that contains only nodes in TU and
|P| > 1. Let x be any edge node in P and y be the sole
neighbor of x in P. Consider the set P－= P–{x}, i.e. de-
leting x from P. In comparison with P, P－ cuts a data
push cost of amount cy,x S(y, x) and increases data
query cost by an amount of cy,x R(x, y). Since y does
not cover x, we have that S(y, x) R(x, y). Hence, P－ of-
fers a communication cost that is no greater than P.
Repeat the above pruning process to nodes in P, one-
by-one starting from edge nodes, we will obtain an op-
timal solution with only one node left.

Theorem 2 simply says that there exists an optimal so-
lution in the residual tree and the solution contains only
one node. A naïve method to find the optimal storage
node is to take each node in the residual tree as a storage
node and calculate overall communication cost for the
network. However, this method can incur very high com-
putation cost. The function NoFullCov listed in Fig. 7
provides a more efficient solution for finding the optimal
storage node. The basic idea of NoFullCov is using the
set of nodes in the residual tree TU as a reference storage
set. We then compute the amount of reduction in cost for
each node x in TU, with respect to the reference storage set,
when x is the only storage node in the network. Redun-
dant operations can be avoided using a technique similar
to the Rate_Comp algorithm.

Assume that i is an edge node of TU and TU has more
than one node. In comparison with TU, deletion of i from
TU cuts a data push cost of amount cj,i S(j, i) and in-
creases data query cost by an amount of cj,i R(i, j), where
j is i’s single neighbor node in TU. Let b(i, j) = cj,i (S(j, i)–
R(i, j)). b(i, j) is nothing but the amount of cost reduction
when i is deleted from TU. Since j does not cover its
neighbors, we have R(i, j) S(j, i), which leads to b(i, j)≥0.
Notice that b(i, j) is also well-defined, even if i is not an
edge node in TU. Conceptually, the set that contains only
one storage node x in TU is obtained by deleting, from TU,
all the other nodes, one by one starting from edge nodes.
Therefore, the amount of cost reduction for node x can be
calculated by summing all b(i, j), where i x and j is the
next node from i to x. Such summations are done by ac-
cumulation, using a working queue. In fact, as shown in
Fig. 7, function NoFullCov reuses WQ for this purpose.
in_count and P are also reused in a similar manner, but
dTU(i) denotes the degree of node i in TU. Let TU(i, j) repre-
sent the subtree of TU that contains node i when link (i, j)
is deleted from TU. The entry b_sum[i, j] maintains sum of
all b(x, y), where x is in TU(i, j) and y is the next node to j.
We use cost_reduction[i] to record the amount of cost
reduction for node i. Eventually, the optimal storage node
is the one with the highest cost reduction in the residual
tree.

Take Fig. 6 as an example. The residual tree TU con-
tains three nodes, namely s1, c, and d. Now assume that
cc,d = 0.5, cd,c = 1.2, cs1,c = 1.0, and cc,s1 = 0.8. We have b(s1, c)
= 9.6, b(c, s1) = 1.0, b(c, d) = 2.4, and b(d, c) = 5.5. The set
that contains only storage node d can be obtained by de-
leting edge node s1 first, followed by deleting node c from
TU. Then the amounts of cost reduction are computed as
cost_reduction[s1] = b(d, c) + b(c, s1) = 6.5,
cost_reduction[c] = b(s1, c) + b(d, c) = 15.1, and
cost_reduction[d] = b(s1, c) + b(c, d) = 12.0. Therefore,
the optimal storage node is node c.

Theorem 3. Function NoFullCov returns an optimal solu-
tion for the case of no fully-covered node.

Proof. By Theorem 2, there exists an optimal solution in
TU that contains only one node. As described earlier,
the set that contains only one storage node x in TU can
be obtained by deleting, from TU, all the other nodes,
one by one starting from edge nodes. Each such dele-
tion induces an extra cost reduction of amount b(i, j),
where i is the deleted node and j is i’s remaining
neighbor. Hence, for node x, the amount of cost reduc-
tion is indeed the sum of all b(i, j), where i x and j is
the next node from i to x. By the accumulation prop-

Function NoFullCov() {
1. TU the subtree of T that is induced by T–;
2. for (each node i TU) {

cost_reduction[i] ← 0;
in_count[i] ← 0;

}
3. WQ ← ;
4. for (each ch(i, j) TU) {

b(i, j) ← cj,i (S(j, i)–R(i, j));
if (dTU (i) = 1) { /* j is i’s single neighbor in TU */

WQ ← WQ∪ {(i, j)};
b_sum[i, j] ← b(i, j);

}
}

5. P ← ;
while (WQ ≠) {

remove an entry (x, y) from WQ;
cost_reduction[y] ← cost_reduction[y] + b_sum[x, y];
P ← P ∪ {(x, y)};
in_count[y] ← in_count[y] + 1;
if (in_count[y] = dTU(y)–1) { /* one out-channel saturated */

let z be the neighbor of y such that (z, y) P
b_sum[y, z] ← cost_reduction[y] + b(y, z);
WQ ← WQ∪ {(y, z)};

} else if (in_count[y] = dTU(y))
for (each ch(y, z) TU, z≠x) { /* already saturated */

b_sum[y, z] ← cost_reduction[y]–b_sum[z, y];
WQ ← WQ∪ {(y, z)};

}
}

6. return {i | cost_reduction[i] = max
Uj T
cost_reduction[j]};

}

Fig. 7. Function NoFullCov.

10 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

erty of the function, we can see that
cost_reduction[x] eventually records this sum.
Obviously, the optimal solution would be the one that
yields maximum cost reduction.

Corollary 5 follows from Theorems 1 and 3.

Corollary 5. Algorithm Multiple_Source produces an
optimal solution.
In algorithm Rate_Comp, each channel in the network

is inserted into and removed from the working queue
exactly once. Each removal involves O(1) additions and
subtractions. A similar observation can also be made in
function NoFullCov. Therefore, the time complexity of
Multiple_Source on tree T is O(N), where N is the
number of nodes in T.

5.3 Considering Cost for Transmitting Query
Messages

Previously, we have ignored the cost for transmitting
query messages. This treatment may introduce inaccuracy
in some applications where the cost of transmitting query
messages is too significant to be neglected. We now con-
sider including such communication cost as part of the
total cost.

It is easy to see that, if node i is a fully-covered node,
then node i must be in the optimal solution. However, a
non-fully covered node may need to be included in an
optimal solution as adding more storage node may fur-
ther cut the total cost due to reduction of the communica-
tion cost of transmitting query messages. To this end, for
each channel ch(i, j), we define one more quantity called
cost reduction due to query messages, denoted by
cost_red_qm[i, j], as the additional amount of cost re-
duction that can be achieved by making node i another
storage node, provided that node j is already a storage
node. More specifically, let reduced_cost[i, j] be given
as

, , ,
() { }

(,) () (,) [,]j i i j j i
k N i j

R i j c q c S j i c k i

 cost_red_qm

where q represents the ratio of a query message to a data
unit. Then cost_red_qm[i, j] is expressed as

[,] if [,]>0
[,]

0 otherwise
i j i j

i j

reduced_cost reduced_cost
cost_red_qm

Note that reduced_cost[i, j] is the accumulated maxi-
mum amount of cost saving that can be achieved if some
storage nodes are placed in T(i, j), provided that node j is
already a storage node. If this amount is no greater than
zero, it makes no sense to install storage node in T(i, j).
Hence, cost_red_qm[i, j] is set to zero in this case. Note
that cost_red_qm[i, j] cannot be negative. The computa-
tion of cost_red_qm[i, j] can be performed alongside
S(i,j) and R(i, j).

Consider the case in which some fully-covered node is
found as a result of executing Multiple_Source. The
storage set will contain all the fully-covered nodes in this
case. For each node j in the storage set, we should add
any non-fully-covered neighbor, say i, to the storage set if
and only if cost_red_qm[i, j] is greater than zero. The
same process must be recursively applied to all the nodes

in the resulting storage set until no more new node can be
added. We assert that, as a result of this operation, the
final storage set will be the optimal one. The same process
can be applied to the single storage node identified by the
NoFullCov function in case no fully-covered node exists
in the network. However, the result gives only near-
optimal solution in this case.

6 PERFORMANCE EVALUATION

We have conducted extensive simulations to validate the
proposed algorithm and evaluate its performance. The
performance is compared with two other schemes.

6.1 Simulation Setup
In the simulation setting, the number of network nodes in
a tree network varies from 100 to 300. A tree network con-
taining a collection of nodes is randomly constructed with
a maximum degree of six. Each source node is assigned a
source rate that is randomly selected from some given
range (per unit time), with the default range being [2.0,
4.0]. Non-source nodes have a source rate of zero. In the
simulation, we vary the probability that a network node
is a source node, so as to capture different network con-
figurations. This probability is called source probability in
the following treatment. Each network node (including a
source node) is assigned a query rate that is randomly
selected from the range of [2.0, 4.0] per unit time. In addi-
tion, each channel in the tree network is assigned a com-
munication cost (i.e., cost for transmitting one unit of data
over the channel) that is randomly selected from the
range of [1.0, 3.0]. As described previously, we assume
that sizes of source data and data returned as a result of a
query are both equal to one data unit.

In the experiment, two other algorithms are also simu-
lated for comparison with our algorithm. Recall that total
communication cost composes of two components: data
query cost and data push cost. In addition, any storage
node set must always form a connected subtree of the
network. The first algorithm, denoted as QP_First, first
designates a node that has the largest sum of source rate
and query rate as the first storage node. It then adds a
neighbor of the storage node to the storage node set if the
addition results in reduction of communication cost. The
same process is repeated for any new storage node until
no further cost reduction is possible. This algorithm is a
greedy one and, basically, attempts to gain benefit by cut-
ting total communication cost at the outset.

Note that the push-mode operation described earlier
represents nothing but a special case in which all nodes in
the tree are storage nodes, while the pull mode of opera-
tion does not resort to any storage node. Hence, we also
choose to compare our scheme with the pull mode, called
Pull in the following discussion. With Pull, a request-
ing node retrieves data from all source nodes to satisfy
each of its queries, hence no data push cost is induced.
Let TF represent the subtree used to forward source data
for a query issued by a node x with Pull. In the simula-
tion, we assume that each source node s has to send to x
newly collected source data that is still unknown to x. The

CHIU ET AL.: OPTIMAL STORAGE PLACEMENT FOR TREE-STRUCTURED NETWORKS WITH HETEROGENEOUS CHANNEL COSTS 11

expected size of source data sent from s to x is then gs / rx.
When measuring data query cost with Pull, we take ac-
count of data aggregation, which refers to the effect that
data sent by various source nodes in response to the
query may be aggregated to reduce the size of transmit-
ted data. In the simulation, we have adopted three differ-
ent aggregation models for Pull. Let node i x be a node
on TF. Node i may be a source node or an intermediary
non-source node. Denote A the set of neighbors of i in TF

from which i receives (possibly aggregated) source data.
Further, let j TF be the neighbor of i to which i forwards
source data, and Z(i, j) denote the average size of source
data sent from i to j, in response to the query. It is appar-
ent that j A. For exposition purpose, we let Z(i, i) repre-
sent the average size of source data generated by i that is
sent to x, if i is a source node, and hence Z(i, i) = gi/rx. Z(i,
i) is zero if i is not a source node. The first aggregation
model, called max-aggr, assumes that Z(i, j) is given by

(,) max((,), max (,))
{ }{ }

Z i j Z k i Z k i
k A ik A i

where [0,1] is the aggregation factor. That is, max-
aggr assumes the size of source data forwarded from i to
j is given by the maximum of different (aggregated)
sources and the current aggregation result. The second
aggregation model, denoted as mnx-aggr, is more ag-
gressive in which Z(i, j) is given by

(,) max (,) (1) min (,)
''

Z i j Z k i Z k i
k Ak A

where [0,1] is the aggregation factor and A’= A {i}
if i is a source node, A’= A otherwise. Note that max-
aggr with = 1 is identical to mnx-aggr with = 0. The
third model, called unit-aggr, assumes unit data size
for all links on TF (i.e. Z(i, j) = 1). This model represents
one of the most aggressive data aggregation scenarios.

The main performance metric adopted in the simula-
tion is average communication cost. We also examine the
numbers of storage nodes produced by QP_First and
our algorithm. For a given number of network nodes,
communication cost is averaged over 1000 randomly con-
structed network topologies, with 100 sets of source
nodes per source probability being randomly chosen from
the network nodes for each of the topologies. In other
words, each simulation result is averaged over 100,000
combinations of topologies and source nodes.

0

5000

10000

15000

20000

25000

30000

35000

O
ur
s

Q
P_
Fi
rs
t

un
it_
ag
gr

β
=0
.2

β
=0
.6

β
=1
.0

α
=0
.4

α
=0
.8

O
ur
s

Q
P_
Fi
rs
t

un
it_
ag
gr

β
=0
.2

β
=0
.6

β
=1
.0

α
=0
.4

α
=0
.8

O
ur
s

Q
P_
Fi
rs
t

un
it_
ag
gr

β
=0
.2

β
=0
.6

β
=1
.0

α
=0
.4

α
=0
.8

O
ur
s

Q
P_
Fi
rs
t

un
it_
ag
gr

β
=0
.2

β
=0
.6

β
=1
.0

α
=0
.4

α
=0
.8

O
ur
s

Q
P_
Fi
rs
t

un
it_
ag
gr

β
=0
.2

β
=0
.6

β
=1
.0

α
=0
.4

α
=0
.8

10% 30% 50% 70% 90%
Souce probability

co
m

m
un

ic
at

io
n

co
st

Pull

data query cost

data push cost

Fig. 8. Communication cost vs. source probability in a 100-node
network.

6.2 Simulation Results
(a) Effects of Source Probability
Fig. 8 depicts total communication cost with source prob-
ability varying from 10% to 90% in a network with 100
nodes for the three algorithms. The method of Pull is
evaluated using the three data aggregation models de-
scribed above with and assuming various values for
max-aggr and mnx-aggr, respectively. In the figure,
communication cost consists of two components –data
query cost and data push cost. Note that the cost for Pull
includes no component of data push cost. Apparently,
Pull performs much worse than QP_First and our al-
gorithm under all data aggregation models, since source
data may be transmitted redundantly for queries issued
by different querying nodes. Our algorithm outperforms
QP_First mostly due to a lower data push cost. As
shown later, QP_First tends to yield more storage nodes
than the optimal solution produced by ours. An optimal
storage node set strikes a balance between data query cost
and data push cost. Performance difference between our
algorithm and the other two is more evident as source
probability grows bigger. As we will show later, a higher
source probability will lead to a smaller number of stor-
age nodes in an optimal solution, causing data push cost
to be sensitive to the number and locations of storage
nodes. In fact, when no fully-covered node exists in the
network, there is only one storage node in the optimal
solution. In this case, selection of storage nodes also has
more significant impact on data query cost as well. In
contrast, the impact on network performance is most ob-
vious for Pull.

To examine performance of the algorithms with re-
spect to network size, we show in Fig. 9 communication
cost versus source probability for networks with 200 and
300 nodes. The other settings are identically set as the
ones of Fig. 8. A trend similar to that of Fig. 8 is consis-
tently observed in the figure. In addition, the simulation
results reveal that, when network size grows, our algo-
rithm proportionally gains more benefit when compared
with the other two, which implies better scalability
achieved by our algorithm.
(b) Source Rate vs. Query Rate
We have also evaluated performance of the algorithms
when source rate is varied with respect to query rate. The
simulated network has 200 nodes, source probability is
set to 50%, and query rate is fixed in the range of [2.0, 4.0].
In Fig. 10, we compare the algorithms, in terms of total
communication cost, with source rate falls in five differ-
ent ranges: [0.0, 2.0], [1.0, 3.0], [2.0, 4.0], [3.0, 5.0], and [4.0,
6.0]. The figure shows that our algorithm outperforms all
other algorithms in the simulation setting, while Pull
has the worst performance with any aggregation model.
For Pull with unit-aggr model, communication cost is
constant, by nature, across the entire spectrum of source
rate. For all the other algorithms, the cost demonstrates
linear-like increase when source rate grows, with ours
showing milder slope than the others. This can be ex-
plained as follows. When source rate increases relative to
query rate in a network, data push load rises. As will be
shown shortly, this will lead to more conservative instal-

12 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

lation of storage nodes for an optimal solution. Following
an argument similar to the one given above for high
source probability, it becomes evident that our algorithm
gains relatively more advantage in this situation.
(c) Number of Storage Nodes
For a given network topology, the number of storage
nodes produced by QP_First and our algorithm de-
pends on values of source rate, query rate, and source
probability. To gain more insight in this regard, we plot
the number of storage nodes versus source probability for
various settings of source rate for the algorithms in Fig. 11.
In the simulation plotted, network size is 200 nodes.
Three settings of source rate ranges are used: [0.0, 2.0],
[2.0, 4.0], and [4.0, 6.0]. The number of storage nodes pro-
duced by both algorithms decreases when source rate or
source probability increases. This is because the volume
of source data grows at a higher source probability or
source rate, which makes the data-push operation more
costly. As a result, the algorithms refrain from data-push
operations and hence yield less storage nodes.

In particular, our algorithm results in less number of
storage nodes than QP_First. This is because,
QP_First will grow to include at least all fully-covered
nodes, when such nodes exist in the network. Further-
more, in the case of no fully-covered node, QP_First
may likely add more storage nodes in order to cut down
communication cost. Although more storage nodes lead
to lower data query cost, they eventually result in higher
data push cost as a whole. Difference in the number of
produced storage nodes between our algorithm and

QP_First is more obvious when source probability in-
creases. From the discussion above, we see that the pro-
posed optimal algorithm not only yields minimum
amount of communication cost but also achieves it with a
smallest number of storage nodes. This feature helps re-
duce storage space requirement for a network.

The optimal solution produced by our algorithm con-
tains only one storage node when no fully-covered node
exists in the network. Table 2 lists percentage of such
network scenarios versus source probability for a net-
work with 200 nodes. In the table, we show three sets of
simulation results (employing our algorithm), with source
rate falling in ranges of [2.0, 4.0], [3.0, 5.0], and [4.0, 6.0].
As source probability grows, the percentage of no fully-
covered scenarios rises. Similar trend is also observed
when source rate is increased. For example, nearly 40% of
network scenarios yield no fully-covered node at source
probability of 70%, when source rate falls in range [4.0,
6.0].
(d) Including Communication Cost of Transmitting

Query Messages
As described in Section 5.3, if cost for transmitting

Fig. 10. Communication cost for the algorithms with respect to various
ranges of source rate.

Fig. 11. Number of storage nodes vs. source probability.

TABLE 2
PERCENTAGE OF SCENARIOS WITH NO FULLY-

COVERED NODES IN A 200-NODE NETWORK

Source probabilitySource
rate 10% 30% 50% 70% 90%
[2,4] 0% 0% 0% 0% 0%

[3,5] 0% 0% 0% 0.60% 44.34%

[4,6] 0% 0% 0% 39.84% 76.24%

0

20000

40000

60000

80000

100000

120000

140000

O
ur
s

Q
P_
Fi
rs
t

un
it_
ag
gr

β
=0

.2
β
=0

.6
β
=1

.0
α
=0

.4
α
=0

.8

O
ur
s

Q
P_
Fi
rs
t

un
it_
ag
gr

β
=0

.2
β
=0

.6
β
=1

.0
α
=0

.4
α
=0

.8

O
ur
s

Q
P_
Fi
rs
t

un
it_
ag
gr

β
=0

.2
β
=0

.6
β
=1

.0
α
=0

.4
α
=0

.8

O
ur
s

Q
P_
Fi
rs
t

un
it_
ag
gr

β
=0

.2
β
=0

.6
β
=1

.0
α
=0

.4
α
=0

.8

O
ur
s

Q
P_
Fi
rs
t

un
it_
ag
gr

β
=0

.2
β
=0

.6
β
=1

.0
α
=0

.4
α
=0

.8

10% 30% 50% 70% 90%
Souce probability

co
m

m
un

ic
at

io
n

co
st

Pull

data query cost

data push cost

(a) 200-node network

(b) 300-node network
Fig. 9. (a) Communication cost vs. source probability in a 200-node
network. (b) Communication cost vs. source probability in a 300-node
network.

0

20000

40000

60000

80000

100000

120000

140000

O
ur
s

Q
P_

Fi
rs
t

un
it_
ag
gr

β
=0
.2

β
=0
.6

β
=1
.0

α
=0
.4

α
=0
.8

O
ur
s

Q
P_

Fi
rs
t

un
it_
ag
gr

β
=0
.2

β
=0
.6

β
=1
.0

α
=0
.4

α
=0
.8

O
ur
s

Q
P_

Fi
rs
t

un
it_
ag
gr

β
=0
.2

β
=0
.6

β
=1
.0

α
=0
.4

α
=0
.8

O
ur
s

Q
P_

Fi
rs
t

un
it_
ag
gr

β
=0
.2

β
=0
.6

β
=1
.0

α
=0
.4

α
=0
.8

O
ur
s

Q
P_

Fi
rs
t

un
it_
ag
gr

β
=0
.2

β
=0
.6

β
=1
.0

α
=0
.4

α
=0
.8

10% 30% 50% 70% 90%
Souce probability

co
m

m
un

ic
at

io
n

co
st

Pull

data query cost

data push cost

CHIU ET AL.: OPTIMAL STORAGE PLACEMENT FOR TREE-STRUCTURED NETWORKS WITH HETEROGENEOUS CHANNEL COSTS 13

query messages is considered in the cost model, one may
need to add more storage nodes after algorithm Multi-
ple_Source is completed, in order to further reduce
total cost. In what follows, we show effects of implement-
ing such a scheme. Fig. 12 illustrates communication cost
with respect to various q, ratio of the size of a query mes-
sage to a data unit, for a 200-node network. In the figure,
we compare communication cost with and without the
above mentioned scheme implemented. In the simulation,
both query rates and source rates are randomly chosen
from [2.0, 4.0] and source probability is fixed at 50%.

From Fig. 12, we see that the proposed scheme con-
stantly offers benefit, in terms of communication cost, for
the network, and the cost reduction is more evident when
q is increased. This is because traffic due to transmitting
query messages becomes a more critical factor for com-
munication cost when q grows larger, which renders data
queries more costly. In this case, adding extra storage
nodes are likely to cut down data query cost as a whole.
For example, in the figure, overall communication cost
can be reduced by as much as 15.5% and 22.8% with q
equal to 0.6 and 1.0, respectively.

7 RELATED ISSUES

In this section, we discuss some issues that have not been
specifically addressed in previous sections.

7.1 Storage Constraint
Previously, we have assumed that storage space would
not be a problem for storage nodes. We now consider
storage constraint problem. In many network applications,
queries are issued in request of recently collected data,
rather than old data. While new data are received by stor-
age nodes, stale data can be discarded. Hence storage
requirement can be less critical for the nodes. In addition,
a storage node does not necessarily store all data in its
raw form. For example, a storage node can convert col-
lected data into an average value, in order to satisfy que-
ries of the like. In this case, a storage node may only need
to store a single average value. The same argument ap-
plies to many other queries of this nature, such as the
maximum, the minimum, etc. Through such a mechanism
the saving of memory space can be significant for storage
nodes. Having a storage node receive all source data

tends to make the data converting process more effective.
Consider the situation in which raw data is needed in

order to satisfy some queries and the amount of data may
exceed a storage node’s capacity. Recall that storage
nodes will cluster together to form a subtree. One can
take advantage of this property and distribute the col-
lected data among these nodes. In other words, a storage
node no longer maintains an entire set of data. Rather,
each storage node may only store a part of it, but all stor-
age nodes collectively contain the entire set of data. Basi-
cally, we should have data generated by a source node be
saved by the same set of storage nodes throughout the
operation in order to simplify the coordination task. Fur-
ther, we should avoid the partitioning of data collected by
a source node. Each storage node is first assigned a num-
ber of branches of the network for which it is the closest
storage node. Source data generated by source nodes in
these branches have higher priority to be stored by the
storage node. When the capacity of the node is exceeded,
the storage node can then ask its neighboring storage
nodes to offer space for storing data generated by some of
the source nodes in its branches. The data distribution
must be made known to all storage nodes. In this case, it
may take more than one storage node to answer a query.
When a query is issued, the first storage node contacted
will take charge of it as usual, except that the node now
has to parse the query and then request needed data from
other storage nodes using an in-cluster multicast message.
This operation is somewhat similar to a partial pulling
scheme within the cluster of storage nodes. Communica-
tion cost due to coordination should be moderate since
these storage nodes are close to each other. In case the
total storage capacity of all storage nodes is not enough to
accommodate the data, non-storage nodes in the vicinity
of the storage set can be turned into storage nodes, if
needed, in order to deal with storage constraint problem.

7.2 Distributed Version of the Proposed Algorithm
The proposed algorithm Rate_Comp can be easily ex-
tended to a distributed version as follows. All node x that
is of degree one is allowed to send S(x, y) and R(x, y) to
its only neighbor y. When y receives x’s values, it adds S(x,
y) to S_sum[y] and R(x, y) to R_sum[y], accompanied by
increasing in_count[y] by one. Node y is able to com-
pute S(y, z) and R(y, z) for its neighbor z when ch(x, y) is
saturated for all of y’s other neighbor x z. In this way,
when all channels starting from x are saturated, x can
check by itself whether it is a fully-covered node.

However, we need to deal with the situation in which
no fully-covered node is found. Lemma 9 states that all
node i T–are connected. Furthermore, if node i finds
that it covers none of its neighbors, it can deduce from
Corollary 4 that there is no other fully-covered node in
the network, and hence it becomes a candidate storage
node for an optimal solution. Function NoFullCov can
be implemented in a distributed manner as described
earlier. However, it is now b(i, j) and cost_reduction[i]
that are computed. After this step is done, a comparison
of the amounts of cost reduction between the nodes in the
residual tree is performed to determine the optimal stor-

Fig. 12. Communication cost vs. q, ratio of the size of a query message
to a data unit, with and without node-adding scheme implemented.

14 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

age node. Such a comparison can be implemented by a
distributed election protocol [28].

8 CONCLUSIONS AND FUTURE WORK

Although the assumption of heterogeneous channel costs
seems to complicate the optimal storage problem, our
treatment has tackled potential difficulties by identifying
necessary and sufficient conditions that are irrelevant to
specific channel costs. The proposed algorithm is of O(N)
in terms of time complexity, where N is the number of
nodes in the tree. This is comparable to that of our coun-
terparts which assume homogeneous channel costs. The
proposed optimal algorithm is also useful for determining
storage node set for general topologies. One possibility is
to first find a minimum spanning tree for the network. In
this regard, we may assume that each (undirected) link is
assigned a cost which is equal to the smaller of the two
channel costs associated with the link. We can then apply
our algorithm to the produced minimum spanning tree.
Although this may not lead to an optimal solution, it
however should offer a quality solution for the network.

There are several directions for future research. First,
although our algorithm offers an optimal solution that
requires the minimum number of storage nodes, we plan
to specifically incorporate the cost taken by storage nodes
in determining the optimal storage set in our future work.
Also, more sophisticated cost model that takes other fac-
tors, such as queuing effect and link quality, into consid-
eration shall be further studied. Finally, it is a long-term
goal to design an efficient protocol that acts dynamically
to any topology change in a wireless network for an op-
timal set of storage nodes.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Council, Taiwan, under grants NSC 97-2221-E-011-070-
MY3, NSC 98-2221-E-390-024, and NSC 97-2221-E-011-
032-MY3.

REFERENCES

[1] B. M. Khumawala, “An efficient branch and bound algorithm for the
warehouse location problem,” Management Science, vol. 18, no. 12, Aug.
1972.

[2] D. B. Shmoys, E. Tardos, and K. Aardal,“Approximation algo-
rithms for facility location problems,”in Proc. of 29th ACM
Symposium on Theory and Computing, pp. 265-274, 1997.

[3] S. Bhattacharya, H. Kim, S. Prabh, and T. Abdelzaher,“Energy-
conserving data placement and asynchronous multicast in
wireless sensor networks,”in Proc. of the 1st Int’l Conf. on Mobile
Systems, Applications, and Services, pp. 173-185, 2003.

[4] L. Dowdy and D. Foster, “Comparative models of the file as-
signment problem,” ACM Computing Surveys, vol. 14, no. 2,
1982.

[5] M. Fisher and D. Hochbaum, “Database location in computer
networks,” J. ACM, vol. 27, no. 4, 1982.

[6] J. Douceur and R. Wattenhofer, “Optimizing file availability in
a secure serverless distributed file system,” inProc. of Reliable
Distributed Systems, 2001.

[7] C. Aggarwal, J. Wolf, and P. Yu, “Caching on the World Wide

Web,” IEEE Trans. on Knowledge and Data Eng., vol. 11, no. 1,
Jan./Feb. 1999.

[8] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramam-
ritham, and P. Shenoy, “Adaptive push-pull: disseminating dy-
namic Web data,” IEEE Trans. on Computers, vol. 51, no. 6, pp.
652-668, 2002.

[9] K. S. Prabh and T. F. Abdelzaher, “Energy-conserving data
cache placement in sensor networks,”ACM Trans. on Sensor
Networks, vol. 1, no. 2, 2005.

[10] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L.
Yin, and F. Yu,“Data-center storage in sensornets with GHT, a
geographic hash table,”Mobile Networks and Applications, vol. 8,
no. 4, pp. 427-442, 2003.

[11] B. Sheng, Q. Li, and W. Mao,“Data storage placement in sensor
networks,”in Proc. of Mobihoc, 2006.

[12] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal placement
of replicas in trees with read, write, and storage costs,” IEEE
Trans. on Parallel and Distributed Systems, vol. 12, no. 6, 2001.

[13] O. Wolfson and A. Milo, “The multicast policy and its relation-
ship to replicated data placement,” ACM Trans. on Database Sys-
tems, vol. 16, no. 1, pp. 181-205, Mar. 1991.

[14] G. Cornuejols, G. Nemhauser, and L. Wolsey, “Discrete location
theory, chapter the uncapacitated facility location problem,”
Lecture Note in Artificial Intelligence (LNAI 1865), Wiley, pp. 119–
171, 1990.

[15] D. Wessels and K. Claffy, “ICP and the Squid Web cache,” IEEE
J. on Selected Areas in Comm., vol. 16, no. 3, 1998.

[16] B. Sheng, C. Tan, Q. Li, and W. Mao,“An approximation algo-
rithm for data storage placement in sensor networks,”in Proc.
of Wireless Algorithms, Systems and Applications, 2007.

[17] K. Ross, “Hash routing for collections of shared Web caches,”
IEEE Networks, vol. 11, no. 6, pp. 37-44, 1997.

[18] T. Hara, “Effective replica allocation in ad hoc networks for
improving data accessibility,” inProc. of IEEE INFOCOM, vol. 3,
pp. 1568-1576, 2001.

[19] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Sup-
porting aggregate queries over ad-hoc wireless sensor net-
works,” in IEEE Workshop on Mobile Computing and Systems, pp.
49-58, 2002.

[20] L. Yin and G. Cao, “Supporting cooperative caching in ad hoc
networks,” IEEE Trans. on Mobile Computing, vol. 5, no. 1, Jan.
2006.

[21] J. Newsome and D. Song,“GEM: graph embedding for routing
and data-centric storage in sensor networks without geographic
information,”in Proc. of the 1st Int’l Conf. on Embedded Networked
Sensor Systems, pp. 76-88, 2003.

[22] R. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs: model-
ing a three-tier architecture for sparse sensor networks,” in Proc.
of the 1st IEEE Int’l Workshop on Sensor Network Protocols and Ap-
plications, pp. 30-41, May 2003.

[23] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “En-
ergy-efficient communication protocols for wireless microsen-
sor networks,”in Proc. of Int’l Conf. on System Sciences, 2000.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bala-
krishnan, “Chord: A scalable peer-to-peer lookup protocol for
internet applications,” IEEE/ACM Trans. on Networking, vol. 11,
no. 1, 2003.

[25] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J.
D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for
service deployment,” IEEE J. on Selected Areas in Comm., vol. 22,
no. 1, Jan. 2004.

[26] Gnutella Protocol Development, “Gnutella 0.6 RFC,” June, 2002.
[Online]. Available: http://rfc-gnutella.sourceforge.net/src/rfc-
0.6-draft.html.

[27] B. Zelinka, “Medians and peripherians of trees,” Archivum Mathe-

CHIU ET AL.: OPTIMAL STORAGE PLACEMENT FOR TREE-STRUCTURED NETWORKS WITH HETEROGENEOUS CHANNEL COSTS 15

maticum, vol.4, no.2, pp. 87–95, 1968.
[28] H. Garcia-Molina, “Elections in a distributed computing sys-

tem,” IEEE Trans. on Computers, vol. 31, no. 1, pp. 48-59, Jan.
1982.

[29] M. L. Brandeau and S. S. Chiu, “An overview of representative
problems in location research,” Management Science, vol. 35, no.
6, 1989.

[30] L. W. Dowdy and D. V. Foster,“Comparative models of the file
assignment problem,”ACM Computing Survey, vol. 14, no. 2, pp.
287-313, 1982.

[31] B. Li, M. J. Golin, G. F. Italiano, X. Deng, and K. Sohraby, “On
the optimal placement of Web proxies in the Internet,” in Proc.
of INFOCOM, vol. 3, pp. 1282-1290, 1999.

[32] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the
placement of Web replicas,” in Proc. of INFOCOM, vol. 3, pp.
1587-1596, 2001.

[33] S. Sivasubramanian, M. Szymaniak, and G. Pierre, “Replication
for Web hosting systems,” ACM Computing Survey, vol. 36, no. 3,
pp. 291-334, 2004.

[34] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker, “Making gnutella-like P2P systems scalable,” in Proc.
of Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, pp. 407-418, 2003.

[35] J. Luo, J. P. Hubaux, and P. T. Eugster, “PAN: providing reli-
able storage in mobile ad hoc networks with probabilistic quo-
rum systems,”in Proc. of Mobihoc, pp. 1-12, 2003.

[36] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next
century challenges:scalable coordination in sensor networks,”
in Proc. of Mobicom, pp. 263-270, 1999.

Ge-Ming Chiu received the B.S. degree from National Cheng-Kung
University, Taiwan, in 1976, the M.S. degree from the Texas Tech
University in 1981, and the Ph.D. degree from the University of
Southern California in 1991, all in electrical engineering. He is cur-
rently a professor in the Department of Computer Science and In-
formation Engineering at National Taiwan University of Science and
Technology, Taipei, Taiwan. His research interests include distrib-
uted computing, mobile computing, fault-tolerant computing, and
parallel processing. Dr. Chiu is a member of the IEEE.

Li-Hsing Yen received the BS (1989), MS (1991), and PhD (1997)
degrees in computer science, all from National Chiao Tung Univer-
sity, Taiwan. He was an assistant professor (1998-2003) and then an
associate processor (2003-2006) with the Department of Computer
Science and Information Engineering at Chung Hua University, Tai-
wan. He was an associate professor (2006 to 2010) and has been a
full professor since 2010 with the Department of Computer Science
and Information Engineering, National University of Kaohsiung, Tai-
wan. His current research interests include mobile computing, wire-
less networking, and distributed algorithms. Dr. Yen is a member of
the IEEE.

Tai-Lin Chin obtained his BS degree in Computer Science and In-
formation Engineering from National Chiao-Tung University, Taiwan,
in 1995, and the MS and PhD degrees in Electrical and Computer
Engineering from the University of Wisconsin-Madison in 2004 and
2006, respectively. He is currently with the Department of Computer
Science and Information Engineering, National Taiwan University of
Science and Technology, Taipei, Taiwan, as an Assistant Professor.
His primary research interests include wireless ad hoc, vehicular,
and sensor networks, mobile and pervasive computing, and distrib-
uted algorithms. He is a member of the IEEE.

