
Distributed Approach to Adaptive VNF Manager
Placement Problem

Mao-Jung Chiang and Li-Hsing Yen
Department of Computer Science, College of Computer Science, National Chiao Tung University, Hsinchu, Taiwan.

Email:cmeo5xmm@gmail.com, lhyen@nctu.edu.tw

Abstract—Network function virtualization (NFV) has been
a promising approach to flexible and scalable deployment of
network services. In NFV management and orchestration (NFV-
MANO) architectural framework, VNF managers (VNFMs)
should be deployed to manage the lifecycle of virtualized network
functions (VNFs). VNFM placement problem (MPP) is to deploy
VNFMs that minimizes overall operational cost while meeting
performance requirements. The only existing approach to MPP
is centralized and does not well adapt to network dynamics
(e.g., VNFM failures, ups and downs of VNF instances, etc.)
We leverage game theory to achieve distributed solutions to the
MPP, which are self-adaptive in the sense that each VNFM locally
and autonomously adapts to network dynamics without a central
control. Simulation results show the proposed approaches can
adapt to network dynamics and have lower total cost than the
counterpart in large-scale NFV systems.

Index Terms—Distributed systems, network function virtual-
ization, virtualized network function manager placement, game
theory, potential games

I. INTRODUCTION

In traditional telecommunication network, operators need to
physically deploy specialized equipments or upgrade network
infrastructure when new network services are offered to their
customers. This practice is inflexible and not cost-effective
because network services usually need dedicated network
hardware, which is hard to reuse or augment new functionality
on it. Consequently, deploying new services usually leads
to large in both capital expenditures (CPEX) and operating
expenditures (OPEX). Different from traditional network, net-
work function virtualization (NFV) [1] promises to reduce
CPEX and OPEX by leveraging virtualization technology to
provide a new way to create and operate networking services.
NFV decouples network functions from physical hardware
and provides these functions as software applications running
on commodity servers. As such, this approach significantly
reduces the cost of purchasing dedicated hardware. In addition,
apart from improvement on operational and capital efficien-
cies, NFV also reduces power usage and makes networks more
scalable and flexible.

NFV management and orchestration (NFV-MANO) archi-
tectural framework proposed by ETSI [2] consists of three
main components: Virtualized Network Functions (VNFs),
Network Functions Virtualization Infrastructure (NFVI) and
NFV-MANO. VNFs are software implementations of tradi-
tional middleboxes, such as firewall, deep packet inspector,
and load balancer, running as network functions that can be
deployed on a NFVI. NFVI combines hardware with software

NFVI VIM

VNFs

NFVI PoP

NFVM

NFVI VIM

VNFs

NFVI PoP

NFVM

NFVI VIM

VNFs

NFVI PoP

NFVM

NFVI VIM

NFVI PoP

NFVO

Fig. 1. NFV architectural in geo-distributed NFVI PoPs

resources to build NFV environment. It may be distributed
with multiple geographically-distributed locations called NFVI
Point of Presences (NFVI-PoPs) for resource access.

NFV-MANO [3] is for orchestration and resources manage-
ment on NFVI and is in charge of controlling lifecycle of
network services. It is composed of three functional blocks:
NFV Orchestrator (NFVO), VNFs manager (VNFM) and Vir-
tualized Infrastructure Manager (VIM). These function blocks
communicate with each other and with other components in
the NFV architectural framework. NFVO handles on-boarding
of network services and VNF packages, lifecycle management
of network services, and validation and authorization of NFVI
resource requests. VNFM is responsible for lifecycle manage-
ment of VNF instances, including instantiation, maintenance
(e.g., scaling, updating, upgrading) and termination of VNFs.
VIM controls and manages the compute, storage, and network
resources of NFVI. It also collects performance information
and reports resources failure.

The overall operational cost of NFV service deployment
consists of resource (compute and bandwidth) cost, energy
cost, and possible payments. The operation cost is location-
dependent and various over time. This study focuses on how to
reduce the operation cost by a dynamic placement of VNFMs.
The cost reduction is significant particularly in large-scale
distributed NFV systems, as shown in Figure 1. To the best of
our knowledge, the work by Mohammad et al. [4] is the only
study toward VNFM placement problem (MPP). Their solution
is based on Tabu search meta-heuristic [5]. Because it is a
centralized approach performed by NFVO, a new deployment
has to be found from scratch when traffic condition differs
significantly or some componenet (VNFM, NFVI, etc.) fails
after a deployment.

In this paper, we proposed a game-theoretic approach to
MPP, where VNFMs NFVI-PoPs (rather than NFVO) au-
tonomously determine whether to activate themselves and, if
they do, which VNF instances are under their managements.
This approach is fully distributed and self-adaptive: the set of
active VNFMs can locally adapt to network and service dy-
namics, which serves a way to cope with component failures.
We propose two versions of the approach, one converges fast
while the other generally yield deployment of lower cost.

The remainder of this paper is organized as follows: Sec. II
presents related work and background. Sec. III details the
proposed approach to MPP. Section IV presents performance
evaluations on the proposed approaches. The last section
concludes this work.

II. RELATED WORK AND BACKGROUND

A. Related Work

Many researches have been done toward VNF placement
and service chaining problems, which aim at finding the
number of VNF instances needed for each network service
and the commodity servers where to run these VNF instances
[6], [7], [8], [9], [10]. However, little effort has been put on
MPP. To the best of our knowledge, only Abu-Lebdeh et al.
[4] had studied this problem. They employed Tabu search
algorithm to solve the VNFM placement problem in both static
and dynamic ways. However, Tabu is a randomized approach
running in iterations. In each iteration, it randomly generates
a large number of possible solutions, called move list, and
selects the best move. Best moves will be kept. When the the
algorithm terminates, the best solution kept in the list of best
moves will be selected.

Our study differs from [4] in that our approach is a
distributed mechanism which locally and autonomously adapt
to NFV system dynamics (ups and downs of VNFMs and
NFV instances). In contrast, people has to rerun the Tabu-
based approach periodically or whenever network condition
changes significantly.

B. System Model

We follow the system model of [4] with some modifications
to make the following assumptions: 1) NFVO and VNFM can
be implemented separately. 2) Each NFVI-PoP has a VNFM
which can be active or inactive. 3) A VNF instance and its
Element Management (EM) are bound together and deployed
at the same NFVI-PoP. 4) A VIM manages the resources of the
NFVI-PoP where it locates. 5) The communication between
different functional blocks flows over the same network links
as regular traffic.

In NFV, the network services and corresponding VNFs can
be instantiated whenever needed. Therefore, the number of
VNF instances and their locations vary dynamically. Each
VNF instance must be managed by an active VNFM while
an active VNFM can serve multiple VNF instances as long as
the number of VNF instances does not exceed the capacity of
the VNFM. While VNF instances can be of different types,

VNF_1 VNF_2VNF_1

15ms

50ms 60ms

25ms

VNF_2

27ms

VNF_1

20ms
80ms

35ms
VNF_1

VNF_1

30ms

VNF_1

VNF_2

: NFVI-POP

: NFVO

: VNFM

: VNF of type 1

: VNF of type 2

Fig. 2. An example of VNFM deployment

VNFMs can manage any type of VNF(s) as they are typically
generic.

In this study, we assume that the locations of VIMs and
NFVO are fixed while VNF instances are scattered over on
geographically-distributed NFVI-PoPs. Therefore, an VNFM
needs to communicates with the VNF instances under its
management, Element Managers (EMs), VIMs and NFVO in
the system over Wide Area Network (WAN) links. A possible
solution to MPP should ensure that all the communications
meet respect VNF-specific delay constraints set by NFVO.
The solution should also meet VNFM capacity constraint in
terms of the number of managed VNF instances and bandwidth
capacity constraint on all communication links.

Consider a NFV architecture with 7 NFVI-PoPs shown
in Figure 2. Each NFVI-PoPs may host one or more VNF
instances and one VNFM. We assume the location of the
NFVO is already given and a VNFM can manage 20 VNF
instances at a time. Delay constraint between VNFM and
NFVO is 40 ms for all VNF instances. This figure shows a
feasible solution that the delay and the capacity constraints of
VNFMs are all met.

C. Problem Formulation

The MPP can be formally defined as follows. Given the
location of the NFVO and configuration of VNF instances
over geographically-distributed NFVI-PoPs, determine the set
of NFVI-PoPs to deploy VNFMs and the set of managed VNF
instances for each VNFM with the minimal total cost such
that all VNF instances are managed and all delay, bandwidth,
and capacity constraints are met. We aim at designing a self-
adaptive distributed solution to MPP.

Table I shows notations used in this paper. We additionally
define two decision variables below.

xp =

{
1, if the VNFM at p ∈ P is active,
0, otherwise. (1)

yj,p =

 1, if j ∈ V is assigned to the VNFM
at p ∈ P .

0, otherwise.
(2)

The total operational cost consists of bandwidth cost and
compute cost. The bandwidth cost C lif counts the cost of net-

TABLE I
NOTATIONS

NFVI
G(P,E) NFVI Graph G with P the set of NFVI-PoPs and E the

set of links
γp,q Capacity of link (p, q) ∈ E

δp,q Delay of link (p, q) ∈ E

ccom
p Cost of compute resource at p ∈ P

cnet
p,q Bandwidth cost over link (p, q) ∈ E

NFVO
hp ∈ {0, 1} hp = 1 if NFVO is placed at p ∈ P

VNFM
M Set of active VNFMs with |M | = m

np Capacity of the VNFM at p ∈ P

VNF
V Set of VNF instances with |V | = v

lj,p ∈ {0, 1} lj,p = 1 if VNF instance j is placed at p ∈ P and
lj,p = 0 otherwise

ϕj Maximum permissible delay between VNF instance j and
the VNFM managing it

ωj Maximum permissible delay between the NFVO and the
VNFM managing VNF instance j

Network Traffic
uO,M
j Bandwidth consumed between NFVO and the VNFM that

manages VNF instance j
uO,I
j Bandwidth consumed between NFVO and VIM concern-

ing VNF instance j
uM,I
j Bandwidth consumed between VNFM and VIM concern-

ing VNF instance j
uM,V
j Bandwidth consumed between VNFM and EM/VNF in-

stance j

work bandwidth consumed in the communication of managing
lifecycle of all VNF instances in the system.

C lif =
∑

(p,q)∈E

(
Blif (p, q) +Blif (q, p)

)
cnet
p,q, (3)

where

Blif(p, q) =
∑
j∈V

{
yj,phqu

O,M
j + yj,plj,q(

uM,V
j + uM,I

j

)
+ lj,phqu

O,I
j

}
.

(4)

The compute cost Ccom is the overall energy cost of all active
VNFMs.

Ccom =
∑
p∈P

xpc
com
p . (5)

The objective of MPP is to minimize the weighted sum of
the aforementioned costs. Let ε and θ be two weighting factors.
Then the objective function can be expressed as follows:

min εC lif + θ Ccom. (6)

Next, we discuss the constraints of MPP. Each VNF instance
should be managed by one VNFM, i.e.,∑

p∈P
yj,p = 1, ∀j ∈ V. (7)

The following constraint indicates that VNF instance j cannot
be managed by the VNFM at NFVI-PoP p unless the VNFM
is active:

yj,p ≤ xp, ∀j ∈ V, p ∈ P. (8)

Capacity constraint demands that the number of VNF instances
assigned to each VNFM does not exceed its capacity:∑

j∈V
yj,p ≤ np, ∀p ∈ P. (9)

A VNFM is active only when it manages at least one VNF
instance, as indicated in (10):

xp ≤
∑
j∈V

yj,p, ∀p ∈ P. (10)

Delay constraints of each VNF instance are defined by (11)
and (12). Eq. (11) is for the delay between VNF instance j
and the VNFM managing it.

(yj,plj,q + yj,qlj,p) δp,q ≤ ϕj , ∀j ∈ V, (p, q) ∈ E. (11)

Eq. (12) is for the delay between the NFVO and the VNFM
managing VNF instance j.

(yj,phq + yj,qhp) δp,q ≤ ωj , ∀j ∈ V, (p, q) ∈ E. (12)

Eq. (13) ensures that the bandwidth consumed on each link
does not exceed the bandwidth capacity:

Blif(p, q) +Blif(q, p) ≤ γp,q, ∀(p, q) ∈ E. (13)

The last two constraints make sure that the outputs are all
integers:

xp ∈ {0, 1}, ∀p ∈ P. (14)

yj,p ∈ {0, 1}, ∀j ∈ V, p ∈ P. (15)

III. THE PROPOSED APPROACH

A. Game Mechanism

The basic idea is to exploit potential game theory to achieve
distributed solutions to the MPP. Each VNFM acting as a
player in a potential game unilaterally decides whether to
activate itself and, if it does, the set of VNF instances under
its management. As such, the objective function of MPP is
decoupled to the utility function to each player in the game.
While each player individually aims at maximizing its own
utility, the system can benefit from high cost efficiency.

We propose two versions of the game designs. Version
A has a fast convergence time and performs well in small-
scale environment. On the other hand, Version B though more
complicated can achieve better cost efficiency in large-scale
network.

Let P = {1, 2, . . . , n} denote the player set. Each player p
has a strategy set Sp = Cp1 ×Cp2 × . . .×Cpv , where Cpj =
{0, 1}, j = 1, 2, . . . , v, indicates whether VNFM p manages
VNF instance j. A strategy of player p is a v-tuple cp =
(cp1, cp2, . . . , cpv) ∈ Sp, where cpj ∈ Cpj . A strategy profile
is an n-tuple c = (c1, c2, . . . , cn). Sometimes we may express
c as (cp, c−p) where c−p = (c1, c2, . . . , cp−1, cp+1, . . . , cn).

The utility function up(c) for every player p ∈ P governs
p’s behavior because p’s objective is to maximize its utility by
selecting a strategy that is its best response to other player’s
decisions. Formally, p’s objective is maxcp∈Sp

up(cp, c−p).
Before presenting player’s utility function, we introduce

some auxiliary variables. Define kp(cp) to be an indicator
variable indicating whether p’s strategy cp meets the capacity
constraint as defined in (9). kp(cp) = 1 if the number of VNF
instances managed by VNFM p does not exceed VNFM p’s
capacity, and kp(cp) = 0 otherwise. Formally,

kp(cp) =

 1, if
v∑

j=1

cpj ≤ np,

0, otherwise.
(16)

Let Np(cp) indicates whether the capacity of VNFM at
location p is just full:

Np(cp) =

{
1, if

∑
j∈V

cpj = np.

0, otherwise.
(17)

Let fpj(c) indicates whether cp meets the bandwidth con-
straint (13). Let dvmpj and dompj be two variables indicating
whether cp meets the two delay constraints (11) and (12),
respectively.

In Version A, VNFM p can take strategy cp as long as all
the constraints are met. This is specified as a condition C1:

C1 ≡ fpj(c)dvmpj d
om
pj

∑
k∈P

ckj = 1.

C1 is true only when
∑
k∈P

ckj = 1, which implies that no other

VNFM also manages VNF instance j.
The definition of up(cp, c−p) for every p ∈ P concerns the

gain of cp with respect to c−p. We define a gain function
gp,j(c) to denote the amount of profit that VNFM p can
earn by managing VNF instance j. Managing a VNF instance
by the VNFM located at the same NFVI-PoP is always
perferred because that can save the bandwidth cost of the
communications between VNFM and VIM/EM. Therefore, if
VNF instance j is located at p and p is able to manage it,
VNFM p will get a positive gain value θccom

p by managing j.
If VNF instance j is located at q 6= p and the capacity of q
is already full or the delay between VNF instance j and the
NFVO exceeds the delay bound, p can gain a positive value
α by managing j. For other conditions, we define the gain to
be the difference of cost before and after p decides to manage
VNF instance j. The gain could be positive or negative. Let G1

be the cost difference when the NFVO is located at the same
NFVI-PoP as VNFM p. Let G2 be the cost difference when
VNF instance j is located at same NFVI-PoP as the NFVO.
Let G3 be the cost difference when the NFVO is located at

a NFVI-PoP different from VNF instance j’s and VNFM p’s
locations. Formally,

G1 = θ
(
ccom
q − ccom

p

)
− ε

(
uM,V
j + uM,I

j − uO,M
j

)
cnet
p,q,

G2 = θ
(
ccom
q − ccom

p

)
− ε

(
uM,V
j + uM,I

j + uO,M
j

)
cnet
p,q,

G3 = θ
(
ccom
q − ccom

p

)
− ε

(
uM,V
j + uM,I

j

)
cnet
p,q.

(18)

Then gp,j(c) can be defined as

gp,j(c) =



θ ccom
p , if C1 and lj,p = 1,

α , if C1 and (lj,p = 0, Nq(cq) = 1)
or ωj < δq,o,

G1 , if C1 and lj,p = 0, Nq(cq) = 0,
hp = 1 and ωj ≥ δq,o,

G2 , if C1 and lj,p = 0, Nq(cq) = 0,
hq = 1 and ωj ≥ δq,o,

G3 , if C1 and (lj,p, hp, Nq(cq), hq) = 0
and ωj ≥ δq,o,

−α , otherwise,
(19)

where α > 0 is a constant, q is the location of VNF instance j,
and o is the location of the NFVO, with the assumption that
cnet
p,q is a constant for all p, q ∈ P . If the gain is positive,

meaning that managing VNF instance j can lower overall
cost, VNFM p is supposed to manage j. VNFM p will get
a negative gain value −α if managing j does not meet one or
more constants.

The utility of VNFM p is the summation of gain values over
all VNF instances managed by it:

up(c) =


0 , if cp = 0,

kp(cp)
v∑

j=1

cpjgp,j(c) , otherwise. (20)

Version B differs from Version A in that VNFMs have
priorities in making decisions. In Version A, once VNFM p
has managed VNF instance j, any other VNFM cannot manage
j unless p fails. In Version B, a VNFM q can “rob” p of j
provided that q’s priority is higher than p’s. The basic idea is:
VNFMs with low computation costs usually can have more
VNF instances than VNFSs with high computation costs. By
giving these VNFMs opportunities to grab VNF instances from
others, the whole system has a high probability to deactivate
VNFMs with high computation costs.

Let νp(cp) =
v∑

j=1

cpj be the total number of VNF instances

managed by VNFM p. We take νp(cp) as p’s priority value
and redefine condition C1 to be

C1 ≡ (!∃q ∈ P\{p} : cqj = 1, νq(cq) ≥ νp(cp)) and
fpj(c)dvmpj d

om
pj = 1. (21)

The second part of C1 is the same as in Version A. The first
part of C1 is to ensure the absence of any VNFM q with
priority value equal to or higher than p.

However, the utility of a player depends not only on its own
strategy, but also the strategies of other players. Clearly, the
game model assumes a player knows the current strategies of
all other players when making a decision. This assumption
demands communication synchronization in the system. Here
we suppose NFVO play an important role in communication
synchronization. NFVO collects the information about deci-
sions of VNFMs and each VNFM can ask for current state of
system before making a decision.

B. Proof of Convergence

The dynamics of the game are highly complex even
for small-scale environment. It is theoretically possible that
VNFMs as players keep changing their strategies and the
game cannot end up with a stable result. The stability of such
a dynamic game corresponds to a Nash equilibrium defined
below.

Definition 1 (Nash equilibrium): Given a game Γ =
[P ; {Si}ni=1 ; {ui}

n

i=1
], a strategy profile c∗ = (c∗1, c

∗
2, ..., c

∗
n)

is a Nash equilibrium if ∀i ∈ {1, 2, ..., n} : ∀ci ∈ Si :
ui
(
c∗i , c

∗
−i
)
≥ ui

(
ci, c

∗
−i
)
.

We prove that the propose game always converges to a Nash
equilibrium by showing that the game is an exact potential
game [11].

For Version A, we assume that the game starts from the
initial strategy profile where every VNFM manages no VNF
instance at all. We can prove that this game is an exact
potential game by showing an exact potential function for it:

π(c) =
∑
i∈P

ui(c). (22)

It can be verified that π(c) is an exact potential function of the
game. The key point is when a player changes its decision, that
change does not affect any other’s utility. A game with this
property is known as a self-motivated game. Since the strategy
space of our game is finite and every finite exact potential
game possesses a Nash equilibrium [11], the game eventually
ends up with a Nash equilibrium.

IV. EXPERIMENTAL RESULTS

We studied the performance of the proposed approach and
the Tabu-based approach [4] through simulations. We consid-
ered both small-scale and large-scale NFV systems. The major
performance metric for comparions was total operational cost.
For the proposed adaptive approach, time to convergence
and the ratio of affected VNFMs were also measured. Each
simulation result was averaged over hundreds of trials with
the same configuration.

A. Simulation Settings

We set weighting factors ε and θ to 1000 and 1, respectively,
in the simulations. This setting was to balance compute cost
and bandwidth cost. The compute cost at each NFVI-PoP
(ccom

p) ranged from 1 to 2.3. Link delay between each pair
of NFVI-PoPs (δp,q for all p, q ∈ P) ranged from 1 to 100
ms. The bandwidth cost of each link (cnet

p,q for all p, q ∈ P)

was in proportional to the consumed bandwidth and equaled
$0.5/GB. The capacity of each edge (γp,q for all p, q ∈ P) was
set to 10 Gbps. For simplicity, we assumed that the bandwidth
capacity of any link is always sufficient.

We considered two types of VNFs: type one (T1) and type
two (T2). Compared with T2 VNFs, T1 VNFs consumed more
bandwidth and had lower delay tolerance. Table II lists the
parameters of T1 and T2 VNFs. The type of a VNF in the
simulation was randomly determined.

TABLE II
EXPERIMENT PARAMETERS FOR VNF TYPES T1 AND T2

Parameter Unit T1 T2

ϕj ms 35 60
ωj ms 70 100
uO,M
j Mb/h 0.5 0.1
uO,I
j Mb/h 0 0
uM,I
j Mb/h 1.2 0.3
uM,V
j Mb/h 1.8 0.3

B. Small-Scale Scenario

We deployed 10 NFVI-PoPs and set the capacity of each
VNFM (np) to 10. We ran Version A and Version B to get
original results. After that, we dynamically added 2 to 10 VNF
instances to the system. In Fig. 3, rerun A, rerun B, and tabu
are the results of rerunning Version A, Version B, and the
Tabu-based approach, respectively, from scratch for the new
deployment. The results labeled with ver A and ver B were
obtained by adaptive runs of Versions A and B, respectively.
For adaptive runs, the original results were used as initial
configurations of VNFMs before starting the responses to the
new deployments.

The results show that Tabu-based approach had the lowest
total cost than the others. rerun B and ver B had nearly the
same cost while the results with rerun A and ver A were
difficult. The reason is that Version B has a smaller solution
space so running it from scratch or an adaptive run do not
matter. The gap between rerun A and ver A is within an
acceptable range. Fig. 3(b) shows the percentage of affected
VNFMs in adaptive runs. Even when 10 VNF instances were
added to the system, only around 60% VNFMs changed their
settings.

0 2 4 6 8 10

Number of added VNF instances

11

12

13

14

15

16

17

18

19

20

T
o
ta

l
C

o
s
t

ver
A

rerun
A

ver
B

rerun
B

tabu

(a)

2 4 6 8 10

Number of added VNF instances

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 o
f

a
ff

e
c
te

d
 V

N
F

M
s

ver
A

ver
B

(b)

Fig. 3. Results in small-scale scenario. (a) Total cost (b) Percentage of affected
VNFMs

C. Large-Scale Scenario

We deployed 16 NFVI-PoPs and set the VNFM capacity
(np) to 20 in the large-scale scenarios. Fig 4(a) shows how the
costs of all different approaches changed with the number of
VNF instances. When there were 40 or fewer VNF instances,
the Tabu-based approach had the lowest total cost. However,
as the number of VNF instances increased, its performance
was overtaken by both Versions A and B. The reason is that
the Tabu search is more likely to stuck in local optimum when
the solution space expends as the number of VNF instances
increases. Version B performed the best when more VNF
instances were involved.

Figure 4 (b) shows the number of iterations (strategy
changes or player’s moves) before reaching a Nash equilibrium
in both Versions A and B. We can see that the outperformance
of Version B over Version A comes at the cost of larger
convergence time.

20 40 60 80 100

Number of VNF instances

10

20

30

40

50

60

70

T
o
ta

l
C

o
s
t

ver
A

ver
B

tabu

(a)

20 40 60 80 100

Number of VNF instances

0

5

10

15

20

It
e
ra

ti
o
n
s
 t
o
 E

q
u
ili

b
ri
u
m

ver
A

ver
B

(b)

Fig. 4. Results in large-scale scenario. (a) Total cost (b) Percentage of affected
VNFMs

Figure 5 shows the results of adding 10 to 50 VNF instances
to the system after VNFM deployment. As indicated in Fig-
ure 5(a), the Tabu-based approach had the highest total cost.
Version B performed the best, regardless whether it was run
from scratch or adaptively. Adaptive runs of Version A had
costs only slightly higher than rerunning it. Its performance is
lower than Version B. However, concerning the percentage of
affected VNFMs, Version A performed better than Version B
because an adaptive run of Version A generally affected fewer
VNFMs than that of Version B as indicated in Figure 5(b).

0 10 20 30 40 50

Number of added VNF instances

40

45

50

55

60

65

70

75

80

85

T
o
ta

l
C

o
s
t

ver
A

rerun
A

ver
B

rerun
B

tabu

(a)

10 20 30 40 50

Number of added VNF instances

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
a
ff
e
c
te

d
 V

N
F

M
s

ver
A

ver
B

(b)

Fig. 5. Results of adding VNF instances to large-scale NFV system. (a) Total
cost (b) Percentage of affected VNFMs

Figure 6 shows the results when 10 to 50 VNF instances
were removed from the NFV system after VNFM deployment.
Figure 6(a) shows the total cost of each approach. All ap-
proaches had a decreasing cost but the Tabu approach had

the most dramatic decline. The reason is that Tabu can have
a better performance with fewer VNF instances (small-scale
NFV system). Besides, as shown in Figure 6(b), VNFMs
basically did not change their strategies when the number of
VNF instances decreased.

0 10 20 30 40 50

Number of Decreasing VNF instances

30

35

40

45

50

55

60

65

70

T
o

ta
l
C

o
s
t

ver
A

rerun
A

ver
B

rerun
B

tabu

(a)

10 20 30 40 50

Number of Decreasing VNF instances

0

20

40

60

80

100

P
e

rc
e

n
t

o
f

A
d

a
p

te
d

 V
N

F
M

s

ver
A

ver
B

(b) Cost

Fig. 6. Results of removing VNF instances from large-scale NFV system.
(a) Total cost (b) Percentage of affected VNFMs

V. CONCLUSIONS

We have shown how to leverage game-theoretic model for
the design of a distributed adaptive solution to the VNFM
placement problem (MPP). We have proved the stability of the
proposed solution, implying that it locally and autonomously
adapts to the dynamics of the NFV environment. The sim-
ulation results show that the proposed solutions have lower
total cost than the Tabu-based counterpart in a large-scale
NFV environment. Two versions of our solutions were also
compared experimentally. The results show that Version A has
faster convergence time but higher total cost than Version B.

REFERENCES

[1] ETSI, “Network functions virtualization-introductory white paper,”
SDN and OpenFlow World Congress, 2012. [Online]. Available:
http://portal.etsi.org/NFV/NFV White Paper.pdf

[2] ——, “Network functions virtualisation (NFV): Architectural frame-
work,” 2013.

[3] ——, “ESTI NFV management and orchestration: An overview,” 2013.
[Online]. Available: https://www.ietf.org/proceedings/88/slides/slides-
88-opsawg-6.pdf

[4] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati, “On
the placement of VNF managers in large-scale and distributed NFV
systems,” IEEE Trans. on Network and Service Management, vol. 14,
no. 4, pp. 875–889, Dec. 2017.

[5] F. Glover, “Tabu search: Part I,” ORSA Journal on Computing, vol. 1,
no. 3, pp. 190–206, 1989.

[6] H. Moens and F. D. Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in 10th Int’l Conf. on Network and
Service Management (CNSM) and Workshop, Nov. 2014, pp. 418–423.

[7] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE Trans. on
Network and Service Management, vol. 13, no. 4, pp. 725–739, Dec.
2016.

[8] J. Gil Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, Sep. 2016.

[9] S. D’Oro, L. Galluccio, S. Palazzo, and G. Schembra, “Exploiting con-
gestion games to achieve distributed service chaining in NFV networks,”
IEEE Journal on Selected Areas in Communications, vol. 35, no. 2, pp.
407–420, Feb. 2017.

[10] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware
and energy-efficient vNF placement for service chaining: Joint sampling
and matching approach,” IEEE Trans. on Services Computing, pp. 1–1,
2018.

[11] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic
Behavior, vol. 14, no. 1, pp. 124 – 143, 1996.

