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PAPER
Incentive-Stable Matching Protocol for Service Chain Placement in
Multi-Operator Edge System

Jen-Yu WANG†, Li-Hsing YEN†, and Juliana LIMAN†, Nonmembers

SUMMARY Network Function Virtualization (NFV) enables the em-
bedding of Virtualized Network Function (VNF) into commodity servers.
A sequence of VNFs can be chained in a particular order to form a service
chain (SC). This paper considers placing multiple SCs in a geo-distributed
edge system owned by multiple service providers (SPs). For a pair of SC
and SP, minimizing the placement cost while meeting a latency constraint is
formulated as an integer programming problem. As SC clients and SPs are
self-interested, we study the matching between SCs and SPs that respects
individual’s interests yet maximizes social welfare. The proposed match-
ing approach excludes any blocking individual and block pair which may
jeopardize the stability of the result. Simulation results show that the pro-
posed approach performs well in terms of social welfare but is suboptimal
concerning the number of placed SCs.
key words: service chain placement, edge computing, matching

1. Introduction

Network Function Virtualization (NFV) exploits virtualiza-
tion technique to embed network function into commodity
servers, switches, and storages. It can help reducing the cap-
ital expenses (CAPEX), operating expenses (OPEX), and
facilitating time-to-market [1] [2]. Network functions im-
plemented as Virtualized Network Functions (VNFs) could
be instantiated in virtual machines (VMs) hosted by differ-
ent physical machines at various locations. Service Function
Chaining (SFC) is to chain a sequence of VNFs in a particular
order to form a service chain (SC). Service chain placement
(SCP) is to deploy SCs into a physical or virtualized infras-
tructure. SCP consists of two tasks. 1) VNF placement (also
known as Virtual Network Embedding [3]), which is to place
VNFs with specific demands in the infrastructure. The goal
is usually to minimize the placement cost. 2) SFC routing,
which is to statically or dynamically determine the route be-
tween two consecutive VNFs in an SC. The goal is typically
to minimize the latency.

Many SCP approaches assumed cloud data centers as
the underlying infrastructure (e.g., [4]). This paper instead
considers edge system, which places virtualized computation
and storage resource in a location close to end users. Edge
system enhances user experience by providing low-latency
service. Existing approaches to SCP in edge system aim to
minimize overall latency [5], minimize total expected end-
to-end latency [6], or jointly minimize the traffic cost and
operational cost [7]. Most studies assumed only one network
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operator or edge service provider (SP). With this assumption,
a client, who intends to deploy SCs on an edge system,
cannot benefit from choosing a best SP that meets the client’s
demand yet costs the least. The research in [8] assumed
multiple SPs and minimized the overall monetary cost for
clients to reach the client-beneficial result. By contrast, our
work favors neither clients nor SPs.

We assume that multiple clients want to minimize their
payments to SPs for SC placement whereas multiple SPs
want to maximize their profits by minimizing their placement
costs. In some sense, SPs and clients have conflicting interest
since SP’s utilities can be increased if clients increase their
payments. But doing so will decrease client’s utilities. Our
goal in this study is to provide a trading platform for both SPs
and clients. If the platform favors either party, then the other
party may not have the incentive to participate. Therefore,
the mission of the platform is to maximize social welfare,
the sum of all the SP’s and client’s utilities, by matchings
SPs with SCs. An SP is matched with an SC if the whole SC
is placed in edge servers owned by the same SP. Since SPs
and clients have their own interests, a set of matchings that
maximizes the social welfare may not be the best choice of
every SP or client. Explicitly, some SP or client may become
a blocking individual, meaning that she or he can be better
off by deviating from the matching result. Furthermore, a
pair of SP and client that are not matched may become a
blocking pair when both could be better off if they were
matched to each other. Therefore, a crucial requirement on
the solution is stability, which implies the exclusion of both
blocking individuals and blocking pairs.

In this paper, we address the SCP problem in a multi-SP
edge system. A VNF may demand a particular location to
place (which is a locality constraint), yet every SC comes
with a constraint on the aggregated latency including pro-
cessing, propagation, and transmission delays. For a par-
ticular SC to be placed in a single SP, the objective of the
SCP problem is to minimize the placement cost. The cost
then becomes the minimal price for the placement. Since the
prices may be different for different SPs and SCs, finding an
optimal set of matchings between SPs and SCs that is stable
yet maximizes social welfare is nontrivial.

We propose using the Deferred Acceptance (DA) algo-
rithm [9] to generate a preliminary matching result. Because
our definition of SP’s preference on SCs are substitutable,
the result is stable [10]. However, the result is also the worst
stable matching for SPs. We thus use the T-algorithm [11]
to make the resulting matching egalitarian.
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We conducted simulations to study the performance of
the proposed approach and compared it with Boston Student
Assignment Mechanism (BSAM) [12]. The result shows
that the proposed approach can achieve higher social welfare
yet fewer matching pairs than BSAM. Compared with pure
DA, the proposed approach can improve SP’s interests when
placing many SCs.

The remainder of the paper is organized as follows.
Section 2 reviews related works, present the system model,
and formulates the problem. Section 3 defines preference
functions for each client/SP and presents the proposed ap-
proach. Section 4 shows our simulation results. Section 5
concludes the paper.

2. Background and Problem Formulation

2.1 Related Work

Generally, VNF placement problem is to minimize the place-
ment cost, either the cost by physical machines or the cost
by traffic. The cost by physical machines comes in two ma-
jor types, resource consumption [13] and computational cost
[14]. Zanzi et al. [13] introduced multi-access edge comput-
ing (MEC) broker and modeled the problem as minimizing
the overall capacity utilization over different MEC systems
hosted in a 5G network. In [14], Benkacem et al. formulated
the problem into two objectives, including minimizing the
cost and maximizing the Quality of Experience (QoE) of
virtual stream service in Content Delivery Network (CDN)
slice. On the other hand, traffic cost is usually caused by sys-
tem network traffic [15]. Carpio et al. [15] presented a way
to improve load balancing in the NFV network by minimiz-
ing links utilization. Hyodo et al. [16] proposed a model that
relaxes the visit order and no-loop constraints imposed by a
logical network generated on an original physical network.

Apart from VNF placement, SCP also needs to address
SFC routing. Some researches formulated routing cost based
on the distance and allocated bandwidth between two con-
secutive VNFs [7] and aimed to minimize the traffic cost,
including distance and allocated bandwidth of virtual links
mapped to physical links, and operational cost represented
by the number of active node between two consecutive time
slot [7]. Luizelli et al. [17] tackled both propagation delay
and processing delay by minimizing the number of VNFs
mapped on the physical nodes. Cziva et al, [6] presented
a dynamic placement scheduling solution for minimizing
the expected end-to-end latency, considering the processing
delay.

All studies mentioned above restricted the SCP problem
to single SP. In reality, there may be more than one SPs with
the same service coverage. This setting allows clients to
select an SP that provides the lowest cost [8]. In this paper,
we aim to maximize the sum of SP’s profits and client’s
payoffs.

2.2 System Model

We assume 𝐹 as the set of all possible VNFs and 𝑆 =

{𝑠1, 𝑠2, ..., 𝑠 |𝑆 | } as the set of all SCs to deploy. Each SC
𝑠𝑘 = ( 𝑓 𝑘1 , 𝑓

𝑘
2 , ..., 𝑓

𝑘
𝑞𝑘
), where 𝑓 𝑘

𝑖
∈ 𝐹, is a sequence of 𝑞𝑘

VNFs. The SC itself is associated with a latency constraint
𝜃𝑘 . Associated with each VNF 𝑓 𝑘

𝑖
in 𝑠𝑘 is the amount of

requested computation resource, a set of areas allowed for
deployment, and the requested bandwidth allocated to the
logical link to the next VNF in 𝑠𝑘 . We quantify compu-
tation resource as a number of computing resource blocks
(CRBs) [18] and let 𝛾𝑘

𝑖
be the number demanded by 𝑓 𝑘

𝑖
.

Define 𝐺𝑘 = (𝛾𝑘
1 , 𝛾

𝑘
2 , · · · , 𝛾

𝑘
𝑞𝑘
). Assume that there are 𝜂

areas in the system denoted by a set 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝜂}.
Let 𝐸 = {(𝑢, 𝑣) |𝑎𝑢, 𝑎𝑣 ∈ 𝐴} dnote the set of physical links
between every two areas 𝑎𝑢 and 𝑎𝑣. Each VNF 𝑓 𝑘

𝑖
in 𝑠𝑘 is

allowed to be placed in one of the areas in area set 𝑑𝑘
𝑖
⊆ 𝐴.

The set of areas allowed by each VNF in 𝑠𝑘 is denoted by
𝐷𝑘 = (𝑑𝑘

1 , 𝑑
𝑘
2 , ...𝑑

𝑘
𝑞𝑘
). A logical link 𝑙𝑘

𝑖
= ( 𝑓 𝑘

𝑖
, 𝑓 𝑘

𝑖+1) is de-
fined for each pair of two consecutive VNFs 𝑓 𝑘

𝑖
and 𝑓 𝑘

𝑖+1 in
SC 𝑠𝑘 . Each logic link is mapped onto a physical link. Let
band𝑘

𝑖 be the amount of bandwidth requested by 𝑙𝑘
𝑖
. The set

of bandwidth requested by each logical link in 𝑠𝑘 is collec-
tively denoted by 𝐵𝑘 = (band𝑘

1 , band𝑘
2 , · · · , band𝑘

𝑞𝑘
).

We also assume a set of SPs 𝑃 = {𝑝1, 𝑝2, ...𝑝 |𝑃 | }. Each
SP 𝑝𝑛 ∈ 𝑃 has accommodated NFV Management and Or-
chestration Architecture (NFV-MANO) and their own edge
servers [19]. We use 𝑚𝑛

𝑖
to denote the edge server that 𝑝𝑛

has placed in area 𝑎𝑖 ∈ 𝐴 (𝑚𝑛
𝑖
= ∅ if 𝑝𝑛 does not place any

edge server in 𝑎𝑖). The set of edge servers owned by 𝑝𝑛 in
all areas can then be captured by 𝑀𝑛 = (𝑚𝑛

1 , 𝑚
𝑛
2 , ..., 𝑚

𝑛
𝜂).

To ease the deployment and management process, each SP
𝑝𝑛 slices its resource and predetermines its quota 𝑞(𝑝𝑛), the
maximum number of SCs admitted by 𝑝𝑛, and equally di-
vides its computing resource into 𝑞(𝑝𝑛) blocks. Let 𝑐𝑛

𝑖
be

the number of CRBs available in server 𝑚𝑛
𝑖
. The amount

of CRBs allocated to each SC in 𝑚𝑛
𝑖

is then 𝑐𝑛
𝑖
/𝑞(𝑝𝑛). All

variables and notations used in this paper are summarized in
Table 1.

For each SC 𝑠𝑘 ∈ 𝑆, the associated client will broad-
cast an inquiry 𝑟𝑘 = (𝑠𝑘 , 𝐺𝑘 , 𝐷𝑘 , 𝐵𝑘) to all SPs asking for
possible placement. If an SP 𝑝𝑛 is able to place 𝑠𝑘 , it will
send an ask price to the client. The client then selects one
SP (possibly the one with the lowest ask price) to send a
placement request with a bid price. If an SP receives more
requests than it can accept, it reject some requests (possibly
those with low profits). The clients with requests rejected
may then turn to other SPs or raise their bid prices and resub-
mit their requests. SP 𝑝𝑛 and the client 𝑠𝑘 may need several
rounds of negotiations to reach their final price 𝑏𝑛

𝑘
.

2.3 Problem Formulation

Each SC 𝑠𝑘 is associated with a budget 𝜓𝑛
𝑘
, the maximum

price that the associated client is willing to pay to SP 𝑝𝑛 for
the placement of 𝑠𝑘 . The budgets are differential because



WANG et al.: INCENTIVE-STABLE MATCHING PROTOCOL FOR SERVICE CHAIN PLACEMENT IN MULTI-OPERATOR EDGE SYSTEM
3

Table 1: Summary of Notations
Overall

𝑃 Set of all SPs
𝐴 Set of all areas
𝑀 Set of all edge servers
𝐸 Set of all physical links
𝑆 Set of all SCs to deploy
𝐹 Set of all possible VNFs

For service providers
𝑝𝑛 ∈ 𝑃 The 𝑛-th SP in 𝑃

𝑚𝑛
𝑖

The edge server in area 𝑎𝑖 ∈ 𝐴 owned by 𝑝𝑛
𝑀𝑛 The set of all edge servers owned by 𝑝𝑛
𝑞 (𝑝𝑛 ) The maximum number of SCs admitted by 𝑝𝑛
𝑐𝑛
𝑖

The number of available CRBs in 𝑚𝑛
𝑖

𝐶𝑛
𝑘

The minimal price asked by 𝑝𝑛 to place SC 𝑠𝑘 ∈ 𝑆

𝛿𝑛
𝑗

Whether 𝑝𝑛 owns an edge server in area 𝑎 𝑗 ∈ 𝐴

𝜆𝑛
𝑗

The computation rate of 𝑚𝑛
𝑗

𝑐band
𝑛,𝑢,𝑣 The link bandwidth of (𝑢, 𝑣) ∈ 𝐸 owned by 𝑝𝑛

ℎ𝑢,𝑣 The distance between two areas 𝑎𝑢 and 𝑎𝑣
𝛼𝑛
𝑗

The unit cost of CRB in 𝑚𝑛
𝑗

For service chains
𝑠𝑘 ∈ 𝑆 The 𝑘-th SC in 𝑆

𝑞𝑘 The length of 𝑠𝑘
𝜃𝑘 The latency constraint of 𝑠𝑘
𝜓𝑛
𝑘

The maximum payment to 𝑝𝑛 ∈ 𝑃 for placing 𝑠𝑘
𝑏𝑛
𝑘

The final payment to 𝑝𝑛 ∈ 𝑃 for placing 𝑠𝑘
𝐿𝑘 The set of logical links of 𝑠𝑘

For VNF
𝑓 𝑘
𝑖
∈ 𝐹 The 𝑖-th VNF in SC 𝑠𝑘

𝛾𝑘
𝑖

The number of CRBs demanded by 𝑓 𝑘
𝑖

𝑑𝑘
𝑖

The set of areas where 𝑓 𝑘
𝑖

could be placed
𝑙𝑘
𝑖
∈ 𝐿𝑘 The logical link between 𝑓 𝑘

𝑖
and 𝑓 𝑘

𝑖+1
band𝑘

𝑖
The bandwidth demand of 𝑙𝑘

𝑖

𝑤𝑘
𝑖

The workload of 𝑓 𝑘
𝑖

𝑡𝑘
𝑖

The traffic load of 𝑙𝑘
𝑖

Output variables
𝑥
𝑘,𝑛
𝑖, 𝑗

Whether 𝑓 𝑘
𝑖

is placed in 𝑚𝑛
𝑗

𝑦
𝑛,𝑘,𝑖
𝑢,𝑣 Whether 𝑙𝑘

𝑖
maps to (𝑢, 𝑣) ∈ 𝐸 owned by 𝑝𝑛

Derived variable
𝑧𝑛
𝑘

Whether 𝑠𝑘 is served by 𝑝𝑛

different SPs may provide different levels of quality of ser-
vice (QoS). On the other hand, each SP 𝑝𝑛 has a minimum
selling price 𝐶𝑛

𝑘
for the placement of 𝑠𝑘 . The value of 𝐶𝑛

𝑘

depends on 𝑝𝑛’s cost to place 𝑠𝑘 . The matching between 𝑠𝑘
and 𝑝𝑛 is possible only if the final selling price 𝑏𝑛

𝑘
satisfies

𝐶𝑛
𝑘
≤ 𝑏𝑛

𝑘
≤ 𝜓𝑛

𝑘
. For this price, the client’s utility is 𝜓𝑛

𝑘
− 𝑏𝑛

𝑘

whereas 𝑝𝑛’s utility is 𝑏𝑛
𝑘
− 𝐶𝑛

𝑘
.

Let 𝑧𝑛
𝑘
∈ {1, 0} indicate whether 𝑠𝑘 is matched with

𝑝𝑛. The social welfare is defined as the sum of all SP’s and
client’s utilities:∑︁

𝑝𝑛∈𝑃

∑︁
𝑠𝑘 ∈𝑆

(
𝑧𝑛𝑘

( (
𝜓𝑛
𝑘 − 𝑏𝑛𝑘

)
+
(
𝑏𝑛𝑘 − 𝐶

𝑛
𝑘

) ) )
=

∑︁
𝑝𝑛∈𝑃

∑︁
𝑠𝑘 ∈𝑆

(
𝑧𝑛𝑘 ·

(
𝜓𝑛
𝑘 − 𝐶

𝑛
𝑘

) )
, (1)

Note that the social welfare has nothing to do with the final
selling prices. Our objective is to maximize (1) subject to
several constraints. The first few constraints concern VNF
placement. First, each VNF in any SC is placed in at most
one edge server. Let 𝑥𝑘,𝑛

𝑖, 𝑗
∈ {1, 0} indicates whether VNF 𝑓 𝑘

𝑖

is placed in edge server 𝑚𝑛
𝑗
. This constraint can be expressed

as ∑︁
𝑝𝑛∈𝑃

∑︁
𝑚𝑛

𝑗
∈𝑀𝑛

𝑥
𝑘,𝑛
𝑖, 𝑗
≤ 1, ∀ 𝑓 𝑘𝑖 ∈ 𝑠𝑘 , ∀𝑠𝑘 ∈ 𝑆. (2)

Second, 𝑠𝑘 is matched with 𝑝𝑛 only if every VNF in 𝑠𝑘 is
placed in an edge server owned by 𝑝𝑛. Together with (2) we
have

𝑞𝑘 · 𝑧𝑛𝑘 =
∑︁
𝑓 𝑘
𝑖
∈𝑠𝑘

∑︁
𝑚𝑛

𝑗
∈𝑀𝑛

𝑥
𝑘,𝑛
𝑖, 𝑗

, ∀𝑝𝑛 ∈ 𝑃, ∀𝑠𝑘 ∈ 𝑆. (3)

A VNF in 𝑠𝑘 can be placed in area 𝑎 𝑗 only if 𝑝𝑛 has placed
an edge server there:

𝑥
𝑘,𝑛
𝑖, 𝑗
≤ 𝛿𝑛𝑗 , ∀𝑚𝑛

𝑗 ∈ 𝑀𝑛, ∀𝑝𝑛 ∈ 𝑃, ∀ 𝑓 𝑘𝑖 ∈ 𝑠𝑘 , ∀𝑠𝑘 ∈ 𝑆, (4)

where 𝛿𝑛
𝑗
= 0 if 𝑚𝑛

𝑗
= ∅ and 𝛿𝑛

𝑗
= 1 otherwise. Also, an

SC’s aggregated CRB requirement on any edge server cannot
exceed the capacity allocated to the SC. In other words,∑︁
𝑓 𝑘
𝑖
∈𝑠𝑘

(
𝛾𝑘
𝑖 · 𝑥

𝑘,𝑛
𝑖, 𝑗

)
≤

𝑐𝑛
𝑗

𝑞(𝑝𝑛)
,∀𝑠𝑘 ∈ 𝑆,∀𝑝𝑛 ∈ 𝑃,∀𝑚𝑛

𝑗 ∈ 𝑀𝑛.

(5)

Yet another constraint is that the total number of SCs placed
in any SP 𝑝𝑛 cannot exceed 𝑝𝑛’s quota:∑︁

𝑠𝑘 ∈𝑆
𝑧𝑛𝑘 ≤ 𝑞(𝑝𝑛),∀𝑝𝑛 ∈ 𝑃. (6)

The next few constraints concern SFC routing. Let
𝑦
𝑛,𝑘,𝑖
𝑢,𝑣 ∈ {1, 0} indicate whether the physical link (𝑢, 𝑣)

owned by 𝑝𝑛 is allocated to logical link 𝑙𝑘
𝑖
. Any such al-

location is allowed only if 𝑠𝑘 is matched with 𝑝𝑛. That
is,
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𝑦𝑛,𝑘,𝑖𝑢,𝑣 ≤ 𝑧𝑛𝑘 , ∀𝑙
𝑘
𝑖 ∈ 𝐿𝑘 , ∀(𝑢, 𝑣) ∈ 𝐸, ∀𝑝𝑛 ∈ 𝑃, ∀𝑠𝑘 ∈ 𝑆.

(7)

Furthermore, the aggregated bandwidth requirement on a
physical link (𝑢, 𝑣) ∈ 𝐸 cannot exceed the bandwidth capac-
ity. Let 𝑐band

𝑛,𝑢,𝑣 be the bandwidth capacity of link (𝑢, 𝑣) ∈ 𝐸

owned by 𝑝𝑛, then this constraint is∑︁
𝑠𝑘 ∈𝑆

∑︁
𝑙𝑘
𝑖
∈𝐿𝑘

band𝑘
𝑖 · 𝑦𝑛,𝑘,𝑖𝑢,𝑣 ≤ 𝑐band

𝑛,𝑢,𝑣, ∀(𝑢, 𝑣) ∈ 𝐸, ∀𝑝𝑛 ∈ 𝑃.

(8)

To match 𝑠𝑘 with 𝑝𝑛, we also must allocate an physical link
to each logical link 𝑙𝑘

𝑖
in 𝑠𝑘 . Eq. (9) ensures that the physical

link allocated to 𝑙𝑘
𝑖

starts from the edge server where 𝑓 𝑘
𝑖

is
placed:∑︁
𝑚𝑛

𝑣 ∈𝑀𝑛\{𝑚𝑛
𝑢 }
𝑦𝑛,𝑘,𝑖𝑢,𝑣 ≥ 𝑥

𝑘,𝑛
𝑖,𝑢

, ∀ 𝑓 𝑘𝑖 ∈ 𝑠𝑘 , ∀𝑚𝑛
𝑢 ∈ 𝑀𝑛, ∀𝑝𝑛 ∈ 𝑃.

(9)

Furthermore, (10) asserts that the logical link 𝑙𝑘
𝑖

from 𝑓 𝑘
𝑖

to
𝑓 𝑘
𝑖+1 is allocated a physical link from the edge server where
𝑓 𝑘
𝑖

is placed to that where 𝑓 𝑘
𝑖+1 is placed.∑︁

𝑚𝑛
𝑣 ∈𝑀𝑛

(
𝑦𝑛,𝑘,𝑖𝑢,𝑣 − 𝑦𝑛,𝑘,𝑖𝑣,𝑢

)
= 𝑥

𝑘,𝑛
𝑖,𝑢
− 𝑥𝑘,𝑛

𝑖+1,𝑢,∀ 𝑓
𝑘
𝑖 ∈ 𝑠𝑘 , ∀(𝑢, 𝑣) ∈ 𝐸.

(10)

Note that 𝑥𝑘,𝑛
𝑖,𝑢

= 𝑥
𝑘,𝑛

𝑖+1,𝑢 if 𝑓 𝑘
𝑖

and 𝑓 𝑘
𝑖+1 are placed in the same

edge server 𝑚𝑛
𝑢.

The latency constraint shown in (11) demands that 𝑠𝑘
can match with 𝑝𝑛 only if the total service latency does not
exceed 𝜃𝑘 .

𝑧𝑛𝑘
(
𝐿proc (𝑘, 𝑛) + 𝐿trans (𝑘, 𝑛) + 𝐿prop (𝑘, 𝑛)

)
≤ 𝜃𝑘 , ∀𝑠𝑘 ∈ 𝑆,

(11)
where 𝐿proc (𝑘, 𝑛), 𝐿trans (𝑘, 𝑛), and 𝐿prop (𝑘, 𝑛) denote the
total processing delay, transmission delay, and propagation
delay, respectively, when 𝑠𝑘 is matched with 𝑝𝑛. Processing
delay is the time it takes for an edge server to process the work
load generated by a VNF instance hosted by it. Assuming
computation capacity 𝜆𝑛

𝑗
of edge server 𝑚𝑛

𝑗
and work load

𝑤𝑘
𝑖

of VNF 𝑓 𝑘
𝑖

, the total processing delay of 𝑠𝑘 ∈ 𝑆 matched
with 𝑝𝑛 can be estimated as

𝐿proc (𝑘, 𝑛) =
∑︁
𝑓 𝑘
𝑖
∈𝑠𝑘

∑︁
𝑚𝑛

𝑗
∈𝑀𝑛

𝑤𝑘
𝑖

𝜆𝑛
𝑗

𝑥
𝑘,𝑛
𝑖, 𝑗

. (12)

Transmission delay is the amount of time required to push
the traffic of logical link 𝑙𝑘

𝑖
into the allocated physical link.

Assuming a traffic load 𝑡𝑘
𝑖

of link 𝑙𝑘
𝑖

and the bandwidth
capacity 𝑐band

𝑛,𝑢,𝑣 of physical link (𝑢, 𝑣) owned by SP 𝑝𝑛, the
total transmission delay of 𝑠𝑘 ∈ 𝑆 matched with 𝑠𝑝 can be
estimated as

𝐿trans (𝑘, 𝑛) =
∑︁
𝑓 𝑘
𝑖
∈𝑠𝑘

∑︁
(𝑢,𝑣) ∈𝐸

𝑡𝑘
𝑖

𝑐band
𝑛,𝑢,𝑣

𝑦𝑛,𝑘,𝑖𝑢,𝑣 . (13)

Propagation delay is the time it takes to transmit some sig-
nal from the source to the destination. Assuming a signal
speed as the speed of light 𝑐 and letting ℎ𝑢,𝑣 be the physical
distance between two areas 𝑎𝑢 and 𝑎𝑣, we can formulate the
propagation delay as

𝐿prop (𝑘, 𝑛) =
∑︁
𝑓 𝑘
𝑖
∈𝑠𝑘

∑︁
(𝑢,𝑣) ∈𝐸

ℎ𝑢,𝑣

𝑐
𝑦𝑛,𝑘,𝑖𝑢,𝑣 , ∀𝑠𝑘 ∈ 𝑆. (14)

3. Proposed Mechanism

The first step of the solution is to find out the minimal selling
price 𝐶𝑛

𝑘
for each 𝑠𝑘 ∈ 𝑆 and 𝑝𝑛 ∈ 𝑃. The value of 𝐶𝑛

𝑘
is at

least the cost of matching 𝑠𝑘 with 𝑝𝑛 with VNF placement
decisions {𝑥𝑘,𝑛

𝑖, 𝑗
| 1 ≤ 𝑖 ≤ 𝑞𝑘 , 1 ≤ 𝑗 ≤ 𝜂}. Let 𝛼𝑛

𝑗
be the cost

per CRB in edge server 𝑚𝑛
𝑗
∈ 𝑀𝑛, we have

𝐶𝑛
𝑘 = min

𝑥
𝑘,𝑛
𝑖, 𝑗

∑︁
𝑓 𝑘
𝑖
∈𝑠𝑘

∑︁
𝑚𝑛

𝑗
∈𝑀𝑛

(
𝑥
𝑘,𝑛
𝑖, 𝑗
· 𝛼𝑛

𝑗 · 𝛾𝑘
𝑖

)
(15)

subject to (2) to (11). It is an integer programming problem,
which be solved by a general problem solver (e.g., Gurobi).

3.1 Individual’s Preference

For the framework of matching, we need to define the pref-
erence of each each participant (either a client or an SP).
A preference is a total order on the sets of all the possible
matches for the participant. For SP’s preference, we define
a function 𝜙𝑛 (𝑆′) for SP 𝑝𝑛 to evaluate a possible matching
with a set of SCs 𝑆′ ⊆ 𝑆. Because every SP prefers a set of
SCs that brings in the maximal potential profit, we have

𝜙𝑛 (𝑆′) =
∑︁
𝑠𝑘 ∈𝑆′

(
𝜓𝑛
𝑘 − 𝐶

𝑛
𝑘

)
. (16)

Since SP has limited resource capacity with limited service
coverage, it is not necessary that 𝜙𝑛 (𝑆′) < 𝜙𝑛 (𝑆′′) whenever
𝑆′ ⊂ 𝑆′′.

For clients, the client requesting SC 𝑠𝑘 surely prefers
an SP 𝑝𝑛 to all other SPs if 𝑝𝑛’s minimal selling price,
𝐶𝑛
𝑘
, is the lowest among all others. However, the client

should also consider possible resource surplus provided by
each SP. An SC may receive non-zero resource surplus
because SPs generally do not allocate the exact amount of
computing resource requested by the SC (recall that each SP
𝑝𝑛 partitions its CRBs into 𝑞(𝑝𝑛) equal blocks). When an
VNF 𝑓 𝑘

𝑖
is hosted by an edge server 𝑚𝑛

𝑗
, the resource surplus

is
𝜌
𝑘,𝑛
𝑖, 𝑗

= 𝑐𝑛𝑗 /𝑞(𝑝𝑛) − 𝛾𝑘
𝑖 . (17)

If an SC has more resource surplus, the SC is more resilient
against sudden spurt of resource demand.

We consider two preference functions for clients which
obey the law of diminishing return [20]. The law states that
the additions of resource surplus yield progressively smaller,
or diminishing, increases in benefits after the amount of
resource surplus reaches some point. It is considered a
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(a) (b)

Fig. 1: (a) The first preference function and (b) The second
preference function.

general principle in Economics. The first preference function
is defined as

𝜙𝑘 (𝑝𝑛) =
∑︁
𝑓 𝑘
𝑖
∈𝑠𝑘

©­«
𝑐𝑛
𝑗
/𝑞(𝑝𝑛)
𝐶𝑛
𝑘

·
𝛾𝑘
𝑖∑

𝑓 𝑘
𝑗
∈𝑠𝑘 𝛾

𝑘
𝑗

+
𝜌
𝑘,𝑛
𝑖, 𝑗
·
∫ 𝜌

𝑘,𝑛
𝑖, 𝑗

𝑥=0 𝜆𝑒−𝜆𝑥𝑑𝑥·
𝐶𝑛
𝑘

·
𝜌
𝑘,𝑛
𝑖, 𝑗

𝛾𝑘
𝑖

ª®®¬
(18)

The second preference function is defined below:

𝜙𝑘 (𝑝𝑛) =
∑︁
𝑓 𝑘
𝑖
∈𝑠𝑘

𝛾𝑘
𝑖
− ln

(
𝑐𝑛
𝑗

𝑞 (𝑝𝑛 ) − 𝛾
𝑘
𝑖

)
𝐶𝑛
𝑘

. (19)

With this function, the highest value occurs when the amount
of resource allocated to 𝑠𝑘 is exactly the same it demands.
Fig. 1a and Fig. 1b show how the first and second prefer-
ence functions, respectively, grow with increasing resource
surplus.

With the definitions of preference functions, we can
now define preference relations ≻𝑠𝑘 on 𝑃 for every 𝑠𝑘 ∈ 𝑆

and ≻𝑝𝑛 on 2𝑆 for every 𝑝𝑛 ∈ 𝑃. Formally, for each 𝑠𝑘 ∈ 𝑆,
𝑝𝑛 ≻𝑠𝑘 𝑝𝑟 (meaning that 𝑠𝑘 prefers 𝑝𝑛 to 𝑝𝑟 ) if and only if
𝜙𝑘 (𝑝𝑛) > 𝜙𝑘 (𝑝𝑟 ). Similarly, for each 𝑝𝑛 ∈ 𝑃, 𝑆′ ≻𝑝𝑛 𝑆′′

(𝑝𝑛 prefers 𝑆′ to 𝑆′′, where 𝑆′ and 𝑆′′ are two subsets of 𝑆)
if and only if 𝜙𝑛 (𝑆′) > 𝜙𝑛 (𝑆′′). Furethermore, we define
Ch(S, ≻𝑝𝑛 ) = {𝑆′ ⊆ S | �𝑆′′ ⊆ S, 𝑆′′ ≻𝑝𝑛 𝑆′} for each
𝑝𝑛 ∈ 𝑃, S ⊆ 𝑆, and Ch(P, ≻𝑠𝑘 ) = {𝑝′ ∈ P | �𝑝′′ ∈
P, 𝑝′′ ≻𝑠𝑘 𝑝′} for each 𝑠𝑘 ∈ 𝑆, P ⊆ 𝑃.

3.2 Proposed Mechanism

We propose using the well-known DA [9] (Algorithm 1)
first to generate a preliminary matching result for SCs and
SPs. The mission of Algorithm 1 is to define two matching
functions. One is 𝜇𝑆 : 𝑆 → 𝑃∪{∅}, which is a mapping such
that, for all 𝑠𝑘 ∈ 𝑆, 𝜇𝑆 (𝑠𝑘) = 𝑝𝑛 if 𝑠𝑘 is matched with 𝑝𝑛 and
𝜇𝑆 (𝑠𝑘) = ∅ otherwise. The other is 𝜇𝑃 : 𝑃 → 2𝑆 , which is
another mapping such that, for all 𝑝𝑛 ∈ 𝑃, 𝜇𝑃 (𝑝𝑛) = 𝑆′ if 𝑝𝑛
is matched with 𝑆′ ⊆ 𝑆 and 𝜇𝑃 (𝑝𝑛) = ∅ otherwise. It is not
difficult to see that Algorithm 1 ensures 𝜇𝑆 (𝑠𝑘) = {𝑝𝑛} if and
only if 𝑠𝑘 ∈ 𝜇𝑃 (𝑝𝑛). For that property we call 𝜇 = {𝜇𝑆 , 𝜇𝑃}
a prematching.

Algorithm 1 DA algorithm
Require: 𝑆; 𝑃
1: 𝜇𝑃 (𝑝𝑛 ) ← ∅, ∀𝑝𝑛 ∈ 𝑃 ⊲ initialize 𝑝𝑛’s matching result
2: 𝜇𝑆 (𝑠𝑘 ) ← ∅, ∀𝑠𝑘 ∈ 𝑆 ⊲ initialize 𝑠𝑘’s matching result
3: ∀𝑠𝑘 ∈ 𝑆: 𝑠list

𝑘
← {𝑝𝑛 | 𝐶𝑛

𝑘
≤ 𝜓𝑛

𝑘
}

4: 𝑆to_match ← {𝑠𝑘 | 𝑠𝑘 ∈ 𝑆, 𝑠list
𝑘

≠ ∅}
5: while 𝑆to_match ≠ 𝜙 do
6: 𝑅𝑛 ← ∅, ∀𝑝𝑛 ∈ 𝑃 ⊲ 𝑅𝑛 keeps all requests to 𝑝𝑛
7: for all 𝑠𝑘 ∈ 𝑆to_match do
8: 𝑝𝑛 ← arg max

𝑝∈𝑠list
𝑘

𝜙𝑘 (𝑝) ⊲ most preferred
9: 𝑅𝑛 ← 𝑅𝑛 ∪ {𝑠𝑘 } ⊲ new request to 𝑝𝑛

10: 𝑠list
𝑘
← 𝑠list

𝑘
\ {𝑝𝑛 } ⊲ no revisiting 𝑝𝑛

11: if 𝑠list
𝑘

= ∅ then
12: 𝑆to_match ← 𝑆to_match \ {𝑠𝑘 }
13: end if
14: end for
15: for all 𝑝𝑛 ∈ 𝑃 such that 𝑅𝑛 ≠ ∅ do
16: 𝐴← Ch(𝑅𝑛 ∪ 𝜇𝑃 (𝑝𝑛 ) , ≻𝑝𝑛 ) ⊲ all accepted requests
17: 𝜇𝑃 (𝑝𝑛 ) = 𝐴

18: 𝐽 ← (𝑅𝑛 ∪ 𝜇𝑃 (𝑝𝑛 ) ) \ 𝐴 ⊲ all rejected requests
19: 𝑆to_match ← 𝑆to_match \ 𝐴
20: for all 𝑠𝑡 ∈ 𝐴 do
21: 𝜇𝑆 (𝑠𝑡 ) ← {𝑝𝑛 }
22: end for
23: 𝑆to_match ← 𝑆to_match ∪ 𝐽

24: for all 𝑠𝑡 ∈ 𝐽 do
25: 𝜇𝑆 (𝑠𝑡 ) ← ∅
26: end for
27: end for
28: end while
29: return ({𝜇𝑃 (𝑝) }𝑝∈𝑃 , {𝜇𝑆 (𝑠) }𝑠∈𝑆 )

The prematching is not necessarily stable. In our prob-
lem, SP’s preference is responsive and thus substitutable
because each SP has a fixed quota and (16). For that prop-
erty the prematching is stable. Although the result is optimal
for SCs, it is also the worst stable matching for SPs.

To make the matching egalitarian, we use T-algorithm
[11] to find another matching from the prematching 𝜇 =

{𝜇𝑆 , 𝜇𝑃}. It attempts identifying two groups of sets from 𝜇.
The first 𝑈 (𝑝𝑛, 𝜇𝑆) = {𝑠𝑘 ∈ 𝑆 | 𝑝𝑛 ⪰𝑠𝑘 𝜇𝑆 (𝑠𝑘)} is defined
for each 𝑝𝑛 ∈ 𝑃. Intuitively, an SC 𝑠𝑘 is in 𝑈 (𝑝𝑛, 𝜇𝑆) if
either 𝑠𝑘 is matched with 𝑝𝑛 or 𝑠𝑘 prefers 𝑝𝑛 to the one
matched with it. The second group of sets 𝑉 (𝑠𝑘 , 𝜇𝑃) =

{𝑝𝑛 ∈ 𝑃 | ∃𝑆′ ⊆ 𝑆, 𝑠𝑘 ∈ 𝑆′ ∩ Ch(𝜇𝑃 (𝑝𝑛) ∪ 𝑆′, ⪰𝑝𝑛 )} is
defined for each 𝑠𝑘 ∈ 𝑆. Intuitively, an SP 𝑝𝑛 is in𝑉 (𝑠𝑘 , 𝜇𝑃)
if either 𝑝𝑛 is matched with 𝑠𝑘 or 𝑝𝑛 would rather match
with 𝑠𝑘 than not match with 𝑠𝑘 when considering the union
of any subset of SCs that includes 𝑠𝑘 and the set of SCs that
is matched with 𝑝𝑛.

After identifying these two groups of sets, the T-
algorithm iteratively updates the matching for each SC and
SP. Explicitly, it updates 𝜇𝑃 (𝑝𝑛) to Ch(𝑈 (𝑝𝑛, 𝜇𝑆), ≻𝑝𝑛 ) for
each 𝑝𝑛 ∈ 𝑃 and updates 𝜇𝑃 (𝑠𝑘) to Ch(𝑉 (𝑠𝑘 , 𝜇𝑃), ≻𝑠𝑘 ) for
each 𝑠𝑘 ∈ 𝑆. The iteration terminates when the above up-
dating does not change any matching. Refer to Algorithm 2.
It has been proved that the output of T-algorithm is stable
provided that its input is stable [11].
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Algorithm 2 T-algorithm
Require: 𝑆; 𝑃; {𝜇𝑃 (𝑝) }𝑝∈𝑃 ; {𝜇𝑆 (𝑠) }𝑠∈𝑆
1: 𝜇′ ← 𝜇 ⊲ initial prematching
2: repeat
3: 𝜇 ← 𝜇′

4: 𝑈 (𝑝𝑛 , 𝜇𝑆 ) ← {𝑠𝑘 ∈ 𝑆 | 𝑝𝑛 ⪰𝑠𝑘 𝜇𝑆 (𝑠𝑘 ) } for all 𝑝𝑛 ∈ 𝑃

5: 𝑉 (𝑠𝑘 , 𝜇𝑃 ) ← {𝑝𝑛 ∈ 𝑃 | ∃𝑆′ ⊆ 𝑆, 𝑠𝑘 ∈ 𝑆′ ∩ Ch(𝜇𝑃 (𝑝𝑛 ) ∪
𝑆′ , ⪰𝑝𝑛 ) } for all 𝑠𝑘 ∈ 𝑆

6: 𝜇′
𝑃
(𝑝𝑛 ) ← Ch(𝑈 (𝑝𝑛 , 𝜇𝑆 ) , ≻𝑝𝑛 ) for each 𝑝𝑛 ∈ 𝑃

7: 𝜇′
𝑃
(𝑠𝑘 ) ← Ch(𝑉 (𝑠𝑘 , 𝜇𝑃 ) , ≻𝑠𝑘 ) for each 𝑠𝑘 ∈ 𝑆

8: until 𝜇′ = 𝜇

9: return 𝜇′

3.3 Time Complexity Analysis

We shall now give bounds on the computational complexities
of the proposed algorithms. In Algorithm 1, it is SCs that
propose to SPs. From Lines 7 to 14, each SC 𝑠𝑘 proposes to
its most preferred SP 𝑝𝑛 and remove it from 𝑠𝑘’s preference
list 𝑠list

𝑘
. Since the size of 𝑠list

𝑘
is at most |𝑃 |, each SC can

make at most |𝑃 | proposals. From this perspective, the time
complexity of Algorithm 1 is𝑂 ( |𝑆 | |𝑃 |). However, SCs could
make their proposals simultaneously, making the algorithm
executed in a round-by-round basis. If this is the case, the
time complexity of Algorithm 1 is 𝑂 ( |𝑃 |)

The time complexity of T-algorithm relates to the total
length of each SP’s/SC’s preference list. The length of each
SC’s preference list is at most |𝑃 |. Each SP 𝑝𝑛 does not
consider any subset of SCs with cardinality greater than
𝑞(𝑝𝑛). Therefore, the number of SC subsets 𝑆′ ⊆ 𝑆 to
consider in (16) is at most

∑
1≤𝑖≤𝑞 (𝑝𝑛 )

( |𝑆 |
𝑖

)
. This implies that

the length of 𝑝𝑛’s preference list is 𝑂 ( |𝑆 |𝑞 (𝑝𝑛 ) ). Echenique
and Oviedo [11] have proved that the number of iterations
in Algorithm 2 is less than∑︁

𝑠𝑘 ∈𝑆
(L𝑘 − 1) +

∑︁
𝑝𝑛∈𝑃
(L𝑛 − 1), (20)

where L𝑘 and L𝑛 are the lengths of 𝑠𝑘’s and 𝑝𝑛’s prefer-
ence lists, respectively. Therefore, the time complexity of
Algorithm 2 is 𝑂 ( |𝑆 | |𝑃 | + |𝑃 | |𝑆 |𝑞 (𝑝𝑛 ) ), which is 𝑂 ( |𝑃 | |𝑆 |𝑞)
where 𝑞 = max𝑝𝑛∈𝑃{𝑞(𝑝𝑛)}.

4. Numerical Results

4.1 Simulation Settings

Because no settings or data of real trace were publicly avail-
able, we used simulations with synthetic parameters to inves-
tigate the performance of the proposed approaches. Though
the results presented here do not reflect any real system in op-
eration, we believe that the results still provide some insights
into the problem under consideration.

Our simulations considered four SPs and 𝜂 areas, where
𝜂 ranged from 5 to 8. The total number of CRBs owned
by each SP was uniformly distributed over [600, 700] with
default value 650. Each SP 𝑝𝑛 deployed its edge serves in

𝐴𝑛 out of 𝜂 areas and equally allocated its CRBs to all its
edge servers. There were 15 to 20 SCs (15 by default) in
the simulations. We assumed 10 different types of VNFs.
The lengths of SCs were randomly generated. The quota of
each SP was fixed to 4. Parameter 𝛼𝑛

𝑗
in (15) was randomly

selected from [1, 1.5]. The value of each 𝜓𝑛
𝑘

was uniformly
distributed over [210, 300].

4.2 The Effect of The Length of SCs

We assumed 20 SCs, 𝜂 = 𝐴𝑛 = 5 for all 𝑝𝑛, and set 𝑞𝑘 (the
length of SC) by an exponential distribution. Each result is
an average over 500 trials. Figs. 2a and 2b show how the
social welfare and the number of matched SCs, respectively,
changed when the mean of the distribution increased. Since
the resource capacity of SPs was fixed, the increase in the
resource demands (i.e., the mean number of VNFs requested)
resulted in fewer deployed SCs and thus lower social welfare.

(a) (b)

Fig. 2: (a) The social welfare and (b) the number of matched
SCs with increasing mean of |𝑠𝑘 | (with 20 SCs)

(a) (b)

Fig. 3: (a) The social welfare and (b) the number of matched
SCs versus the number of SP’s service areas (‘Large’ has
twice the resource capacity of ‘Small’)

4.3 The Effect of SP’s Service Coverage

We fixed 𝜂 = 5 and varied 𝐴𝑛, the number of 𝑝𝑛’s service
areas for each SP 𝑝𝑛. Since each SP equally allocated all its
computing resource to all areas where the SP had deployed
edge servers, the resource capacity of each edge server be-
came smaller when the SP served more areas. Figs. 3a and
3b show the social welfare and the number of matched SCs,
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respectively, with increasing number of SP’s service areas.
Here each VNF is allowed to be deployed in one of three
areas randomly selected from five areas. Both the number of
matched SCs and the social welfare increase firstly. When
an SP deployed edge servers in three out of five areas, for
each VNF there is at least one area for the SP to deploy the
VNF (by the pigeonhole principle). When an SP extended its
service coverage to more areas, the number of matched SCs
as well as the social welfare dropped because of relatively
low resource capacity in each area. The setting of low re-
source capacity (‘Small’) had higher social welfare than the
setting of high resource capacity (‘Large’) simply because
the former had smaller expected resource surplus and thus
lower resource cost.

We performed another set of experiments with 𝜂 = 8
and |𝑑𝑘

𝑖
| = 5 for all 𝑖 and 𝑘 . The values of 𝐴𝑛’s were

exponentially distributed with means ranged from 1 to 8.
We used a normal distribution with 𝜇 = 3 and varied 𝜎2

to generate 𝑞𝑘’s (values truncated at 1 and 10). The result
is shown in Fig. 4. Since |𝑑𝑘

𝑖
| = 5 for all 𝑖 and 𝑘 , SP 𝑝𝑛

can meet the locality constraint of any VNF when 𝐴𝑛 ≥ 4
(by the pigeonhole principle). Unlike 3b, where the number
of matched SCs dropped when SPs extended their service
coverage to excessive areas, the number of matched SCs
in this setting did not decrease when the mean of 𝐴𝑛 was
larger than 4. The reason is that different SP may have
different 𝐴𝑛 value, thanks to the exponential distribution.
Another factor that affects the result is the length of SC. A
larger variance caused fewer matched SCs because a larger
variance indicates a higher probability of a long SC, which
demands more resource than a short SC.
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Fig. 4: The number of matched SCs with exponentially dis-
tributed 𝐴𝑛’s (𝜂 = 8, |𝑑𝑘

𝑖
| = 5 for all 𝑖 and 𝑘)

4.4 The Effect of Different Quotas

Fig 5 shows the curves of the social welfare and the num-
ber of matched SCs versus the value of SP’s quotas. When
we increased the quota to be larger than four, the number
of matched SCs decreased due to lower resource capacity
in each area. However, the social welfare still increased be-
cause of lower expected placement cost due to lower resource
surplus.

(a) (b)

Fig. 5: (a) The social welfare and (b) the number of matched
SCs versus the value of SP’s quotas

4.5 Comparison with BSAM and Pure DA

We compared the proposed approach with BSAM [12] and
pure DA. We varied the number of SCs form 5 to 20. Figs. 6
and 7 show the results with the quota set to 4 and 3, respec-
tively. The results indicate that BSAM is inferior to the other
two counterparts concerning social welfare but superior to
the others concerning the number of matched SCs. This is
because SPs in BSAM do not reject an SC after accepting it.
Therefore, SPs may be matched with less preferred SCs.

The proposed approach and pure DA do not differ sig-
nificantly in both metrics except the social welfare tested
with 20 SCs. For each SP 𝑝𝑛, we use 𝑝𝑛’s preference func-
tion 𝜙𝑛 (𝑆′) to sort all possible subsets of SCs, 𝑆′, in a non-
increasing order. Fig. 8 shows the ordinal number of 𝜇𝑃 (𝑝𝑛)
in the sorted list for each SP 𝑝𝑛. We can see that 𝜇𝑃 (𝑝𝑛)
for each SP 𝑝𝑛 has a slightly smaller ordinal number with
the proposed approach (DA+T) than with pure DA. This
confirms the effectiveness of the T-algorithm.

(a) (b)

Fig. 6: a) The social welfare and (b) the number of matched
SCs versus the number of SCs (𝑞(𝑝𝑛) = 4)

5. Conclusions

We have studied SCP in multi-SC multi-SP edge system.
We have formulated the social welfare maximization prob-
lem and proposed a two-sided matching mechanism based
on DA and T-algorithm. The result is stable yet egalitar-
ian. Simulation results show that social welfare may not
be aligned with the number of matched SCs. The proposed
approach outperforms BSAM in terms of social welfare but
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(a) (b)

Fig. 7: a) The social welfare and (b) the number of matched
SCs versus the number of SCs (𝑞(𝑝𝑛) = 3)

Fig. 8: The ordinal number of 𝜇𝑃 (𝑝𝑛) for each SP 𝑝𝑛
(𝑞(𝑝𝑛) = 3, |𝑆 | = 20)

not in terms of matched SCs.
In the future, we will add cloud data center into our

system model. Cloud data center has plenty of computing
resource which helps reducing the processing delay. How-
ever, its propagation delay is higher than edge systems. We
will also consider an on-line approach to SCP, which handles
SC placement requests in a one-by-one manner.
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