
Distributed Profitable Deployment of Network
Services to Geo-distributed Edge Systems

Yi-Chia Chen and Li-Hsing Yen
Department of Computer Science, College of Computer Science, National Chiao Tung University, Hsinchu, Taiwan.

Email: {yijia1127.cs06g, lhyen}@nctu.edu.tw

Abstract—Recent advance of Network Function Virtualization
(NFV) enables deployment of NFV-based network services on a
cloud-base infrastructure. Meanwhile, edge computing provides
cloud infrastructure on the the edge of access network to serve
end user. This paper proposes a decentralized market-based
framework that matches independent network service providers
(NSPs) with independent edge service providers (ESPs) for pos-
sible deployments of network services with associated payments.
The framework benefits all participants by guaranteeing that the
results are profitable for all participants: no NSP or ESP can
be better off by dropping out of the match result. Simulation
results indicate that the proposed approach had the highest
average number of deployed network services compared with
counterparts.

I. INTRODUCTION

Network functions such as firewall, deep packet inspec-
tion (DPI), intrusion detection system (IDS), and network
address translator (NAT) in telecoms network are traditionally
provided by dedicated hardware-based middleboxes. These
middleboxes support specific network function and can hardly
be reused for other purposes. This means deploying new net-
work services often requires purchasing new hardware. For its
significant capital and operational expenses, hardware-based
implementation becomes an obstacle when telecom operators
want to offer low-cost service to end users. As a remedy,
European Telecommunications Standards Institute (ETSI) has
proposed Network Function Virtualization (NFV) [1] which
by utilizing virtualization technology consolidates network
functions onto industry-standard servers, switches, and storage
hardware. In NFV architecture, network functions are realized
as software instances named virtual network functions (VNFs),
which run on virtual machines (VMs) on top of commodity
high volume servers. One promising use case of NFV is
Service Function Chaining (SFC), which dynamically chains
VNFs in a particular order to provide specific NFV-based
network services to users. For example, a service chain may
consist of an edge-router at the customer premises, followed
by a series of network functions before reaching the service
provider’s core network.

SFC placement is to select a set of physical servers to
place VNFs for a particular SFC. The placement should meet
resource constraints of servers yet different placements may
incur different operation costs. In the literature, many algo-
rithms have been proposed for VNF or SFC placement in cloud
data centers. These placements aim at resource utilization [2],
[3], load balancing [3], and operation cost [4], [2]. As the

placements are in centralized data centers, service latency of
SFC is not a primary concern. However, if an SFC is to
serve end users on the edge of access network, placing it in
a data center that is distant from end users may introduce
high service latency and is not suitable for latency-sensitive
services. Examples of these services include those aiming
to support autonomous driving, automated factory, or smart
buildings. For these applications, edge computing [5] provides
storage and computational resources close to end users, which
enables processing end-user traffic at the edge of networks.
With edge computing, telecoms operators or independent
service providers could deploy and manage network services
at the edge, providing latency-sensitive or context-aware NFV-
based network service to end users. In fact, multi-access edge
computing (MEC) is considered complementary to NFV [6],
since both technologies are based on virtualized platforms.

In this paper, we consider a business model with two groups
of participants in NFV and MEC environment. One group
consists of edge server providers (ESPs) and the other group
consists of network service providers (NSPs). Each ESP owns
a set of geo-distributed edge servers with heterogeneous capa-
bilities. ESP leases resources on edge servers to NSPs for VNF
placement at the edge of the network. ESP collects revenues
from and also pays expense incurred in resource lease. NSP
leases resources from ESPs for SFC deployments with specific
needs and constraints. NSP pays resource lease fee to ESP
yet receives revenues from network service users outside the
model. NSPs and ESPs all want to maximize their payoffs.
However, NSPs maximize their payoffs by minimizing their
payments while ESPs do so by maximizing the resource lease
prices. Therefore, their objectives are conflicting. The goal
of our study is to design a trading mechanism that benefits
all participants. We propose a decentralized framework for
ESPs and NSPs to check possible SFC deployment with
resource lease between every pair of ESP and NSP. The
check involves a placement of each VNF in the SFC to
an edge servers in the ESP that meets all the constraints
while minimizing overall operational expense. The minimal
operational expense serves as the ask price of the ESP, based
on which a bargaining process known as matching auction
exercises between ESPs and NSPs for payment determination.
We shall analyze whether an ESP or NSP can be better off by
deviating from the result of the bargaining. We also conducted
simulations to study the profits of NSPs and ESPs in various
demand and supply situations.



The rest of this paper is organized as follows. Sec. II
describes the system model and problem formulation. The fol-
lowing section presents the proposed mechanism with analysis.
Sec. IV shows our simulation results. Sec. V concludes this
paper.

II. BACKGROUND

A. System Model

We assume n network services N = {ns1, ns2, . . . , nsn}
to be deployed in the edge system. We denote the NSP of
nsi by nspi. Each network service nsi consists of a chain of
VNFs {vnfi,1, vnfi,2, . . . , vnfi,ni

}, where ni is the number of
VNFs in the chain. The NFV Orchestrator (NFVO) [7] of
nspi generates and manages a network service descriptor for
nsi. In the descriptor, each VNF in the chain is described by
a VNF descriptor which links to a VNF image and comes
with a Virtual Deployment Unit (VDU) descriptor. The VDU
specifies among other settings vmi,j , the VM type for running
vnfi,j , and Li,j , a set of locations where vnfi,j can be placed.
For the sake of our problem, we characterize each vnfi,j ∈ nsi
by a pair (vmi,j , Li,j). The whole network service nsi is also
associated with latency constraint ti, which is the maximum
latency that is acceptable when running nsi.

We assume m ESPs P = {esp1, esp2, . . . , espm} in the
edge system. Each ESP espk ∈ P accommodates NFV
Management and Orchestration Architecture (NFV-MANO)
[8] and owns a set of mk geo-distributed edge servers Sk =
{sk,1, sk,2, . . . , sk,mk

}. The location of each server sk,l ∈ Sk
is denoted by slk,l. Let R be the set of all different types
of physical resources (CPU, memory, storage, etc.) For each
type of physical resource r ∈ R, edge server sk,l ∈ Sk
has a limited supply Crk,l. We characterize each edge server
sk,l by a pair ({Crk,l}r∈R, slk,l). The physical resources on
edge server are virtualized into pool of VMs and managed by
Virtual Infrastructure Manager (VIM), such as OpenStack, for
dynamically VM provisioning [9].

A network service can only be served by one ESP (i.e.,
cannot be split and deployed to different ESPs) while an ESP
can serve multiple network services subject to its capacity
and the latency constraints associated with network services.
To figure out which ESPs can serve nsi, nspi sends a query
to each espk ∈ P with the associated latency constraint
ti and (vmi,j , Li,j) for each VNF vnfi,j ∈ nsi. When an
ESP espk receives the query, it checks for each vnfi,j ∈ nsi
whether there is some edge server sk,l ∈ Sk in Li,j that has
enough resources to host vnfi,j . If the check is positive, espk
estimates the expected latency θk(nsi) if it serves nsi to see if
θk(nsi) ≤ ti. If espk meets all the requirements, espk becomes
an eligible supplier of nsi and replies a quotation to nspi.
The quotation includes information like θk(nsi) and espk’s
ask price (minimal selling price) βi,k.

Not all eligible suppliers of nsi will be considered by nspi.
Each NSP nspi has a maximal price vi (i.e., its budget) that
it is willing to pay for the deployment of nsi. Only eligible
suppliers with ask prices not exceeding vi are candidate
suppliers of nsi. Among all candidate suppliers, the NSP

selects one, say, espk, to submit its offer with a bid price pki .
The bid price should not exceed the NSP’s budget but greater
than or equal to the candidate supplier’s ask price.

An ESP may receive offers from more than one NSPs.
Normally the ESP will accept all the received offers. However,
since ESP performs eligibility check for network services
individually, it is possible that an ESP can accept the offers
individually but not collectively due to its resource capacity.
When this happens, the ESP selectively accepts some offers
while rejecting all the others. If an offer is rejected, the NSP
may in turn resubmit its offer with a raised bid price to the
same ESP, or submit another offer (possibly with a different
bid price) to another candidate supplier. The process repeats
until the offer gets accepted or all candidate suppliers reject
the NSP’s offer yet the NSP cannot further raise its bid price
(i.e., any raise would exceed its budget).

B. Problem Formulation

We model the deployment of network services to edge
systems as a matching between the two parties. We use matrix
X = [xki ] to denote the matching result, where xki ∈ {0, 1}
indicates whether network service nsi is deployed to ESP espk.
The result also involves the setting of pki , nspi’s payment to
ESP espk if xki = 1.

The payments affects NSP’s and ESP’s objectives in two
different ways. On one hand, nspi wants to maximize its payoff
defined by vi−pki from the deployment while minimizing the
latency of the network service. Therefore, we define NSP’s
utility as the payoff per unit of latency. The objective of every
nspi ∈ N is

max
xk
i ,p

k
i

m∑
k=1

(
xki ·

vi − pki
θk(nsi)

)
. (1)

On the other hand, an ESP’s profit is the total revenue
from the deployment of network services minus the associated
operational cost. For a network service nsi, the associated op-
erational cost comes from the hosting of all VNFs vnfi,j ∈ nsi.
Because different types of resources may incur different costs
at different edge servers, the costs of hosting vnfi,j vary at
different edge severs. Let crk,l be the unit cost of physical
resource type r at edge server sk,l and variable yk,li,j ∈ {0, 1}
indicate whether sk,l hosts vnfi,j . The total operational cost
incurred by nsi on espk can be calculated as

ωk(nsi) =

ni∑
j=1

mk∑
l=1

∑
r∈R

(
yk,li,j · d

r
i,j · crk,l

)
, (2)

where dri,j is the amount of type-r physical resource demanded
by vnfi,j . To make the deployment profitable, espk’s ask price
βi,j should not be less than ωk(nsi). Each espk’s objective is
to maximize its own profit, which can be expressed as

max
{xi,pki }

n∑
i=1

(
xki ·

(
pki − ωk(nsi)

))
. (3)

These objectives are subject to several constraints. First, the
satisfaction constraint ensures that if espk serves nsi, each



vnfi,j ∈ nsi should be hosted by exactly one edge server sk,l ∈
espk. Formally,

xki = 1→
mk∑
l=1

yk,li,j = 1, ∀vnfi,j ∈ nsi. (4)

Second, the location constraint ensures that edge server sk,l
hosts vnfi,j only if the location of sk,l is in the set of locations
Li,j associated with vnfi,j . It can be expressed as

yk,li,j ≤ πk,l(vnfi,j), ∀vnfi,j ∈ nsi, sk,l ∈ espk, (5)

where πk,l(vnfi,j) ∈ {0, 1} indicates whether the location of
sk,l meets the demand of vnfi,j . That is, πk,l(vnfi,j) = 1 if
slk,l ∈ Li,j and πk,l(vnfi,j) = 0 otherwise.

The capacity constraint asserts that the total amount of
physical resource of any type allocated to VNFs at any edge
server sk,l cannot exceed sk,l’s capacity. Formally,
n∑
i=1

ni∑
j=1

(xki ·y
k,l
i,j ·d

r
i,j) ≤ Crk,l, ∀r ∈ R, sk,l ∈ espk, espk ∈M.

(6)
The constraint also suggests that an edge server can host
multiple VNFs as long as it has enough capacity.

The third constraint is latency constraint:

θk(nsi) ≤ ti, if xki = 1, ∀nsi ∈ N , espk ∈M. (7)

The budget constraint limits the maximum bid price of each
NSP nspi:

0 ≤ pki ≤ vi, ∀nsi ∈ N . (8)

Finally,
xki ∈ {0, 1}, ∀nsi ∈ N , (9)

and
m∑
k=1

xki ≤ 1, ∀nsi ∈ N . (10)

Constraints (9) and (10) demand that a network service cannot
be split and deployed to more than one ESPs.

Any setting of X corresponds to a definition of a one-
to-many matching function µ : N ∪ P → N ∪ P such that
µ(nsi) = espk if xki = 1 (µ(nsi) = nsi if xki = 0 for all k)
and µ(espk) = {nsi | µ(nsi) = espk} (µ(espk) = {espk} if
xki = 0 for all i). The result may not be the most preferred one
for every ESP and network service. For every nspi ∈ N , we
define nspi’s preference on P∪{nsi} such that espj ≺i espk if
nspi prefers espj to espk. Moreover, nsi ≺i espk if nspi prefers
not matching with espk under all circumstances. Similarly, we
define preference relation ≺k on 2N ∪ {espk} for every ESP
espk. Let S, T ⊆ N be two different sets of network services,
we have S ≺k T if espk prefers S to T . Also, espk ≺k T for
any T ⊆ N if and only if espk prefers no matching at all to
being matched with T .

To guarantee stability, a matching should exclude blocking
individual and blocking pair in the result. An nsi (resp. espk) is
a blocking individual if nsi ≺i µ(nsi) (resp. espk ≺k µ(espk)).
Intuitively, an NS or ESP is a blocking individual if it will be

better off by deviating from the matching result (i.e., quitting).
A pair (nsi, espk) is a blocking pair if nsi /∈ µ(espk), espk ≺i
µ(nsi) and there exists a (possibly empty) set of services S ⊆
µ(espk) such that S ∪ {nsi} ≺k µ(espk).

Definition 1: A matching result is stable if there is no
blocking pairs or blocking individuals.

C. Related Work

The marriage problem [10] is a one-to-one matching in
which a man/woman is matched to at most one woman/man.
It has been used to model the resource allocation of wireless
communications [11]. However, our problem is not a one-to-
one matching since an ESP can serve more than one network
services.

A one-to-many matching allows an agent from one side to
be matched with several agents from the other side. A well-
known example is the college admission problem [10], where
a college can admit more than one students. In this problem,
the maximum number of students that a college can admit is
the college’s quota, which is fixed. In contrast, the quota of an
edge server in our problem is not fixed to a constant because
the maximal number of VNFs that the server can host depends
on the aggregated resource demand of VNFs and the server’s
resource capacity.

The deferred acceptance (DA) algorithm [10] guarantees
stability for one-to-one matching problem. For one-to-many
matching, DA may fail finding stable matching if the acceptors
(e.g., the colleges) do not have fixed quotas. Xu and Li
[12] proposed a revised one-to-many matching model for the
assignment of jobs to machines. In this problem, each job has
a size and each machine has a capacity. A machine can be
assigned to several jobs as long as the total size of the jobs
assigned to it does not exceed the capacity of the machine.
The authors also proposed an algorithm for the job-machine
problem which is extension to the DA algorithm. Compared
to other matching models, our problem is most closely related
to the job-machine model since network services are to jobs
as ESPs are to machines.

Unlike traditional matching, matching with transfers in-
volves monetary exchange. Shapley and Shubik [13] first
described it as an assignment game, where buyers pay sellers
in exchange for goods. A seller has a valuation on each item
it sells, and each buyer also values the item it wants to buy. If
a buyer values an item higher than the item seller, they may
trade at a certain price. The matching with transfers model
can be progressed in the form of a matching auction [14].

III. PROPOSED MECHANISMS

We propose a two-layer matching mechanism for the de-
ployment of network service to edge systems. The upper layer
is the bargaining process between NSPs and ESPs. The lower
layer is to allocate edge resources for VNF deployment within
an ESP. In the bargaining process, when an ESP receives a
query or an offer, the ESP uses the lower-layer mechanism
to check the deployment eligibility and estimate associated
operational expense.



A. Bargaining Between NSPs and ESPs

The bargaining process between NSPs and ESPs is for each
NSP to determine to which EPS and with what bid price should
it submit its offer for the placement of the associated network
service. It is also for each ESP to decide whether it should
accept a particular offer.

Our algorithm, named Bargaining Process in Deployment
of Network Services to Edge System (BP-DNSES), is adapted
from deferred acceptance (DA) algorithm [12]. Each NSP nspi
values a candidate supplier espk by the following preference
function:

Φi(espk) =

{
vi−pki
θk(nsi)

, if θk(nsi) ≤ ti
−1, otherwise.

(11)

This preference function is exactly nspi’s utility when the
latency constraint is met. We explicitly define Φi(nsi) = 0.
Therefore, the negative preference value when θk(nsi) > ti
implies that nspi prefers not matching with espk under any
circumstances. Also, nspi will not submit an offer to espk
with bid price pki > vi due to negative preference value.

In each round of the bargaining process, each NSP nspi
selects a candidate supplier espk with the highest preference
value to submit its offer with a bid price pki ≥ βi,k. When an
ESP espk receives an offer from nspi, it executes the server
allocation protocol introduced in the next subsection to see if
it can host all VNFs in nsi. It tentatively accepts the offer if it
can. If espk cannot accept the current offer due to insufficient
resource, it checks whether some tentatively accepted offers
should be rejected to make room for this offer. It does so by
defining a simple ranking on offers.

The ranking is based on a preference function Φk(nsi)
that ESP espk uses to value nspi’s offer. A straightforward
definition for Φk(·) is espk’s profit from the deployment of
nsi:

Φk(nsi) = pki − ωk(nsi). (12)

The value of ωk(nsi) depends on the actual placement of each
nsi, which is quite complicated (subject to resource capacity,
location, and latency constraints) and thus deferred to the
lower layer. For a quick calculation, we use the following
definition.

Φk(nsi) =
pki∑ni

j=1

∑
r∈R

(
αrk · dri,j

) , (13)

where αrk is a weight that indicates the relative importance
of physical resource type r among all types in espk with the
property that

∑
r α

r
k = 1. This version considers the revenue

per unit of the weighted sum of all physical resource demanded
by nsi.

To make room for nsi, espk checks all tentatively accepted
offers in a non-decreasing order of their preference values.
For each such offer, espk tentatively revokes its deployment
and then executes the server allocation protocol to see if the
amount of available resource after the revocation becomes high
enough to deploy nsi. If it is, espk accepts nsi. Otherwise, espk
proceeds to check the next offer. If espk still cannot accept nsi

even with the revocation of all tentatively accepted offers with
preference values lower than nsi, espk rejects nsi and recovers
all revoked offers. On the other hand, if espk accepts nsi after
the revoking of some offer nsj , nsj and all other offers that
have been tentatively revoked are examined again one by one
in the reverse order of the revoking to see if each such offer can
actually be accepted after the deployment of nsi. A tentatively
revoked offer will be rejected if the acceptance is impossible.

When its offer is rejected, the NSP may either raise the bid
price to pi,k + δ and resubmit it to the same ESP or submit
another offer to another ESP with a possibly different bid
price. The decision depends on which offer has the highest
preference value.

B. Server Allocation Protocol

The server allocation problem is for an ESP espk to ar-
range one hosting edge server sk,l ∈ espk for each VNF
vnfi,j ∈ nsi. We say that sk,l matches with vnfi,j if sk,l hosts
vnfi,j . The match is valid if it meets both the capacity and
location constraints. Different from matching in combinatorial
optimization problem (e.g., bipartite matching), an edge server
can match with multiple VNFs. For a valid match (sk,l, vnfi,j),
the associated cost is

c(sk,l, vnfi,j) =
∑
r∈R

(
crk,l · dri,j

)
. (14)

The minimum-cost server allocation problem is to find a valid
match for each VNF in a given service chain such that the
associated total cost is minimized.

Instead of solving the minimum-cost server allocation prob-
lem using a centralized algorithm, we use DA as a de-
centralized server allocation protocol. For each edge server
sk,l ∈ espk, it prefers vnfi,j to vnfi,j′ if c(sk,l, vnfi,j) <
c(sk,l, vnfi,j′). On the other hand, VNF vnfi,j prefers edge
server sk,l to sk,l′ if c(sk,l, vnfi,j) < c(sk,l′ , vnfi,j).

C. Example and Stability Analysis

We consider a bargaining example with two network ser-
vices ns1, ns2 and two ESPs esp1, esp2. We assume that all
NSPs set set their increments of bid price to 30 dollars
(δ = 30). Table I shows the budgets of NSPs and ask prices
of ESPs.

We assume that each NSP’s initial bid price proposed to
an ESP is the ESP’s ask price. With that bid price, both nsp1
and nsp2 prefer esp1 to esp2 and thus propose to esp1 with
bid prices 60 and 100, respectively. Suppose that esp1 does
not have enough resource to accept both offers. Since esp1’s
preference value on ns1 (12.5) is less than that of ns2 (16.67),
esp1 accepts nsp2’s offer and rejects nsp1’s.

In the second round, nsp1 still prefers esp1 to esp2 even after
raising p11 to 60 + 30 = 90 and thus resubmits its new offer to
nsp1. Although esp1’s bid price is still lower than esp2’s, this
time esp1’ preference value on ns1 (22.5) is higher than that
on ns2 (16.67). Therefore, esp1 accepts nsp1’s new offer and
rejects nsp2’s.

In the next round, nsp2 attempts raising its bid price to 130
and still prefers esp1 to esp2. It resubmits its offer to esp1 but



TABLE I: Budgets of NSPs and ask prices of ESPs

Network service Budget ESP Ask price

ns1 110 esp1
esp2

60
105

ns2 180 esp1
esp2

100
150

still gets rejected because esp1’s preference value on ns1 is
still higher than that on ns2 (21.67). After nsp2 further raises
p12 to 160, it prefers an alternative offer with bid price 150 to
esp2. This offer is accepted by esp2.

Consequently, ns1 and ns2 are deployed to esp2 and esp1
with payments 150 and 90, respectively. The profits of nsp1
and nsp2 are 20 and 30, respectively, and the profits of esp1
and esp2 are 30 and 0, respectively.

As mentioned, the quota of an edge server in our problem is
not fixed to a constant. For this reason, our BP-DESNS algo-
rithm does not guarantee a stable matching result. However,
it still precludes the existence of blocking individuals. The
reason is not difficult to see. A NSP will never propose to
an ESP which gives the NSP a negative payoff. Similarly, an
ESP will not accept an offer which gives it a negative profit.
Therefore, no NSP or NSP will be better off by giving up its
matching result.

IV. NUMERICAL RESULTS

TABLE II: Simulation Parameters

Parameter Description Default value

n Number of network services 200
m Number of ESPs 5
nl Number of served locations 5
[nl

v , n
u
v ] The lower and upper bounds of the number

of VNFs in a service chain
[4, 10]

[nl
l, n

u
l ] The lower and upper bounds of the number

of locations specified by a VNF
[1, 3]

[tl, tu] The lower and upper bounds of latency
constraint specified by a service chain

[20, 100]

δ Bid increment 50
µnc , µ

n
m, µ

n
s Means of CPU, memory, and storage ca-

pacities in an edge server
200, 2000, 4000

σn
c , σ

n
m, σ

n
s SDs of CPU, memory, and storage capaci-

ties in an edge server
20, 200, 400

µcc, µ
c
m, µ

c
s Mean unit costs of CPU, memory, and

storage in an edge server
20, 10, 5

σc
c , σ

c
m, σ

c
s SDs of CPU, memory, and storage unit

costs in an edge server
5, 2, 1

Table II lists all simulation parameters. Each result was an
average of 50 trials with a configuration. We used uniform
distributions to generated the number of VNFs in a service
chain, the number of locations specified by a VNF, and the
latency constraint associated with a service chain. Only 70%
service chains had latency constraint. The rest did not. We
used Gaussian distributions to generate the capacities and unit
costs of CUP, memory, and storage in an edge server. We
provided the same set of VM types as that offered by Amazon
EC2 in US West Region [15] which is shown in Table III.
We generated the VM type of each VNF following the Zipf
distribution [16] in which the probability of the Medium type

TABLE III: VM Instance Types Offered by Amazon EC2–US West Region

Medium Large XLarge XXLarge

CPU 1 2 4 8
Memory (GB) 3.75 7.5 15 30
Storage (GB) 4 32 80 160

is twice of that of the Large type, the probability of the Large
type is also twice of that of the XLarge type, and so on.

For the estimation of expected latency, we first randomly
placed five disk-shaped service regions in a 100 × 100 km2

area. The service regions each with radius 15 km did not
overlap with each other. We then randomly placed one server
for each ESP in each service region. Refer to Fig. 1 for the
test topology. The latency between two edge servers was set
to be proportional to the in-between distance.

50 40 30 20 10 0 10 20 30 40 50
X

50

40

30

20

10

0

10

20

30

40

50

Y

The Topology of Edge Servers of ESPs

ESP 0
ESP 1
ESP 2
ESP 3
ESP 4

Fig. 1: Service regions and locations of edge servers

We measured the profits of ESPs and NSPs, and the number
of served network services. For performance comparisons, we
adapted two alternative one-to-many matching mechanisms.
The first was capacitated house allocation (CHA) [17], which
assumes one-sided (rather than two-sided) preferences. We
modified CHA such that ESPs have preferences on network
services while NSPs choose ESPs at random. The other
alternative was Random, where each network service was
randomly assigned to an ESP with bid price set to the mediate
value between the ESP’s ask price and the NSP’s budget.

We varied the number of network services from 50 to 500
with an increment of 50. Fig. 2a shows how NSP’s average
profits changed with increased number of network services.
Clearly, NSP’s average profits declined in all mechanisms as
the number of network services increased. This is because
NSP’s bid prices became higher when more network services
contended for limited resource. Nevertheless, NSP’s average
profits using BP-DESNS were higher than both CHA and
Random. Fig. 2b shows the average profits of ESPs with
increasing number of network services. In contrast to Fig. 2a,
ESP’s average profits slightly increased using BP-DNSES or
CHA when the number of network services increased. This
can be justified as more competing requests will generally
raise the final bid prices. Here CHA brought ESPs higher
profits than BP-DNSES due to its setting of bid prices (the
mediate values between the ESP’s ask prices and the ESP’s
budgets). Concerning the average number of served network



50 100 150 200 250 300 350 400 450 500
Numbers of Network Services

0

50

100

150

200

250

300

To
ta
l P
ro
fit

Avg. Total Profit of Network Services

BP-DNSES Random CHA

(a) Avg. profit of NSPs

50 100 150 200 250 300 350 400 450 500
Numbers of Network Services

2000

4000

6000

8000

10000

12000

To
ta
l P
ro
fit

Avg. Total Profit of ESPs

BP-DNSES Random CHA

(b) Avg. profit of ESPs

50 100 150 200 250 300 350 400 450 500
Numbers of Network Services

50

100

150

200

250

Nu
m
be
r o

f S
er
ve
d 
Ne

tw
or
k 
Se
rv
ice

s

BP-DNSES Random CHA

(c) Avg. number of served network services

Fig. 2: Performance with increased number of network services

services, Fig. 2c shows BP-DNSES outperformed both CHA
and Random.

We also examined the effects of bid increment (δ) in BP-
DESNS. Fig. 3a shows the average total number of iterations
in a match auction versus δ, where less iterations were needed
with larger δ. This was expected as a large δ decreases the
number of times that NSPs can raise their bid prices. For
the same reason, the number of served service chains also
decreased as shown in Fig. 3b.

Figs. 3c and 3d show the average profits of NSPs and ESPs,
respectively. We can see that, as δ increased, NSP’s average
profits decreased while ESP’s average profits increased. This
can be explained as a large bid increment usually means that
buyers generally pay prices much higher than needed to get
served. This increased seller’s profits while decreasing buyer’s.

V. CONCLUSIONS

We have proposed a decentralized framework for NSPs to
negotiate with ESPs possible SFC deployments with associ-
ated payments. The negotiation involves a check for possible
placement of each VNF in the SFC to an edge server in the
ESP. The result is profitable for both sides and precludes the
existence of blocking individuals, meaning that no NSP or
NSP will be better off by dropping out of its matching result.
Simulation results show that, compared with counterparts, the
proposed approach slightly favors NSPs, but also makes the
most average number of network services deployed to edge
systems.

REFERENCES

[1] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Deng et al., “Network functions
virtualisation: introductory white paper,” in SDN and OpenFlow World
Congress, 2012.

[2] A. Leivadeas, M. Falkner, I. Lambadaris, and G. Kesidis, “Optimal
virtualized network function allocation for an SDN enabled cloud,”
Computer Standards & Interfaces, vol. 54, pp. 266–278, 2017.

5 20 35 50 65
Delta

5000

7500

10000

12500

15000

17500

20000

22500

25000

Ite
ra
tio

n

BP-DNSES

(a) Avg. number of iterations

5 20 35 50 65
Delta

160

180

200

220

240

260

Nu
m
be
r o
f S
er
ve
d 
Ne
tw
or
k 
Se
rv
ice
s

BP-DNSES

(b) Avg. number of served network
services

5 20 35 50 65
Delta

250

300

350

400

450

500

Pr
of
it

BP-DNSES

(c) Avg. profit of NSPs

5 20 35 50 65
Delta

3600

3800

4000

4200

4400

4600

4800

Pr
of
it

BP-DNSES

(d) Avg. profit of ESPs

Fig. 3: Performance with respect to the setting of δ

[3] D. Dietrich, C. Papagianni, P. Papadimitriou, and J. S. Baras, “Network
function placement on virtualized cellular cores,” in 9th Int’l Conf. on
Communication Systems and Networks, 2017, pp. 259–266.

[4] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV service chain
deployment based on affiliation-aware vNF placement,” in Proc. IEEE
Globecom Conf., 2016, pp. 1–6.

[5] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G net-
work edge cloud architecture and orchestration,” IEEE Communications
Surveys and Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.

[6] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing: A key technology towards 5G,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[7] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider, “NFV and SDN:
Key technology enablers for 5G networks,” IEEE Journal on Selected
Areas in Communications, vol. 35, no. 11, pp. 2468–2478, 2017.

[8] V. Sciancalepore, F. Giust, K. Samdanis, and Z. Yousaf, “A double-tier
MEC-NFV architecture: Design and optimisation,” in IEEE Conf. on
Standards for Communications and Networking, 2016, pp. 1–6.

[9] A. Corradi, M. Fanelli, and L. Foschini, “VM consolidation: A real
case based on OpenStack cloud,” Future Generation Computer Systems,
vol. 32, pp. 118–127, 2014.

[10] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[11] S. Bayat, R. H. Louie, B. Vucetic, and Y. Li, “Dynamic decentralised
algorithms for cognitive radio relay networks with multiple primary and
secondary users utilising matching theory,” Transactions on Emerging
Telecommunications Technologies, vol. 24, no. 5, pp. 486–502, 2013.

[12] H. Xu and B. Li, “Anchor: A versatile and efficient framework for
resource management in the cloud,” IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 6, pp. 1066–1076, 2012.

[13] L. S. Shapley and M. Shubik, “The assignment game I: The core,”
International Journal of Game Theory, vol. 1, no. 1, pp. 111–130, 1971.

[14] D. Fershtman and A. Pavan, “Matching auctions,” Northwestern Uni-
versity, Working Paper 0144, 2017.

[15] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A PTAS mechanism for
provisioning and allocation of heterogeneous cloud resources,” IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 9, pp. 2386–2399, Sep. 2015.

[16] L. A. Adamic and B. A. Huberman, “Zipf’s law and the Internet,”
Glottometrics, vol. 3, no. 1, pp. 143–150, 2002.

[17] D. F. Manlove and C. T. S. Sng, “Popular matchings in the capacitated
house allocation problem,” in Algorithms – ESA 2006, Y. Azar and
T. Erlebach, Eds. Springer Berlin Heidelberg, 2006, pp. 492–503.


