
Range-Based Sleep Scheduling (RBSS) for Wireless
Sensor Networks1

Li-Hsing Yen2

Department of Computer Science and Information Engineering
National University of Kaohsiung

700, Kaohsiung University Rd., Kaohsiung, Taiwan 811, R.O.C.
lhyen@nuk.edu.tw

Yang-Min Cheng
Department of Computer Science and Information Engineering

Chung Hua University
707, Sec.2, WuFu Rd., Hsinchu, Taiwan 300, R.O.C.

cs88625@csie.chu.edu.tw

Abstract

Sleep scheduling in a wireless sensor network is the process of deciding which nodes are
eligible to sleep (enter power-saving mode) after random deployment to conserve energy while
retaining network coverage. Most existing approaches toward this problem require sensor’s
location information, which may be impractical considering costly locating overheads. This
paper proposes range-based sleep scheduling (RBSS) protocol which needs sensor-to-sensor
distance but no location information. RBSS attempts to approach an optimal sensor selection
pattern that demands the fewest working (awake) sensors. Simulation results indicate that
RBSS is comparable to its location-based counterpart in terms of coverage quality and the
reduction of working sensors.

Keywords: Wireless sensor networks, Energy Efficiency, Network coverage, Network den-
sity, Sleep scheduling

1 Introduction

Rapid progress in wireless communications and micro-sensing MEMS technology has enabled
the deployment of wireless sensor networks. A wireless sensor network consists of a large
number of sensor nodes deployed in a region of interest. Each sensor node is capable of
collecting, storing, and processing environmental information, and communicating with other
sensors.

The positions of sensor nodes need not be engineered or predetermined [1] for the reason
of the enormous number of sensors involved [3] or the need to deploy sensors in inaccessible
terrains [1]. Due to technical limitations, each sensor node can detect only events that occur
within some range from it. A piece of area in the deployment region is said to be covered
if every point in this area is within the sensory range of some sensor. The area that are
collectively covered by the set of all sensors is referred to as network coverage.

As sensor nodes are typically powered by batteries, power-conserving techniques are
essential to prolong their operation lifetimes. In this paper, we are considering powering off
redundant sensors temporarily after random deployment to conserve energy while retaining

1This work was supported by the National Science Council, Taiwan, under grant NSC-94-2213-E-216-001.
2Corresponding author. Tel: +886-7-5919518, Fax: +886-7-5919514.

1

sufficient network coverage. This task concerns the determination of redundant nodes as
well as the arrangement of sleep time.

Existing rules for determining redundant nodes are mostly location-based [8, 7, 6, 12,
4, 9]. As these rules have sensor’s location information, they can ensure 100% network
coverage ratio. However, the requirement of location information may not be practical
if energy-intensive GPS (Global Positioning System) device is assumed for this purpose.
Other approaches determine sleep-eligible sensors based on the count of working neighbors
[10], current node density [6], or expected network coverage [11]. These approaches demand
no locating devices and are thus more suitable for small-size sensors. However, it is intrinsic
that 100% network coverage cannot be guaranteed.

This paper proposes a range-based sleep scheduling protocol called RBSS, which needs
no location information. RBSS attempts to approach an optimal sensor deployment pat-
tern that demands the minimal number of working (awake) sensors while preserving 100%
network coverage ratio. It requires the ability to estimate transmission distances between
neighboring sensors, which can be fulfilled by any range measurement technique. Extended
simulations were conducted for performance comparisons among the proposed protocol and
its counterparts. The results indicate that our protocol performs nearly well as a location-
based scheme can do in terms of coverage quality and the reduction of working sensors.

The remainder of this paper is organized as follows. The next section reviews existing
sleep scheduling protocols and Section 3 details RBSS. Experimental results are presented
in Section 4. The last section concludes this paper.

2 Related Work

PEAS [10] is an energy-conserving protocol that demands no location information. In PEAS,
all nodes are initially sleeping. These nodes wake up asynchronously and then broadcast a
probe message. Any working node receiving the message should reply. If an awakening node
receives a reply to the probe message, it enters sleep mode again. Otherwise, it becomes a
working node for the rest of its operation life. The performance of PEAS heavily depends
on probing range, the transmission range of the probe message. A small probe range usually
leads to high coverage ratio but also a large population of working nodes.

There are also stochastic approaches that determine sleep nodes without location infor-
mation. In the scheme proposed in [6], all nodes randomly and independently alternate
between working and sleep modes on a time-slot basis. Given the probability of a sensor
being in working mode, the authors have analyzed the probability of a point in the deploy-
ment region being uncovered. In [11], the time periods of working and sleep modes are
exponentially distributed random variables. Though the method is stochastic in nature, it
is deterministic to set the means of these two distributions for a specific expected network
coverage.

Most existing protocols finding redundant nodes require location information. Cărbunar
et al. [4] transform the problem of detecting redundant sensors to that of computing the
Voronoi diagram that corresponds to the current node deployment, which requires node
location information. Xing et al. [9] also exploit Voronoi diagram to ensure k-coverage,
which refers to the condition that every point in the deployment region is covered by at least
k sensor nodes. They have shown that k-coverage is ensured if every critical point (where
two sensor’s coverage areas intersect or a sensor’s coverage area and a border line intersect)
is covered by at least k sensors. Their protocol needs location information of every sensor
as well.

A coverage-preserving sleep scheduling scheme presented in [8] demands that each sensor

2

advertises its location information and listens to advertisements from neighbors. After cal-
culating its coverage and its neighbors’, a node can determine if it is eligible to turn off its
sensory circuitry without reducing overall network coverage. To avoid potential “coverage
hole” due to simultaneous turning off, this scheme uses a back-off protocol which requires
each off-duty eligible sensor to listen to other sensor’s status advertisements and, if neces-
sary, announce its own after a random back-off time period expires. The behaviors of many
other schemes [7, 6, 12] are similar to [8] in that they all require the exchanges of location
information and eligibility status. Among them, OGDC [12] aims to arrange a particular
deployment pattern of working sensors. It has been shown [12] that, to minimize the pop-
ulation of working sensors while preserving network coverage, the locations of any three
neighbor sensors should form an equilateral triangle with side length

√
3rs, where rs is the

sensory range. Extending this argument, the optimal deployment that demands the minimal
number of working sensors is to surround each working sensor S with six working neighbors
(called co-workers) which collectively form a regular hexagon centered at S with side length√

3rs. Provided that the node density is sufficiently high, it is feasible to seek this pattern
among deployed sensors.

Network connectedness is another issue that should be addressed when powering off
sensors. It has been proven [12, 9] that given 100% coverage ratio, rt ≥ 2rs suffices to ensure
network connectedness, where rt is the transmission range of every sensor. Many protocols
[12, 9] therefore focus on maintaining full coverage and simply set rt = 2rs to ensure network
connectedness at the same time.

Our approach assumes the availability of a ranging technology that estimates the distance
between pair-wise neighbors. Several ranging techniques have been proposed for wireless
sensor networks. One possible way is to establish a mathematical or empirical model that
describes radio signal’s path loss attenuation with distance [2]. A received signal strength
indication (RSSI) can thereby be translated into a distance estimate. Another trend of
ranging technologies turns signal propagation time into distance information. If the sender
and the receiver of a radio signal are precisely time-synchronized, the distance in-between
can be derived from the time of arrival (ToA). If two signals (one is RF and the other
is acoustic signal, for example) are transmitted simultaneously, the time difference of the
arrivals (TDoA) can be used for ranging [5].

3 Range-Based Sleep Scheduling

3.1 Design Rationale

The basic idea behind RBSS is that the optimal deployment can be approached without ex-
act location information. If the transmission range of each sensor in the optimal deployment
is uniformly

√
3rs, S’s co-workers are exactly S’s neighbors that have the maximum trans-

mission distance to S. S can first search for one such co-worker, say, A, then repeatedly
look for nodes that are both the co-workers of S and an already-found co-worker. If the
second co-worker found is B (C), the third co-worker will be C or D (B or E). If the third
co-worker is B or C, the fourth co-worker will be D or E. In this way, all six co-workers, if
exist, can be found without knowing their exact locations.

This approach, however, must face the following issues that arise in the above context.

1. Job competitions. When a sensor calls for a neighbor that has the maximum trans-
mission distance to it, more than one node may be qualified to respond as the quali-
fication rule should typically allow a reasonable number of candidates to prevent the

3

Round i Round i+1Round i-1

Foreman

Test

Recruiting

Phase
Working or sleep

Figure 1: The time structure of a round

extreme case of no response. In that case, it is a challenge how these candidates com-
pete distributively with each other for the job, under the constraint that they are not
even aware of whom they are competing with.

2. Transmission collisions. Transmission collisions may occur when multiple geographically-
related sensors send their requests or responses at the same time. Collision-avoidance
techniques such as setting back-off time should be used to minimize the possibility of
concurrent transmissions.

3. Ranging errors. Signal propagation problems such as environmental interference
and multi-path fading introduce estimation errors to almost all existing ranging tech-
nologies. The degree of errors is environment dependent. In harsh networking envi-
ronments, the errors can be so high that make ranging techniques ineffective. The
proposed method relies on distance estimate to determine which sensor is preferred
when dealing with job competitions. With inaccurate distance measures, sensors that
turn out to be co-workers may not be the most appropriate ones. This increases the
population of co-workers, degrading the performance of the proposed approach.

The first and the second issues concern spatial and temporal race conditions among
sensors, respectively. The proposed protocol uses a number of timers with sophisticated
settings to deal with these issues. The third issue is important for practical implementations
of the protocol. However, it is very challenging to precisely model the impact of varied
terrain types and environments on ranging errors. We also note that most location-based
approaches assume a perfect locating technique behind their protocols. As a fair comparison
and also a demonstration of the best-case performance, ranging errors are not taken into
account currently. This remains to be explored in the future.

3.2 Protocol Description

RBSS divides time into fixed-length time periods called rounds (Fig. 1). Each round begins
with a Foreman Test phase, in which every sensor individually determines whether it can
become a foreman, a node that actively recruits other co-workers. The recruitment protocol
is then executed in the following phase. Foremen and co-workers are all working nodes, while
others can enter sleep mode in the rest of this round.

Three control messages are used by the protocol: Co-worker Request, Co-worker
Response, and Recruitment Done. Every sensor locally maintains two lists: neighbor
list and worker list. Both are emptied at the beginning of each round. The neighbor list
keeps the ID (identification) of each known neighbor. Whenever a control message is received
or overheard from a previously unseen node, the node’s ID is added into the list. The worker
list of every node records IDs of foremen and co-workers currently known by it (excluding
the node itself). Every Co-worker Request sent by a node is attached with the sender’s
worker list. A sensor that receives or overhears a Co-worker Request adds into its own

4

Foreman Test

Foreman

Test succeeded

& Ts expired

Waiting

Co-worker Response

scheduled

Working

Sleep

Sleep eligible

Tc expired

To expired

Sleep eligible

Co-worker

Become a

co-worker

To expired

Figure 2: State transition diagram of the proposed protocol

Table 1: Parameter/Timer setting
Parameter/Timer Meaning/Usage Value

p0 Initial probability of a node being a foreman 1/n

rt Transmission range of each sensor
√

3rs m
Ts Back-off timer for sending Co-worker Request [0, 0.01] sec.
Tr Back-off timer for sending Co-worker Response [0, 1.6577] sec.
To Timer to protect Co-worker Request 2 sec.
Td Additional delay added to Tr in certain cases 0.25 sec.
Tc Maximum time for a node to stay in Waiting state 5 sec.
Dm Minimum allowable distance between two working sensors rt/2 m

Note: An interval value means a value randomly generated within the interval.

worker list all previously unseen IDs associated with the message (including the sender’s ID
and the sender’s worker list).

Figure 2 shows the state transition diagram of RBSS and Table 1 lists settings of some
parameters and timers used by the protocol. Each node in the beginning of a round is in
Foreman Test state, testing if it can become a foreman. The test is pure stochastic; a node
can be a foreman with initial probability p0, where p0 is a variable inversely proportional
to the node density of the network. This is to limit the expected density of foremen. Each
node repeats the test every second until it passes or aborts the test. The instantaneous
probability of a node passing the test at a given second exponentially increases with time:
it is min{2i−1p0, 1} in the ith second. A node aborts the test if, before it passes the test, the
node hears Co-worker Request or Co-worker Response from one of its neighbors.
The receipt of such message implies that some nearby sensor has successfully become a
foreman. The node that aborts the foreman test then executes the procedure shown in
Fig. 3.

The procedure in Fig. 3 decides whether a node receiving a related message is eligible to
sleep or should reply the request. The receiver R is sleep-eligible if it does not contribute
substantial coverage to S. This condition consists of two cases: either R is very close to
the sender S (specifically, the in-between distance is less than Dm) or more than two of
R’s neighbors are already in S’s worker list. If R is not eligible to sleep, it should reply a
Co-worker Response as an application for S’s co-worker. A back-off timer for the reply,
Tr, is used to resolve potential competitions among qualified applicants. Tr should be set to
let the most appropriate node reply first. Intuitively, the most appropriate node should be
the one that is most distant from S (but still a neighbor of S) and has the fewest working
neighbors. To quantify the appropriateness and reflect it in Tr, the following notations are

5

/* WS denotes S’s worker list */
/* NR denotes R’s neighbor list */
/* di,j denotes the estimated distance between nodes i and j */
procedure sleep or reply()

if dS,R ≤ Dm then
enter sleep mode directly

else
Ω = WS ∩NR

if |Ω| > 2 then
enter sleep mode directly

Tr = D(dS,R) +
∑

j∈Ω D(dR,j)
if |Ω| = 0 and |WS | > 0 then

Tr = Tr + Td

start Tr

enter Waiting state
end if

Figure 3: The procedure for node R to process related messages received from S

introduced:

• WS: S’s worker list.

• NR: R’s neighbor list.

• di,j: the estimated distance between nodes i and j.

The value of Tr is set by the following equation

Tr = D(dS,R) +
∑

j∈Ω

D(dR,j), (1)

where Ω = WS ∩NR and function D(x) is defined as

D(x) =
(
1− exp

(
x

rt

− 1
))

.

D(x) is inversely proportional to the ratio of x (distance) to rt (the maximum transmission
range). Obviously, D(x) → 0 when x → rt and the maximum value of D(x) occurs when
x → 0. It should be noted that the definition of D(x) is not unique: it can be any function
that shares the same property. An example is D(x) = 1− x/rt.

By (1), Tr increases as |WS ∩ NR| increases, but the actual value of Tr also depends on
relative distances between R and associated neighbors. When |Ω| = 0, we further differen-
tiate the case |WS| > 0 from that |WS| = 0 by adding an additional delay Td to Tr in the
former case. This gives the latter case a priority in sending the reply.

After Tr is set, R enters Waiting state, in which the Co-worker Response is scheduled
to be sent to S when Tr expires. If, before Tr expires, R overhears a Co-worker Response
addressed to S from another sensor U , U must be more qualified to be S’s co-worker than
R for its shorter back-off delay. In that case, R cancels the scheduled response by stopping
Tr and updates its neighbor list by including the sender’s ID. R then stays in Waiting state
because whether it should be active or sleep in this round is still pending.

6

/* Assume that R has a scheduled response to S */
On overhearing Co-worker Response from another node U to S

stop timer Tr

set and start timer Tc

/* remains in Waiting state */

On receiving Co-worker Request from node V
if V = S and R’s ID is in the attached worker list then

broadcast R’s Co-worker Request
set and start timer To

enter Co-worker state
else if V 6= S then

stop timer Tr

call sleep or reply()
S ← V /* change the destination of the response to V */

end if

On receiving Recruitment Done from S
stop Tr

enter Sleep state

expired Tr then
send Co-worker Response to S
set and start timer Tc

end expired

expired Tc then
enter Working state

end expired

Figure 4: Event handling procedures for node R in Waiting state

In the Waiting state, R may receive a new Co-worker Request from another sensor
V , which can be an independent foreman or one of S’s co-workers. In either case, R first
stops Tr, which effectively cancels the pending response if Tr is still running, and calls
procedure sleep or reply() shown in Fig. 3 to determine whether the new incoming request
makes R eligible to enter sleep mode. If R is not sleep-eligible, the procedure updates and
starts Tr accordingly, which schedules a response to the new request. The reason of not
responding both requests is that issuing multiple responses complicates the protocol and
may increase redundant co-workers. So we simply replace the old request with the new one.
Intuitively, such a replacement extends R’s stay in the Waiting state and thus gives R more
opportunities of being sleep due to the receipt of subsequent messages. However, it also
extends the protocol execution time and may increase energy consumption to some extent.

If R receives Recruitment Done from S before it issues the Co-worker Response,
meaning that S has recruited adequate co-workers, R aborts the scheduled response and
enters sleep mode directly. If R eventually issues Co-worker Response to S, R stays
in Waiting state for a maximum period of Tc seconds. If, before Tc expires, R receives a
Co-worker Request from S with R’s ID in the attached worker list, it means that R’s
application for co-worker has been approved by S. When this happens, R starts its own

7

On receiving Co-worker Response from node R
if R 6∈ WS then

WS ← WS ∪ {R}
stop timer To

broadcast Co-worker Request with the updated WS

restart timer To

end if

expired To then
broadcast Recruitment Done
enter Working state

end expired

Figure 5: Event handling procedures for node S in states Foreman and Co-worker

recruitment by broadcasting a new Co-worker Request, setting up timer To, and then
entering Co-Worker state. R enters Working state directly if no such approval is received
before Tc expires. Timer Tc simply serves for the purpose of protecting R from being trapped
in this state, which may happen, for example, when R’s response collide with other messages.
The choice of entering Working rather than Sleep state in this case is to prevent potential
coverage hole. Event handling procedures for node R in Waiting state is shown in Fig.4.

Foreman nodes will be awakening for the whole round, consuming considerable energy.
Therefore, nearby sensors that are able to cover each other should not be foremen at the
same time: some of them are in fact sleep eligible. To this end, every node that passes the
foreman test waits Ts seconds before broadcasting Co-worker Request to announce its
role as a foreman. The value of Ts is randomly chosen to alleviate potential transmission
collisions among nearby sensors. If the node overhears another Co-worker Request
before Ts expires, it aborts the scheduled broadcast and executes the procedure in Fig. 3
accordingly as if it did not pass the foreman test. If no Co-worker Request is heard
during that interval, the node broadcasts Co-worker Request, starts timer To, and then
enters Foreman state.

Timer To is started right after a node S broadcasts an associated Co-worker Request
message and before S enters the Foreman or Co-worker state. To will be stopped when the
corresponding response is received. The value of To is sufficiently large (To > Tr) so that
no corresponding response is expected after To expires. Therefore, when To does expire, S
simply broadcasts Recruitment Done and then enters Working state. If a Co-worker
Response from node R is received, S adds R into its worker list, stops To, waits some time
for additional responses (if any), and then broadcasts a new Co-worker Request with
the updated worker list. This gives S another call for additional co-workers and also instructs
all the newly-recruited co-workers to start their own recruitment. The detailed procedures
are shown in Fig. 5.

4 Experimental Results

We conducted simulations with ns-2 network simulator3 for performance comparisons among
three representative sleep scheduling methods: PEAS, OGDC, and the proposed scheme.

3http://www.isi.edu/nsnam/ns/

8

Table 2: Simulation setup
Parameter Setting

Network size 50× 50 m2 and 100× 100 m2

Sensor deployment Random (uniform distribution)
MAC IEEE 802.11 CSMA/CA

Sensor population 100 – 1000
Sensory range (rs) 10 m

Communication range (rt) 2× rs m (PEAS and OGDC) or
√

3× rs m (RBSS)
Probing range (for PEAS) 8, 9, or 10 m

Data transmission rate 60 Kbps

200 400 600 800 1000

20

30

40

50

60

70

80

Number of sensors

N
um

be
r

of
 w

or
ki

ng
 n

od
es

RBSS (50x50)
OGDC (50x50)
RBSS (100x100)
OGDC (100x100)

Figure 6: Number of working nodes in 50× 50 and 100× 100 networks

Since comparisons between OGDC and PEAS have been done already in [12] and are consis-
tent with our results, only results of RBSS and OGDC are shown in the following. Table 2
details the simulation setting.

4.1 Working Nodes and Coverage Ratios

We first measured the number of working nodes. We assumed that all sensors are initially
awake and counted the number of working sensors after running a sleep scheduling protocol.
Fig. 6 shows the obtained results. All values are averaged over ten experiments.

As can be seen from the figure, OGDC in general yielded fewer working sensors than
RBSS. The amount of sensors raised by RBSS ranges from 2% to 25% (average 16%) in
50×50 networks and from -21% to 18% (average 7%) in 100×100 networks. The performance
gain of OGDC is due to its knowledge of sensor locations. Both OGDC’s and RBSS’s results
also possess an interesting property: the number of working sensors does not proportionally
increase with network size. When we enlarged the network size from 50 × 50 to 100 × 100,
which was a 400% increase in area, the average increases in sensor populations were only
334% (OGDC) and 307% (RBSS). This can be explained as sensors located in the boundary
of the network are unlikely to sleep due to the lack of coverage support from their limited
neighbors, and the ratio of boundary nodes becomes small when we enlarge the network size.

To ease the calculation of network coverage, we divided the deployment area into 1 × 1
grids, where a gird is said to be covered if the center of the grid is covered by some sensor.
Coverage ratio is defined to be the ratio of the number of covered grids to the whole. When
the network was partitioned, only the largest connected component (the one that covers

9

200 400 600 800 1000
98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

(a)

Number of sensors

C
ov

er
ag

e
ra

tio
 (

%
)

200 400 600 800 1000
80

85

90

95

100

(b)

Number of sensors

C
ov

er
ag

e
ra

tio
 (

%
)

RBSS
OGDC

RBSS
OGDC

Figure 7: Coverage ratios in a (a) 50× 50 and (b) 100× 100 network

200 400 600 800 1000
0.8

0.85

0.9

0.95

1

(a)

Number of sensors

C
ov

er
ag

e ́
 s

le
ep

 r
at

io

200 400 600 800 1000

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Number of sensors

C
ov

er
ag

e ́
 s

le
ep

 r
at

io

RBSS
OGDC

RBSS
OGDC

Figure 8: Sleep × coverage ratio in a (a) 50× 50 and (b) 100× 100 network

the largest area) was considered in the coverage ratio calculation. Therefore, even though
network connectedness was not explicitly gauged, it was reflected by the degree of network
coverage. Fig. 7 shows the results averaged over ten experiments.

In 50 × 50 networks, RBSS outperformed OGDC by -0.11% to 1.17% (average 0.24%).
The outperformance of RBSS can also be observed in Fig. 7(b) when the number of sensors
is larger than 300. When only 100 sensors were deployed, the node density was so low that
RBSS failed to find adequate working sensors (only 44.1 working sensors in average, refer to
Fig. 6) to maintain over 90% coverage.

The above results reveal that a sleep scheduling scheme may trade the ratio of sleep
sensors for coverage ratio. We therefore propose sleep ratio multiplying coverage ratio as an
overall performance index. This index emphasizes the balance between sleep and coverage
ratios, as favoring sleep or coverage ratio alone usually does not lead to a high index value.

Figure 8 shows the results for this index. Clearly, RBSS is comparable to OGDC in terms
of the proposed performance index.

4.2 Time Domain Comparison

The above comparisons focus on space domain, meaning that all values were measured by
running a sleep scheduling protocol right after sensors were deployed. These values actually
may change over time, as some sensors may die for energy exhaustion. In light of this, we
also made performance comparisons in time domain.

We applied an energy model similar to that used by PEAS [10]. The power consumptions

10

0 2000 4000 6000
0

5

10

15

20

25

(a)
Time (sec.)

W
or

ki
ng

 n
od

e
po

pu
la

tio
n

0 2000 4000 6000
0

5

10

15

20

25

(b)

Time (sec.)

W
or

ki
ng

 n
od

e
po

pu
la

tio
n

Figure 9: Number of working nodes versus time in a 50 × 50 network with (a) OGDC and
(b) RBSS

0 2000 4000 6000
0

20

40

60

80

100

Time (sec.)

C
ov

er
ag

e
ra

tio
 (

%
)

(a)

0 2000 4000 6000
0

20

40

60

80

100

Time (sec.)

C
ov

ea
ge

 r
at

io
 (

%
)

(b)

Figure 10: Coverage ratio versus time in a 50× 50 network with (a) OGDC and (b) RBSS

in reception, idle, and sleep modes are 4 mW, 4 mW, and 0.01 mW, respectively. The power
consumption in transmission mode is 20 mW if rt = 20 m and 16 mW if rt = 10 × √3 m.
For OGDC, the energy consumed in node locating was ignored in our energy model. Total
300 sensors were deployed, each had initial energy of 1 J. We assumed that all sensors are
time synchronized, waking up and making powering-off decisions every 100 seconds.

Figure 9 shows how the number of working nodes changed in every ten seconds. The
observed periodic fluctuations deserve an explanation. The population of working nodes
raised every 100 seconds due to scheduled executions of the protocol. However, working
sensors rapidly exhausted their energy, as a working sensor in idle mode dissipates at least
0.4 J per 100 seconds. So the working sensor population dropped even before the next
scheduled execution. After nearly 3000 seconds of executions, both methods cannot find
out sufficient number of working sensors to maintain coverage. Fig. 10 shows the change of
coverage ratio over time. It was observed that the superiority of RBSS over OGDC in terms
of coverage (Fig. 7) disappears. The reason is that RBSS hires more working nodes than
OGDC initially, resulting in fewer available sensors later.

5 Conclusions

We have reviewed existing sleep scheduling protocols and presented RBSS, a range-based
approach. Extended simulations have been conducted for performance comparisons between

11

RBSS and OGDC, a state-of-the-art location-based counterpart. The results indicate that
RBSS performs nearly the same as OGDC when considering both the reduction of working
nodes and coverage ratio. Time-domain simulation results show that the proposed protocol
consumed a little more energy than OGDC did. But this was obtained when the cost of
location incurred by OGDC is not taken into account.

In the future, we shall refine the design to further reduce working sensors and the number
of control messages. Timer values and other parameters will be fine tuned to shorten protocol
execution time, as more energy can be saved if nodes can enter sleep more earlier. The effects
of ranging errors shall also be considered.

Acknowledgement

We would like to thank the authors of [12] for kindly providing us the ns-2 source codes of
OGDC.

References

[1] Ian F. Akỳıld̀ız, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A survey
on sensor networks. IEEE Commun. Magazine, 40(8):102–114, Aug. 2002.

[2] P. Bahl and V.N. Padmanabhan. RADAR: an in-building RF-based user location and
tracking system. In Proc. IEEE INFOCOM 2000, pp. 775–784, Mar. 2000.

[3] Nirupama Bulusu, Deborah Estrin, Lewis Girod, and John Heidemann. Scalable coor-
dination for wireless sensor networks: Self-configuring localization systems. In Proc. 6th
IEEE Int’l Symp. on Commun. Theory and Application, Ambleside, U.K., July 2001.

[4] Bogdan Cărbunar, Ananth Grama, Jan Vitek, and Octavian Cărbunar. Coverage pre-
serving redundancy elimination in sensor networks. In 1st IEEE Int’l Conf. on Sensor
and Ad Hoc Communications and Networks, pp. 377–386, Oct. 2004.

[5] Lewis Girod and Deborah Estrin. Robust range estimation using acoustic and multi-
modal sensing. In Proc. 2001 IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems,
pp. 1312–1320, Maui, USA, Oct.-Nov. 2001.

[6] Chih-Fan Hsin and Mingyan Liu. Network coverage using low duty-cycled sensors:
Random & coordinated sleep algorithms. In Int’l Symp. on Information Processing in
Sensor Networks, pp. 433–442, Apr. 2004.

[7] Jun Lu and Tatsuya Suda. Coverage-aware self-scheduling in sensor networks. In Proc.
IEEE 18th Annual Workshop on Computer Communications, pp. 117–123, Oct. 2003.

[8] Di Tian and Nicolas D. Georganas. A coverage-preserving node scheduling scheme
for large wireless sensor networks. In First ACM International Workshop on Wireless
Sensor Networks and Applications, pp. 32–41, 2002.

[9] Guoliang Xing, Xiaorui Wang, Yuanfang Zhang, Chenyang Lu, Robert Pless, and
Christopher Gill. Integrated coverage and connectivity configuration for energy con-
servation in sensor networks. ACM Trans. on Sensor Networks, 1(1):36–72, Aug. 2005.

12

[10] Fan Ye, Gary Zhong, Jesse Cheng, Songwu Lu, and Lixia Zhang. PEAS: A robust
energy conserving protocol for long-lived sensor networks. In Proc. 23rd Int’l Conf. on
Distributed Computing Systems, pp. 28–37, May 2003.

[11] Li-Hsing Yen, Chang Wu Yu, and Yang-Min Cheng. Expected k-coverage in wireless
sensor networks. Ad Hoc Networks, 5(4):636–650, Sept. 2006.

[12] Honghai Zhang and Jennifer C. Hou. Maintaining sensing coverage and connectivity
in large sensor networks. Wireless Ad Hoc and Sensor Networks: An International
Journal, 1(1-2):89–123, Jan. 2005.

13

