
A

Designing Self-Stabilizing Systems Using Game Theory

LI-HSING YEN, National Chiao Tung University
JEAN-YAO HUANG, National University of Kaohsiung
VOLKER TURAU, Hamburg University of Technology

Self-stabilizing systems tolerate transient faults by always returning to a legitimate system state within a

finite time. This goal is challenged by several system features such as arbitrary system states after faults,

various process execution models, and constrained process communication means. This work designs self-
stabilizing distributed algorithms from the perspective of game theory, achieving an intended system goal

through private goals of processes. We propose a generic game design for identifying a maximal independent
set (MIS) or a maximal weighted independent set (MWIS) among all processes in a distributed system. From

the generic game several specific games can be defined which differ in whether and how neighboring players

influence each other. Turning the game designs into self-stabilizing algorithms, we obtain the first algorithms
for the MWIS problem and also the first MIS self-stabilizing algorithm that considers node degree (including

an analysis of its performance ratio). We also show how to handle simultaneous moves of processes in some

process execution models. Simulation results indicate that, for various representative network topologies,
the new algorithm outperforms existing methods in terms of MIS size and convergence rate. For the MWIS

problem, the new algorithms performed only slightly worse than centralized greedy counterparts.

CCS Concepts: rTheory of computation→Distributed algorithms; Algorithmic mechanism design;
Solution concepts in game theory; Self-organization; Distributed computing models; rMathematics of
computing→ Graph theory;

General Terms: Design, Algorithms, Theory

Additional Key Words and Phrases: Distributed algorithms, game theory, independent set, self-stabilization

ACM Reference Format:
Yen, L., Huang, J., and Turau, V. 2015. Designing Self-Stabilizing Systems Using Game Theory. ACM Trans.
Autonom. Adapt. Syst. V, N, Article A (January YYYY), 27 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
This work considers a distributed system consisting of independent processes that
communicate with each other via shared variables. For this purpose each process de-
fines variables that are owned by and exclusively updated by the process. Other pro-
cesses can only read the value of this variable. A snapshot capturing all variable’s
values of all processes comprises the system’s state. A system state may be legitimate
or illegitimate with respect to a predicate that specifies a desired state of the system.
When a system is in a legitimate state, an occurrence of a fault may bring the system
into an illegitimate state. A self-stabilizing distributed algorithm tolerates transient

This work is supported by the Ministry of Science and Technology, Taiwan, under grant MOST 103-2221-E-
390-002.
Author’s addresses: L.-H. Yen; Department of Computer Science, National Chiao Tung University, Taiwan;
J.-Y. Huang, Department of Computer Science and Information Engineering, National University of Kaoh-
siung, Taiwan; V. Turau, Institute of Telematics, Hamburg University of Technology, Germany.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1556-4665/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

NOTE: DOIs will be registered and become active shortly after publication in the ACM Digital Library

A:2 L. Yen et al.

faults (faults that do not persist) by always reaching legitimate system states in finite
time regardless of initial system configuration [Dijkstra 1974].

This paper considers designing self-stabilizing algorithms from the perspective of
game theory. Representing a game using a distributed system is not new [Halpern
2003]. Apparently, processes that have their own behaviors are analogous to au-
tonomous agents or players in a game. Variables of processes correspond to strategies
of agents, and processes update their variables as agents change their strategies. How-
ever, agents in a game are rational yet selfish, which typically seek their own interests
rather than a common good. In contrast, processes in a traditional self-stabilizing sys-
tem have no local, private objectives. They are usually coded to achieve a global system
goal. The challenge is to design the local processes such that they achieve a global goal
using only their local information, i.e., despite of lacking the knowledge of the overall
system state.

Some studies [Cohen et al. 2008; Gouda and Acharya 2011] argue that individual
goals are negative and may be an obstacle to reach a global system goal. In contrast,
we aim at an algorithmic mechanism design [Nisan and Ronen 2001] that achieves an
intended system goal through private goals of processes. To this end, we provide incen-
tives for autonomous players whose rational yet selfish interactions with one another
dynamically lead the game to a stable state where the system goal is satisfied.1

Many algorithmic mechanisms or other game-theoretical designs have been pro-
posed for optimization problems in distributed systems [Nisan and Ronen 2001; Grosu
and Chronopoulos 2004]. However, little work has been done towards the design of
self-stabilizing distributed algorithms. Particularly, the following issues are unique to
self-stabilizing systems and should be addressed by the corresponding game mecha-
nism design.

— The system state is arbitrary after a fault, meaning that the initial state of the cor-
responding game is also arbitrary. In contrast, researchers usually deal with games
with a known and fixed initial configuration.

— To show the correctness and analyze the convergence rate of a self-stabilizing system,
we need to assume a process execution model that controls the level of execution con-
currency among processes. Some existing models allow only one process to execute
at a time, while others allow a non-empty set of processes to execute in parallel. In
the former model, process execution sequences are non-deterministic, so the corre-
sponding game should permit non-deterministic game play sequences. This is not
a common game design constraint because in some games players can pre-compute
their dominant or best-response strategies. For the latter model, we may look into
simultaneous games which allow simultaneous moves made by all players. However,
a game which allows simultaneous moves made by a dynamic subset of players is not
commonly seen.

— Processes are typically assumed to communicate with each other via shared vari-
ables, disallowing accesses of non-neighbor’s variables. This limitation implies that
players of the game only have information of neighboring players.

Yen and Chen [2014] recently proposed an algorithmic mechanism2 for the formation
of a minimal multi-dominating set [Jia et al. 2002]. The authors converted the game
design into a distributed algorithm. To the best of our knowledge, this is the first game-
theoretic approach to self-stabilizing algorithms. Unfortunately, their work considered

1Algorithmic mechanism designs usually deal with resource sharing or load distribution problems. For that
reason the designs should also consider payments to participating agents, which are not really needed in
the design of self-stabilizing algorithms.
2disregarding the payment issue

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:3

only the model of one process executing at time. The possibility of several players in
game moving simultaneously and the corresponding distributed algorithms were not
considered. Furthermore, their work does not fully conform to the requirement of self-
stabilization: their algorithm achieves stability probabilistically.

We are concerned with a series of problems related to independent sets. In an undi-
rected graph G = (V,E), where V is the vertex set and E is the edge set, S ⊆ V is
an independent set if no vertices in S are adjacent to one another. An independent set
that has the maximum cardinality is called maximum independent set. If each vertex
is associated with a weight (a positive real number), S is a maximum weighted inde-
pendent set if it is an independent set that has the maximum total weight among all
such sets. Clearly, a maximum independent set is a maximum weighted independent
set with uniform weight. Finding either set is known to be NP-hard [Tarjan and Tro-
janowski 1977; Garey and Johnson 1979], for which polynomial-time approximation is
NP-hard as well. There exist many heuristics for these two problems. One well-known
greedy approach works by selecting a vertex into the set, removing it and adjacent ver-
tices from the graph, and repeating this process on the remaining graph. The vertex
selection rule may prefer vertices with minimum node degrees [Halldórsson and Rad-
hakrishnan 1997] (for maximum independent set) or, more generally, depend on some
vertex ordering that is a function of weight and node degree [Sakai et al. 2003]. The
result found by the greedy approach can only be a maximal independent set (MIS), an
independent set of which no proper superset is also an independent set. If nodes are
associated with weights, the result is a maximal weighted independent set (MWIS).

We propose a game-theoretic framework for identifying an MIS/MWIS in a dis-
tributed system. The framework provides a decentralized, autonomous, and self-
stabilizing approach to the MIS/MWIS problem and is general enough to incorpo-
rate various vertex ordering functions concerning weight and/or node degree. To the
best knowledge of the authors, the proposed framework is the first game-theoretic ap-
proach to MIS/MWIS formation. With the proposed framework, we also present the
first self-stabilizing algorithms to the MWIS problem and the first self-stabilizing MIS
algorithm that considers node degree. Moreover, the latter algorithm is the first self-
stabilizing MIS algorithm with a guaranteed performance ratio.

Furthermore, we discuss the time complexity of the algorithms and report about
simulations to study the average-case performance. The simulations covered a va-
riety of network topologies (including unit-disk graphs [Clark et al. 1990], random
graphs [Erdös and Rényi 1959], small-world networks [Watts and Strogatz 1998],
and scale-free networks [Barabási and Albert 1999]). Simulation results show that,
in terms of average total weight in the final set, distributed algorithms derived from
our game framework performed slightly worse than corresponding centralized greedy
algorithms. But compared with existing self-stabilizing MIS algorithms, our work pro-
vides a significant improvement regarding the cardinality of the MIS and also the rate
of convergence. The positive results about the cardinality of the generated MIS are not
surprising because of the bounded performance ratio of the algorithm.

The remainder of this paper is organized as follows: Background information and
related work are presented in Section 2. In the following section, we first model the
MIS/MWIS problem as a sequential game and consider two cases where players have
and do not have mutual influence, respectively. We then show how to convert the game
into a self-stabilizing algorithm. Section 4 discusses how to deal with simultaneous
moves and analyzes the performance ratio of the proposed algorithm. Section 5 studies
the performance of the proposed approach through simulations. The simulation results
are compared with those of existing solutions. The last section concludes this paper.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 L. Yen et al.

Fig. 1. Shaded nodes comprising a dominating set but not an independent set.

2. BACKGROUND AND RELATED WORK
We represent a binary relation on the set of all processes by an undirected graph,
where nodes represent processes and edges represent the existence of the relation be-
tween two relevant processes.3 Independent sets in a graph are closely related to domi-
nating sets. A dominating set is a subset of nodes in a graph such that every node not in
the set is adjacent to at least one node in the set. A dominating set is minimal (called
a minimal dominating set) if it contains no proper subset that is also a dominating
set. There are several self-stabilizing distributed algorithms proposed for identifying a
minimal dominating set [Hedetniemi et al. 2003; Xu et al. 2003; Kamei and Kakugawa
2003; 2005; Kakugawa and Masuzawa 2006; Turau 2007; Goddard et al. 2008; Yen and
Chen 2014]. An MIS is also a minimal dominating set. It is a dominating set because
every node not in the set is adjacent to some node in the set.4 The dominating set is
minimal because the set will no longer be a dominating set if we remove any node from
it: a node removed from the set will not be adjacent to any node remaining in the set.
Therefore, an MIS approach also serves as an approach to the minimal dominating set.
However, a minimal dominating set may not be an independent set. Refer to Fig. 1 for
an example. Therefore, any approach to the minimal dominating set problem cannot
be applied here.

Independent sets also relate to other graph problems. A vertex cover is a set of nodes
in a given graph such that every edge of the graph is incident to at least one node in the
set. Because there is no edge between any two nodes in an independent set, every edge
of the graph is incident to at least one node in the complement of the independent set.
This property makes the complement of an independent set a vertex cover. Accordingly,
the complement of an MIS is a minimal vertex cover, a vertex cover that contains no
proper subset that is also a vertex cover. Therefore, any MIS/MWIS approach can also
be used as an approximation to the (weighted) minimum vertex cover problem.

Given a finite base set S and a collection C of subsets of S, a set packing is a sub-
collection of C such that all elements in the subcollection are mutually disjoint. The
maximum set packing problem is to find a set packing that is of the maximum size.
There is a polynomial-time reduction that transforms the set packing problem to the
independent set problem. It works by creating a graph where one node is for each
member in C and there is an edge between two nodes iff the corresponding two sub-
sets share a common element. For this reason, any MIS/MWIS approach serves as an
approximation to the (weighted) maximum set packing problem.

Existing greedy approaches to identifying an MIS/MWIS are mostly centralized.
Some parallel algorithms [Karp and Wigderson 1985; Alon et al. 1986] have been
proposed to speed up the computation time. In these algorithms, each node proba-
bilistically decides whether to join the independent set. Let G denote a graph and I

3We use nodes, vertices and processes interchangeably in this paper
4If there were any exception, adding that node into the set would yield a larger independent set and thus
the original set would not be an MIS.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:5

the MIS/MWIS to be constructed. A generic approach to the construction of I from G
works in the following way.

I := ∅;
while G 6= ∅ do

select v from G;
I := I ∪ {v};
G := G \ {v} ∪N(v);

end

Here N(v) denote the set of v’s neighbors. Different approaches differ in the selection
of v from G. Halldórsson and Radhakrishnan [1997] proposed an approach that selects
the node with the minimum node degree among all when forming an MIS. Sakai et al.
[2003] considered several selection rules when forming an MWIS. One of them termed
GWMIN prioritizes node v that maximizesW (v)/(deg(v)+1), whereW (v) is the weight
associated with v. Another rule termed GWMIN2 selects v that maximizes

W (v)

W (v) +
∑

u∈N(v)W (u)
. (1)

Basagni [2001] proposed a distributed algorithm for identifying an MWIS in wireless
networks. In this algorithm, a node broadcasts messages to notify its neighbors of its
weight and its decision to join the set. A node will join the set only if no neighbor of
higher weight joins the set.

None of the abovementioned approaches possesses the property of self-stabilization.
A distributed algorithm is self-stabilizing if it meets the convergence and closure con-
dition [Dijkstra 1974]. The former requires that starting from arbitrary state (possibly
illegitimate) the algorithm eventually reaches a legitimate state. The latter property
states that any state following a legitimate state is also legitimate. For the MIS prob-
lem, a state is legitimate if all nodes that decided to be in the set indeed constitute an
MIS.

Self-stabilizing algorithms typically assume that processes communicate with one
another via shared variables. In this model, each process owns local variables to which
it can exclusively write values. Local variables can only be read by the owner and
the owner’s neighboring processes. A distributed algorithm is anonymous if it does
not assume the availability of unique process identifiers. The program executed by
an individual process is often expressed in the form of guarded commands [Dijkstra
1975], a.k.a. rules. Each rule consists of a guard (Boolean expression) and an action
(assignment statements). A rule R is enabled if the guard of R evaluates to true. Only
at that time the action ofR can be executed. The execution of an action is called a move.
A process with at least one rule enabled is called privileged. The whole system enters
a quiescent state (called a fixed point in [Gouda and Acharya 2011]) if no process is
privileged.

The level of execution concurrency among processes is specified by three possible ex-
ecution models a.k.a. daemons, namely, central, synchronous, and distributed daemon.
The central daemon allows only one privileged process to make a move at a time. With
synchronous daemon, all privileged processes make moves simultaneously. These two
daemons are subsumed by the distributed daemon, which allows a non-empty subset of
privileged processes to execute in parallel. In particular that means that a privileged
node can wait for an arbitrary time before it makes its move. The purpose of this dae-
mon is to model arbitrary communication delays in a network. Thus, if an algorithm

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 L. Yen et al.

Table I. Existing Self-Stabilizing MIS Algorithms

Work Objective Control daemon Topology Anonymous?
Shukla et al. [1995] MIS Central General Yes
Ikeda et al. [2002] MIS Distributed General No
Turau [2007] MIS Distributed General No
Goddard et al. [2003] MIS Synchronous General No
Shi et al. [2004] 1-MIS Central Tree Yes
This work MWIS/MIS Central General Yes

MWIS/MIS Distributed/Synchronous General No

stabilizes under the distributed daemon it will also stabilize under the central and the
synchronous daemon.

A related concept is called weak stabilization [Gouda 2001]. Whereas for a self-
stabilizing algorithm each sequence of legal moves leads from any arbitrary state to a
legitimate state, weak stabilization only guarantees that for each arbitrary state there
exists at least one sequence of moves with this property. Thus, any self-stabilizing al-
gorithm is also weakly stabilizing but not vice versa. Gouda [2001] shows that weak
stabilization of a system implies stabilization of the same system under some reason-
able conditions.

Shukla et al. [1995] proposed an anonymous self-stabilizing algorithm that finds an
MIS under a central daemon. This algorithm consists of two simple rules. First, a node
joins the MIS if none of its neighbors is in the MIS. Second, a node leaves the MIS if
one of its neighbors is also in the MIS. The same algorithm was also proposed by other
researchers [Hedetniemi et al. 2003].

These two rules are general, but the proposed algorithm was designed to run under a
central daemon. It does not work with the distributed or synchronous daemon. Shukla
et al. [1995] proved that there is no anonymous self-stabilizing algorithm that finds
an MIS under a distributed daemon. Ikeda et al. [2002] modified the second rule using
unique node identifiers. More specifically, a node should leave the MIS iff any of its
neighbors with a smaller identifier is also in the MIS. This algorithm works under a
distributed daemon.

Turau [2007] proposed a self-stabilizing algorithm that has a lower time complexity
than the one proposed by Ikeda et al. This algorithm runs under a distributed daemon.
Besides an identifier, each node maintains a variable that indicates the current status
of the node. While values IN and OUT indicate the node’s membership in the MIS,
value WAIT indicates that the node wants to join the MIS under construction.

Goddard et al. [2003] proposed a self-stabilizing algorithm that identifies an MIS
under the synchronous daemon. Each node in this algorithm executes the following
two rules. First, a node joins the MIS if it is not currently in the MIS and there is no
neighboring node in the MIS that with a larger identifier. Second, a node leaves the
MIS if there is a neighboring node in the MIS with a larger identifier than itself. The
performance ratio of all these algorithms is unknown.

Unlike all approaches mentioned above, Shi et al. [2004] proposed an anonymous
self-stabilizing algorithm that identifies an 1-MIS under a central daemon. An 1-MIS
is an MIS with an extra property that the removal of any node from the MIS does
not allow the addition of more nodes into the MIS. This algorithm works for tree-
structured topologies only. Recently, Hedetniemi et al. [2013] proposed self-stabilizing
algorithms that identify two disjoint maximal independent sets on a given graph. Their
methods are designed to run under a central or distributed daemon.

Table I summarizes the related work. A recent literature survey on relevant self-
stabilizing algorithms can be found in [Guellati and Kheddouci 2010]. Note that no
prior work considers node degree in forming an MIS. Also, to the best knowledge of the
authors, our work is the first self-stabilizing algorithm to the MWIS problem.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:7

Cohen et al. [2008] first introduced the notion of selfish stabilization, where pro-
cesses may seek their private goals while cooperating with one another in achieving a
common goal. The private goals of different processes may be conflicting. Under this
assumption, the authors devised a stabilizing distributed algorithm that forms a span-
ning tree. If there are two types of processes that have conflicting private goals, the
authors proved that the algorithm is weakly stabilizing.

Gouda and Acharya [2011] assumed that gain functions (i.e., utility functions) of
processes are defined only at quiescent states. The actions of all processes are assumed
independent of the gain functions and designed to lead the system into a quiescent
state. After entering a quiescent state, processes may cause perturbations as a result of
attempting to increase their individual gains. The main concern of this work is whether
such behavior can bring the system into illegitimate states.

Our game framework is a noncooperative game, meaning that players do not cooper-
ate with each other for a system goal. It is also a graphical game [Kearns et al. 2001],
because the utility of each player (to be shown in the next section) is only affected by
the strategies of its neighbors, not by all other players. Our game is closely related to
congestion games [Rosenthal 1973]. In a congestion game, each player has to select a
collection of resources yet minimize (resp. maximize) the cost (resp. payoff) of such a
selection. The cost (resp. payoff) of a selection (i.e., a strategy in game) is the summa-
tion of all individual resource costs (resp. payoffs) involved in that selection. The cost
(resp. payoff) of selecting a specific resource is typically a monotonically increasing
(resp. decreasing) function of the number of players that also select the same resource.
Bilò et al. [2011] considered graphical congestion games, in which the cost function of
each resource e with respect to player pi is a linear function of the number of pi’s neigh-
boring players that also select e. As we shall see in Sec. 3.2, the game model proposed
in this paper also falls into the category of graphical congestion games. Nevertheless,
several properties of the proposed game model are not yet addressed in prior work.

A related yet a little different game model is graphical coordination game with mul-
tiple players [Montanari and Saberi 2010]. In a graphical coordination game, players
receive a higher payoff from adopting the same strategy as their neighbors. In contrast,
in a graphical congestion game, players raise their payoffs by not selecting the same
strategy with their neighbors. In this regard a congestion game is an anti-coordination
game. Another related problem is distributed graph coloring [Kearns et al. 2006; Mar-
den et al. 2015], which demands that neighboring nodes do not use the same color.
For the MIS/MWIS problem, we can view the strategy of being in the set as one color
(say, black) and the opposite as another color (say, white). While an independent set
demands that no node colored black can have a neighbor that is also colored black, it is
totally alright for white nodes to have neighbors that are also colored white. Therefore,
the MIS/MWIS problem is not equivalent to the graph coloring problem.

Our work is most closely related to the work by Yen and Chen [2014]. Their approach
shares several similarities with our framework:

— Both achieve a system goal by designating private objectives of individual processes.
— Both assume the model of sequential game, where one player moves after another

and no simultaneous moves are allowed.
— Both assume perfect information, meaning that when making a decision, a player is

aware of all relevant decisions that have been made (by other players) previously.
— Both are guaranteed to converge to a quiescent yet legitimate game state regardless

of initial game configuration and game play sequence.
— Both have been converted into distributed algorithms expressed in guarded com-

mands.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 L. Yen et al.

Nevertheless, our game framework differs from the approach proposed by Yen and
Chen [2014] in the following ways.

— Although the game design of Yen and Chen [2014] is guaranteed to converge, the
corresponding distributed algorithm converted from the game is only weakly stabi-
lizing. The reason is that, in their game design, a player needs strategy information
from non-neighbor players. Although this requirement conforms to the assumption of
perfect information, when converting the game into a distributed algorithm a process
has to access non-local variables (i.e., variables that are neither owned by the process
nor by any of its neighbors.) Such an access can only be done indirectly due to the
inherent limitation imposed by the shared variable communication model. In con-
trast, because a process in our algorithm does not need to access non-local variables,
all algorithms derived from our framework are self-stabilizing rather than merely
weak-stabilizing.

— Besides sequential moves, we also consider simultaneous moves that are allowed
by distributed and synchronous daemons for self-stabilizing distributed algorithms
(Sec. 4). In contrast, Yen and Chen [2014] considered only sequential moves and thus
central daemon.

— Although Yen and Chen [2014] did convert their game design into distributed algo-
rithms expressed in guarded commands, they did not explicitly show how this is done
generally. In contrast, we present a generic transformation that virtually applies to
any noncooperative game (Sec. 3.4).

— Some game notion was not fully explored by Yen and Chen [2014]. For example,
Pareto optimality is not an essential property in their work, while it corresponds to
the “maximal” property of an MIS in our problem. Similarly, social welfare of a game,
which is defined as the total utility across all players, does not bear any meaning in
prior work. In contrast, maximizing social welfare in our MIS game corresponds to
the identification of an independent set that is of maximal cardinality.

In short, this work reveals the link between game theory and self-stabilization in a
more comprehensive manner than prior work [Yen and Chen 2014].

3. THE PROPOSED APPROACH
This section is concerned with a model for sequential games, where one player moves
after another and no simultaneous moves are allowed. This assumption fits the central
daemon. Sec. 4 will relax this assumption and discuss how to deal with simultaneous
moves when the game design is turned into a self-stabilizing algorithm for the syn-
chronous or distributed daemon.

3.1. Generic MWIS Game
Let P = {p1, p2, · · · , pn} be the set of all processes in a distributed system. A symmetric
binary relation on P can be defined as a set of unordered pairs and represented by an
undirected graph G = (P,E), where E ⊆ P × P is the set of all pairs of processes that
are related. To formulate the MWIS problem, let W : P → R+ be a weighting function
that gives each process a non-negative weight. We model the problem of identifying an
MWIS in G as MWIS game Γ = [P ;E;W ; {Si}ni=1; {ui}ni=1], where Si = {1, 0} is process
pi’s strategy set indicating whether pi chooses to be in the MWIS (1) or not (0), and ui
is pi’s utility function. A strategy profile is an n-tuple C = (c1, . . . , cn), where ci ∈ Si

represents player pi’s strategy. For convenience we sometimes express C as (ci, c−i),
where c−i indicates a tuple of all players’ strategies other than pi’s. Let Ni = {pj |
(pi, pj) ∈ E} denote the set of pi’s neighbors in G. Let Li ⊆ Ni be a subset of Ni and
α > 1 be a constant. Given a strategy profile C = (ci, c−i), we define the utility of pi

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:9

associated with C as

ui(C) =
∑

pj∈Li

w(ci, cj) + ci, (2)

where

w(ci, cj) = −αcicj . (3)

The private goal of each player is to dynamically select a strategy that maximizes its
own utility. Therefore, pi chooses ci = 1 only if no node in Li is also in the set. It would
rather choose ci = 0 if cj = 1 for any pj ∈ Li.

The initial strategy of each player is arbitrary, resembling an arbitrary system state
after a fault. The goal of the game design is to lead the system from an arbitrary state
to a stabilized state where {pi | ci = 1} constitutes a maximal independent set. This
is done through a non-deterministic sequence of strategy changes. Players can change
their strategies if necessary, following the so-called best-response rule. This rule states
that player pi selects strategy c∗i only if

c∗i = BRi(C) , argmax
ci∈Si

ui(ci, c−i). (4)

The best-response rule demands that when selecting a strategy, a player is aware of
what strategies have already been selected by other players.

The generic MWIS game is for both the MIS and the MWIS problems. For the MIS
problem, the quantitative goal is to maximize the social welfare function defined as

n∑
i=1

ui(C) = |{pi ∈ P | ci = 1}| (5)

for a game result C. For the MWIS problem, a valid game result C is evaluated by the
total weight in the independent set:

n∑
i=1

ui(C)W (pi) =
∑
ci=1

W (pi). (6)

Specific games can be derived from the generic game by varying the definition of Li.
Doing so we can practice many node selection rules for MIS/MWIS formation. All exist-
ing self-stabilizing algorithms for the MIS problem do not prefer any node in forming
an MIS. This corresponds to the definition Li , Ni for all pi ∈ P . On the other hand,
some centralized greedy approach to the MIS problem [Halldórsson and Radhakrish-
nan 1997] and many others for the MWIS problem [Sakai et al. 2003] select the best
candidate in each round of the selection process based on some node ordering relation.
Denote that relation by �. Such a selection preference can be locally embedded in each
player by defining Li , {pj ∈ Ni | pj � pi}. We shall explore more issues about the
definition of Li in the following two subsections.

3.2. Γsym: Symmetric MWIS Game

We consider first a special instance of the MWIS game with the definition of Li , Ni for
every player pi. This game is characterized by the mutual influences on neighboring
nodes: pj ∈ Li ⇔ pi ∈ Lj . For this property the payoff given out on every edge is
symmetric: w(ci, cj) contributes ui(·) whenever w(cj , ci) contributes uj(·). We refer to
this game as the symmetric MWIS game and denote it by Γsym.

One might wonder if symmetric influences lead to instability of the game. Consider
neighboring nodes pi and pj with (ci, cj) = (1, 1) at some time during the game. One of

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 L. Yen et al.

these nodes may act first to reset its choice to 0. This action does not prevent the other
from also resetting its choice to 0 later, as long as doing so is the other’s best response.
As a reaction, the one that acts first may change its strategy back to 1 for a utility
gain. It is our concern whether such a potential chain reaction leads to instability of
the game, i.e., a situation where some players repeatedly change their strategy.

The stability of a game is characterized by the notion of Nash equilibrium. When a
game enters a Nash equilibrium, no player can further increase its utility by unilater-
ally deviating from its current strategy.

Definition 3.1 (Nash equilibrium). A strategy profile C∗ = (c∗i , c−i) of a game Γ ,
[P ; {Si}ni=1; {ui}ni=1] is a Nash equilibrium for Γ if ui(c∗i , c−i) ≥ ui(ci, c−i) for all i ∈
{1, . . . , n} and for all ci ∈ Si.

We shall show that every strategy profile of Γsym eventually leads to a Nash equilib-
rium through a series of improvements, where an improvement refers to a transition
of strategy profile caused by the best-response strategy of a single player. This is done
by showing that Γsym is an exact potential game [Monderer and Shapley 1996], i.e., it
admits an exact potential function defined below.

Definition 3.2 (Exact potential function). A function Φ : S1 × . . . × Sn → R is an
exact potential function for a game Γ , [P ; {Si}ni=1; {ui}ni=1] if ui(c∗i , c−i) − ui(ci, c−i) =
Φ(c∗i , c−i)− Φ(ci, c−i) holds for all pi ∈ P and all ci, c∗i ∈ Si with ci 6= c∗i .

Monderer and Shapley [1996] proved that every finite potential game possesses a Nash
equilibrium, and that any Nash equilibrium can be reached by a series of potential
improvements caused by player’s best-response strategies.

We can map the symmetric MWIS game to a graphical congestion game [Bilò et al.
2011] in the following way. Each player has to choose one resource from the resource
set {0, 1}. For any player pi, the payoff of selecting 0 (ci = 0) is always 0 while the
payoff of selecting 1 (ci = 1) is

1− α|{pj ∈ Ni | cj = 1}|. (7)
Both payoffs are defined as a (monotonically decreasing) linear function of the number
of pi’s neighboring players that select the same resource. Bilò et al. [2011] showed
that if the graph is undirected (i.e., neighboring nodes have mutual influences on each
other), a graphical congestion game is an exact potential game.

In fact, we can prove that the following function is an exact potential function for
the symmetric MWIS game. Detailed proof is given in the Appendix.

Φ(C) =
1

2

n∑
j=1

∑
pk∈Nj

w(cj , ck) +

n∑
j=1

cj . (8)

Correctness is another concern of the designed game. The following theorem shows
the correctness of the game.

THEOREM 3.3. When the symmetric MWIS game Γsym , [P ;E;W ; {Si}ni=1; {ui}ni=1]
has reached a Nash equilibrium, the set S = {pi | ci = 1} is an independent set of
G = (P,E).

PROOF. By way of contradiction, assume that S at a Nash equilibrium is not an
independent set of G. This implies that there exists (pi, pj) ∈ E such that {pi, pj} ⊆
S. In that case, pi or pj has a negative utility value (less than or equal to 1 − α).
Either player can have a utility gain if it changes its strategy to 0, this contradicts the
assumption that the game has reached a Nash equilibrium. Hence S is an independent
set.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:11

We can further prove that at a Nash equilibrium S is maximal by showing that the
Nash equilibrium is Pareto optimal.

Definition 3.4 (Pareto optimal). A strategy profile C is Pareto optimal if and only if
there exists no other strategy profile C ′ such that ui(C ′) ≥ ui(C) for all i ∈ {1, . . . , n}
and uj(C ′) > uj(C) for at least one j ∈ {1, . . . , n}.

In other words, a strategy profile is Pareto optimal if no player can increase its utility
without decreasing the utility of any others. To see why Pareto optimality corresponds
to the “maximal” property, first note that the utility of any player at a Nash equilibrium
is either 0 or 1. Because any player with negative utility value can raise its utility to 0
by switching its strategy from 1 to 0, any player with strategy 1 at a Nash equilibrium
can only have utility value 1. Furthermore, no player having utility value 1 can further
increase its utility, so only players with utility value 0 (i.e., players choosing 0) can
possibly increase their utilities. If a Nash equilibrium is Pareto optimal, which implies
that no players with utility value 0 can increase their utilities without decreasing
the utility of any others, we cannot add any node to the independent set S without
removing any others from S. Therefore, there exists no superset of S that is also an
independent set. On the other hand, if S at a Nash equilibrium is maximal, then it is
impossible to increase the utility of any player pj 6∈ S by adding pj into S because some
neighbor of pj must be in S. Since all players in S already have the maximal utility
value, the Nash equilibrium is Pareto optimal.

THEOREM 3.5. Every Nash equilibrium of the symmetric MWIS game is Pareto op-
timal.

PROOF. We prove the theorem by showing that no players with utility value 0 at
a Nash equilibrium can increase their utilities without decreasing the utility of any
others. By (2), any player pi having utility value 0 at a Nash equilibrium implies that
ci = 0 and there exists pj ∈ Ni with cj = 1. Note that pj ’s utility must be 1. To increase
pi’s utility, ci must be changed to 1 while cj must be changed to 0. This means that
pj ’s utility must be degraded. Therefore, it is impossible to increase pi’s utility without
decreasing pj ’s, which means that every game result is Pareto optimal.

Although the result in any Nash equilibrium is maximal, it is not necessarily a max-
imum independent set. With our definition of utility, finding an independent set that
is of the maximal cardinality is to maximize the social welfare defined in (5) with ad-
ditional constraint W (pi) = 1 for all pi ∈ P . Clearly, the result is also not necessarily a
maximum weighted independent set.

To analyze the game convergence time, let us consider a sequence of strategy profiles
C(0), C(1), . . . , C(l) with l ∈ N∞, where C(t) = (c

(t)
1 , c

(t)
2 , . . . , c

(t)
n) for all t with 0 ≤ t < l.

Definition 3.6 (Best-reply path). [Milchtaich 1996] A sequence of strategy profiles
C(0), C(1), . . . , C(l) with l ∈ N∞ is called a best-reply path if for all t with 0 ≤ t < l the
value of C(t+1) differs from C(t) in exactly one strategy ci such that c(t+1)

i = BRi(C
(t)).

Intuitively, a best-reply path is a transition sequence of strategies profiles caused by
players following the best-response rules. Therefore, the maximal length of any best-
reply path determines the worst-case game convergence time.

THEOREM 3.7. Given a graph G = (P,E) that contains no isolated node, the length
of any best-reply path in Γsym is at most O(|E|).

PROOF. The minimum value of Φ(·) is −α|E| + |P | (which occurs when C =
(1, 1, . . . , 1)). For a graph that contains no isolated node, the maximal value of Φ(·) is

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 L. Yen et al.

|P | − 1. Consider any best-reply path C(0), C(1), Without loss of generality, assume
that C(t+1) differs from C(t) in some ci for all t ≥ 0. Because Γsym is an exact potential
game, we have Φ(C(t+1))− Φ(C(t)) = ui(C

(t+1))− ui(C(t)) for all t ≥ 0. If (c
(t)
i , c

(t+1)
i) =

(0, 1), the value of ui(C(t+1)) − ui(C(t)) is 1 as indicated by (19). If (c
(t)
i , c

(t+1)
i) = (1, 0),

(22) indicates that the utility gain is at least α − 1. Therefore, the maximal length of
any best-reply path in Γsym is at most (|P | − 1 + α|E| − |P |)/min(1, α− 1) = O(|E|).

3.3. Γasym: Asymmetric MWIS Game
We now consider a more general class of the MWIS game that is characterized by a
binary relation � on P . For any two nodes pi and pj , pj � pi means that the preference
value of pj is at least as high as that of pi when forming an MIS/MWIS. The definition
of � depends on a function fp : P → R that assigns each process a metric value.
By defining different fp(·)’s, we can mimic various heuristics proposed for MIS/MWIS
and hopefully achieve a better game result (larger independent sets or higher total
weights). Assume that we prefer nodes with a higher fp(·) value when forming an
MIS/MWIS, thus

pj � pi iff fp(pj) ≥ fp(pi) (9)

for any two nodes pi and pj . For example, the definition fp(pi) , W (pi) corresponds to
the heuristic that favors nodes with higher weights when forming an MWIS [Basagni
2001]. The node ranking rule used by GWMIN [Sakai et al. 2003] corresponds to the
following definition of f .

fp(pi) ,
W (pi)

deg(pi) + 1
. (10)

For GWMIN2 [Sakai et al. 2003] the definition would be

fp(pi) ,
W (pi)

W (pi) +
∑

pj∈Ni
W (pj)

. (11)

For schemes that aim to minimize some cost function cp(·), we can define f(pi) , 1/cp(·)
or f(pi) , −cp(·). For example, to prioritize nodes with minimum node degrees when
forming an MIS, fp(·) can be defined as fp(pi) , 1/(deg(pi) + 1) 5. We refer to this class
of games as asymmetric games and denote it by Γasym.

Note that a game design here is not equivalent to the corresponding greedy approach
due to the decentralization nature of the game, arbitrary initial game configuration,
and non-deterministic game dynamics. Moreover, every time a greedy approach selects
a node, the node and all its neighbors are removed from the graph, so any fp(·) function
related to node degree should be recomputed for all the remaining nodes. In contrast,
deg(pi) is a unchanged for any node pi during a game play.

Clearly, � is a node ordering that is well defined for every pair of nodes. This is
essential for a centralized algorithm that repeatedly looks for a node with maximum
f(·) value. For a distributed approach where only local information is available, we
restrict our attention to the same relation defined on neighboring nodes only. That
is, pj � pi is of interest only if pj ∈ Ni. More specifically, Li , {pj ∈ Ni | pj � pi}
in an MWISa game. Because the relation � defined above is neither symmetric nor
asymmetric, we have pj ∈ Li 6⇒ pi ∈ Lj but pj � pi ∧ pi � pj is still possible and so is
pj ∈ Li ∧ pi ∈ Lj . This possibility makes the symmetric MWIS game a special case of
asymmetric MWIS games.

5This definition avoids possible zero denominators that may occur to isolated nodes.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:13

124

9

9

(a) A given weighted graph with weights shown
beside nodes.

32

3

3

(b) The influence graph corresponding to (a) where
the value of fp(·) defined as (10) is shown beside

each node.

Fig. 2. An example of influence graph

124

9

9

Fig. 3. The new influence graph that corresponds to (12).

Because now player’s influences may not be mutual, we should remodel the in-
terdependence relationship between players. For each undirected graph G = (P,E)
given for the MWIS/MIS problem, we define an influence graph to be a directed graph
Gi = (P,Ei) constructed from G such that G and Gi share the same vertex set P and
for every (pi, pj) ∈ E, (pi, pj) ∈ Ei iff pi � pj . In other words, there is a directed arc
from pi to pj in an influence graph if and only if fp(pi) ≥ fp(pj). Note that Gi may
contain directed cycles. Each cycle is a cyclic sequence of adjacent nodes in G that are
of the same fp(·) value. Figure 2 shows an example of influence graph that contains
two directed cycles (one clockwise and the other counterclockwise).

It appears difficult to show that Γasym is an exact potential game. In fact, it has been
pointed out that an equilibrium may not exist in a graphical congestion game when
the associated social knowledge graph is directed (i.e., influences are non-mutual) [Bilò
et al. 2011; Tekin et al. 2012]. If the social graph is directed (which is essentially an
influence graph) but acyclic, Bilò et al. [2011] showed that the game always converges.
However, this result does not help since the influence graph considered here may con-
tain cycles.

One might consider excluding the possibility of equal preference from the definition
of � to avoid possible cycles in an influence graph. More specifically, define

pj � pi iff fp(pj) > fp(pi). (12)

For the example shown in Figure 2, the resulting influence graph will be like that
shown in Figure 3. Although the influence graph no longer contains cycles, such a
redefinition of � can lead to incorrect results. In Figure 3, the three nodes that are
originally involved in the cycles can now all join the set regardless of which one moves
first. The result will no longer be an independent set.

We therefore look into the dynamics of Γasym in the time domain. We assume rea-
sonably fair opportunities among players in any best-reply path C(0), C(1), such
that for all pi ∈ P , if c(t)i 6= BRi(C

(t)) for some t ≥ 0 then there exits t′ > t such that

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 L. Yen et al.

c
(t′)
i = BRi(C

(t′)). This assumption implies that a best-reply path either ends at a Nash
equilibrium or is infinite. In the latter case, at least one player changes its strategy for
infinitely many times. The following definition decomposes the stability of a game into
a function of the stabilities of individual players.

Definition 3.8 (Player’s stability). Player pi is stable in a best-reply path ξ =
C(0), C(1), . . . if there exists some t ≥ 0 such that gi(t) is true, where

gi(t) =

{
true if c(t)i = c

(t′)
i for all t′ ≥ t

false otherwise
(13)

If there exists pi ∈ P such that gi(t) = false for all t ≥ 0, then ξ must be infinite. On
the other hand, the existence of a finite number t such that gi(t) = true for all pi ∈ P
in ξ implies that ξ ends at a Nash equilibrium. We shall prove that every possible
best-reply path in an asymmetric MWIS game ends at a Nash equilibrium.

If only one player is allowed to change her/his strategy at one time, the best-response
rule implies the following two properties of Γasym.

PROPERTY 1. If BRi(C
(t)) = 1 at some time t ≥ 0 then c

(t)
j = 0 for all pj ∈ Li.

PROPERTY 2. If BRi(C
(t)) = 0 at some time t ≥ 0 then there exits pj ∈ Li such that

c
(t)
j = 1.

These two properties are needed to prove Lemma 3.10. We also define a preference
relation ≺f on nodes as follows.

Definition 3.9. (Preference relation ≺f) For any two nodes pi and pj , pj ≺f pi if and
only if pj � pi and pi 6� pj .

Equivalently, pj ≺f pi if and only if fp(pj) > fp(pi). We define Ui , {pj ∈ Li | pj ≺f pi}
for each pi. Lemma 3.10 indicates that, though any player in Li has an influence on
pi’s utility, only those in Ui can have an influence on pi’s stability.

LEMMA 3.10. Let ξ be a best-reply path. For each player pi, if Ui = ∅ or there exists
t ≥ 0 such that gj(t) = true holds in ξ for all pj ∈ Ui, then gi(t

′) = true for some t′ ≥ t
(t = 0 if Ui = ∅).

PROOF. By way of contradiction, assume that either Ui = ∅ or there exists t ≥ 0 such
that gj(t) = true holds for some player pi and all pj ∈ Ui but gi(t′) = false for all t′ ≥ t.
This implies that ξ is infinite and pi constantly changes its strategy. If Li = ∅, then
BRi(C

(t)) = 1 for all t ≥ 0 and we have gi(t) = true for some t ≥ 0 by the reasonably
fair opportunities assumption. Assume Li 6= ∅. Consider first the case Ui = Li (thus
Ui 6= ∅). It may happen that c(t)i = BRi(C

(t)). If c(t)i 6= BRi(C
(t)), the fair opportunity

assumption ensures that c(t
′)

i = BRi(C
(t′)) for some t′ > t. Either case implies that

gi(t
′) = true for some t′ ≥ t because all players in Li do not revise their strategies at

and after t, which contradicts with the assumption. Consider next the case Ui ⊂ Li

(which includes the special case that Ui = ∅). The condition that pi constantly changes
its strategy implies that pi changes ci from 1 to 0 for infinitely many times. Suppose
that c(t1)i = BRi(C

(t1)) = 1 for some time t1 > t and c
(t2)
i = BRi(C

(t2)) = 0 for some
later time t2 > t1. Properties 1 and 2 imply that c(t1)j = 0 for all pj ∈ Li and there
exists pj ∈ Li with c

(t2)
j = 1. It turns out that there must exist some pj ∈ Li that

changes cj from 0 to 1 at some time t3 ∈ (t1, t2). Refer to Fig. 4 for an illustration.
Because either Ui = ∅ or gk(t′) = true for all pk ∈ Ui at all time t′ > t, pj must be in

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:15

0 0

0

t t1 t2t3

ci

cj

time

1

1

Fig. 4. Interaction between neighboring players pi and pj

Table II. Mapping from Game to Self-Stabilizing Algorithm

Game Self-Stabilizing Algorithm
Player pi Process pi
Strategy ci Variable ci
Strategy profile C Global state C
Utility function and best-response rule Guards and actions of guarded commands
Best-reply path Process execution sequence
Nash equilibrium Quiescent state

Li \ Ui. Therefore, pj � pi and pi � pj and thus pi ∈ Lj . However, because c(t3)i = 1,
BRj(C

(t3)) = 0 6= c
(t3)
j = 1. This contradicts with the best response rule and thus is

impossible.

Given an influence graph Gi = (P,Ei), the preference relation ≺f on P corresponds
to a preference graph Gf = (P,Ef) that is obtained by removing all (u, v)’s from Ei for
which both (u, v) and (v, u) are in Ei. Without loss of generality, let ξf = p1, p2, . . . , pm,
where 2 ≤ m ≤ n, be a sequence of nodes in Gf such that (pj , pj+1) ∈ Ei for all j,
1 ≤ j ≤ m − 1, and (pm, p1) ∈ Ei. If ξf is a directed cycle in Gf , then either fp(p1) >
fp(p2) > . . . > fp(pm) > fp(p1) or fp(p1) < fp(p2) < . . . < fp(pm) < fp(p1). Both cases are
impossible. Therefore, Gf must not contain any directed cycles and thus there exists
at least one source (a node with zero indegree) in Gf . This property guarantees the
stability of the asymmetric MWIS game, as the following theorem shows.

THEOREM 3.11. Any best-reply path in Γasym is finite.

PROOF. We prove the theorem by showing that all players are stable in any game
play. Let deg−(pi) denote the indegree of pi in Gf . Define N(k) , {pi ∈ P | deg−(pi) =
k} for all k, 0 ≤ k ≤ n − 1. For any source pi in Gf (i.e., pi ∈ N(0)), Ui = ∅ and
thus pi is stable by Lemma 3.10. For all 0 < k ≤ n − 1, assume that all players in
N(0) ∪ N(1) ∪ . . . ∪ N(k − 1) are all stable. Then all players in N(k), if any, are stable
as well by Lemma 3.10. Thus, the theorem can be proved by induction on k.

Theorem 3.11 proves that any asymmetric MWIS game eventually reaches a Nash
equilibrium regardless of initial game configurations and best-reply path. We can show
that when an asymmetric MWIS game enters a Nash equilibrium, the set S = {pi | ci =
1} is indeed an MWIS. The proof is analogous to that of the symmetric MWIS game
and is omitted.

3.4. Transformation to Self-Stabilizing Algorithms
We now show how to transform a game design into a self-stabilizing distributed algo-
rithm expressed in guarded commands. Table II shows the mapping for such a trans-
formation. In particular, each process pi acting as a player uses a local variable ci to

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 L. Yen et al.

Table III. Self-Stabilizing MIS/MWIS Algorithms Derived from MWIS Game

Game Type Objective Definition of fp(·) Name New?
Symmetric MIS fp(pi) = fp(pj) for all pi 6= pj No
Asymmetric MIS 1/(deg(pi) + 1) Adeg Yes
Asymmetric MWIS W (pi) Aweight Yes
Asymmetric MWIS Eq. (10) AGWMIN Yes
Asymmetric MWIS Eq. (11) AGWMIN2 Yes

keep pi’s current strategy. We designate one rule for each possible strategy. The action
of each rule sets ci to some possible choice c, while the guard of each rule is a precon-
dition ensuring that the corresponding action is pi’s best response. More specifically,

For each c ∈ Si, formulate the following rule:
guard: ci 6= c ∧ c−i ∈ {c−i | ui(c, c−i) > ui(ci, c−i)}
action: ci := c

This transformation is generic in the sense that it virtually applies to all noncoopera-
tive game models.

For both symmetric and asymmetric MWIS games, the correct value of ci is either IN
or OUT, indicating whether pi chooses to be in the independent set or not. Therefore,
each pi has two guarded commands, one for ci = IN and the other for ci = OUT:

R1 ci 6= OUT ∧ ∃pj ∈ Li : cj = IN
→ ci := OUT

R2 ci 6= IN ∧ (Ni = ∅ ∨ ∀pj ∈ Li : cj 6= IN)
→ ci := IN

Here we use ci 6= OUT (resp. IN) instead of ci = IN (resp. OUT) because the value of
ci could be arbitrary (neither IN nor OUT) after a fault. The assumption of reasonably
fair opportunities among players corresponds to fairness assumption of the daemon: if
an command is enabled infinitely often, then it is eventually executed.

Each process pi needs the information of Li, which includes the set of neighbors
of pi, and the weight, degree, and strategy of each neighbor. Accessing a neighbor’s
local information (weight, degree, and strategy) is accordant to the shared-variable
assumption. If the underlying graph can change dynamically, we may let each process
pi locally maintain Ni and shared variables di that respectively represent pi’s degree.
In this case there should be another guarded command that corrects the values of di
and Ni after a topology change or a transient fault. To ease our discussion, we simply
assume a static topology and that the graph information (i.e., Ni and di) is preserved
when transient faults occur. Similarly, we assume that the weight of each process is
not affected by transient faults.

Table III lists some self-stabilizing MIS/MWIS algorithms that are converted from
the game designs. For the symmetric MWIS game, the transformation result resem-
bles conventional self-stabilizing MIS algorithms [Shukla et al. 1995; Hedetniemi et al.
2003]. For asymmetric MWIS games, the results are several brand new self-stabilizing
MWIS algorithms (with different definitions of fp(·)). We refer to the set of these al-
gorithms as AMWIS. In particular, Adeg is an AMWIS algorithm that prefers nodes with
minimum node degrees when forming an MIS. This is the first self-stabilizing algo-
rithm for MIS that considers node degree.

In the following we analyze the approximation ratio ρ of Adeg. Formally,

ρ(G) = max
G

α(G)

Adeg(G)
,

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:17

whereG ranges over all finite graphs, α(G) is the size of a maximum independent set of
G, and Adeg(G) is the size of the solution obtained by algorithm Adeg for G. There exist
only a few self-stabilizing algorithms with known approximation factor, e.g., [Turau
2010; Turau and Hauck 2011]. In this section we compute ρ for algorithm Adeg. For
this purpose we prove that algorithm Adeg produces maximal independent sets that are
also computed by the sequential greedy algorithm of Halldórsson and Radhakrishnan
[1997]. Thus, Adeg has the same approximation ratio as their algorithm.

Consider a configuration where no node is privileged with respect to Adeg. Let I
be the set of nodes that are IN. For each subset U ⊆ P denote by minDeg(U) the
subset of nodes of U that have minimal degree in the subgraph induced by U . Note
that minDeg(U) 6= ∅ if U 6= ∅.

LEMMA 3.12. There exists an ordering p1, . . . , p|I| of the nodes in I such that for i =

1, . . . , |I| node pi has minimum degree in the graph induced by Pi−1 = P\
⋃

j=1,...i−1 N̂j ,
where N̂j = Nj ∪ {pj}.

PROOF. If minDeg(P) ∩ I = ∅ then pi is OUT for all pi ∈ minDeg(P). This is impos-
sible since rule R2 would be enabled for all v ∈ minDeg(P), thus minDeg(P) ∩ I 6= ∅.

The construction of the ordering is by induction. Choose any node p1 from
minDeg(P) ∩ I. Note that w is OUT for all w ∈ N(p1) by rule R1. Suppose there al-
ready exist p1, . . . , pi in I that fulfill the stated property. Observe that w is OUT for
all w ∈ N(pj) for j = 1, . . . , i by rule R1. If Pi = ∅ then i = |I| and the proof is
complete. Hence, Pi 6= ∅. Assume minDeg(Pi) ∩ I = ∅. Let p ∈ minDeg(Pi) and w a
neighbor of p with deg(w) ≤ deg(p) such that w is IN. Then w 6∈ {p1, . . . , pi} since oth-
erwise p 6∈ Pi. Hence, w 6∈

⋃
j=1,...i−1 N̂j since w is IN. This implies w ∈ Pi and thus

w ∈ minDeg(Pi). Then w is OUT by assumption. This contradicts with the choice of w.
Therefore, minDeg(Pi) ∩ I 6= ∅. So choose any node pi+1 from minDeg(Pi) ∩ I.

THEOREM 3.13. The performance ratio of algorithm Adeg is bounded by (∆ + 2)/3,
where ∆ is the maximal node degree in the given graph.

PROOF. By Lemma 3.12 algorithm Adeg computes a maximal independent set that
is also computed by the Greedy algorithm shown above. By Theorem 5 of [Halldórsson
and Radhakrishnan 1997] the performance ratio of algorithm Adeg is (∆ + 2)/3.

4. DEALING WITH SIMULTANEOUS MOVES
The proposed games till now are all sequential games, which disallow simultaneous
moves. This model well fits a central daemon which allows only one privileged process
to execute at a time. For distributed or synchronous daemon, the execution time of a
distributed algorithm can be divided into a series of rounds. In each round, some or
all privileged processes make moves simultaneously. The action of each process in a
round depends on the status of its neighboring processes in the previous round.

Allowing two neighboring processes pi and pj to move simultaneously may cause
ping-pong effects and thus instability. To illustrate, suppose that the rounds are se-
quentially numbered as T1, T2, If pi and pj in Adeg both have R2 enabled in round
Tk, they will join the set in round Tk+1. Then, because pi ∈ Lj and pj ∈ Li, pi and pj
will have R1 enabled and consequently leave the set in round Tk+2 (see Fig. 5) under
a synchronous daemon. This possibility can lead to a state transition cycle that lasts
forever. In case of distributed daemon, the algorithm is weakly stabilizing because the
algorithm stabilizes whenever only one privileged process is scheduled to execute.

A game that allows simultaneous moves by players is a simultaneous game. The ex-
ample shown in Fig. 5 indicates that the proposed MWIS game may become a cyclic
game [Selten and Wooders 2001] and thus can be instable if all players move simulta-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 L. Yen et al.

OUT OUT

Tk+1

ci

cj

time

IN

OUT OUTIN

Tk+2Tk

Fig. 5. Simultaneous moves of two neighboring processes pi and pj

Table IV. A possible state transition sequence

k c
(k)
1 c

(k)
2 c

(k)
3 c

(k)
4 c

(k)
5 c

(k)
6 c

(k)
7

0 OUT IN IN OUT IN OUT OUT
1 IN IN OUT OUT IN IN IN
2 IN OUT OUT OUT OUT IN OUT
3 IN OUT OUT IN OUT IN OUT

neously. If a non-empty subset of players (rather than all players) are allowed to move
simultaneously, the proposed game turns into a weakly acyclic game [Young 1993]
which is stable only asymptotically. To ease our discussion, we skip game design chal-
lenges concerning these issues and address directly how to deal with simultaneous
moves made by a dynamic non-empty subset of processes under a distributed or syn-
chronous daemon.

A commonly-adopted solution to this problem is to use process identifiers to break
the symmetry that occurs to neighboring processes. In case of the symmetric MWIS
game, the result will be similar to that proposed by Ikeda et al. [2002] or Goddard
et al. [2003]. For asymmetric MWIS games, special treatment is needed to deal with
neighboring nodes of the same preference value.

Suppose that every node u has a unique identifier denoted by id(u). We define prece-
dence relation between nodes as follows.

Definition 4.1. (Precedence relation ≺d) For any two nodes pi and pj , pi ≺d pj if and
only if (1) fp(pi) > fp(pj) or (2) fp(pi) = fp(pj) and id(pi) < id(pj).

Define Mi , {pj ∈ Ni | pj ≺d pi}. Let c(k)i denote the value of ci in round Tk. The
AMWIS algorithm modified for the synchronous or distributed daemon consists of two
guarded commands as shown below.

R1 c
(k)
i 6= OUT ∧ ∃pj ∈Mi : c

(k)
j = IN

→ c
(k+1)
i := OUT

R2 c
(k)
i 6= IN ∧ (Mi = ∅ ∨ ∀pj ∈Mi : c

(k)
j 6= IN)

→ c
(k+1)
i := IN

We use A′MWIS to denote the set of modified algorithms. For a specific algorithm Ax

that runs under a central daemon, we denote the corresponding modified version by
A′x. In particular, A′deg is the modified Adeg. Consider the graph shown in Fig. 6. Assume
that id(pi) = i for all i, 1 ≤ i ≤ 7. Table IV shows a possible state transition sequence
when running A′deg on this graph to find an MIS.

Before we prove the stabilization of A′MWIS, we first define stabilities of processes
under a synchronous or distributed daemon.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:19

1

2

3

4 5

6

7

Fig. 6. A sample topology

Definition 4.2. (Process’s stability) When running a distributed self-stabilizing al-
gorithm under a distributed daemon, process pi is stable in round Tk if none of pi’s
guarded commands are enabled after Tk. We say that pi becomes stable in round Tk if
it is stable in Tk but not in round Tk−1.

The stability of nodes running A′MWIS relies on the precedence relation between
nodes. A precedence graph Gd = (P,Ed) is a directed graph constructed from a given
undirected graph G = (P,E) such that G and Gd share the same vertex set P and for
every (pi, pj) ∈ E, (pi, pj) ∈ Ed iff pi ≺d pj . Similar to Gf , Gd does not contain directed
cycles. So there exists at least one source in Gd. Note also for every (pi, pj) ∈ E, either
pi ≺d pj or pj ≺d pi but not both. Therefore, Gd is an acyclic orientation of G.

THEOREM 4.3. Let P be a finite set of nodes. Let Ri ⊆ P be the set of nodes that are
stable after the i-th round (i ≥ 1) when running A′MWIS under a synchronous daemon. If
Ri 6= P then Ri ⊂ Ri+1.

PROOF. Assume that Ri = Ri+1, which means that no node in P \Ri becomes stable
in the (i + 1)-th round. Consider any node pj ∈ P \ Ri. If Mj ⊆ Ri, either R1 or R2 of
pj is enabled and pj can become stable in the (i + 1)-th round. Therefore, there must
be some pk ∈ Mj such that pk 6∈ Ri. By the same argument, we can show that there
must be some node pl ∈ Mk such that pl 6∈ Ri, and so forth. It turns out that every
node in P \ Ri must have a predecessor in Gd that is also in P \ Ri. Because P \ Ri is
finite, there must be at least one cycle in Gd, which contradicts the property that Gd is
acyclic. This completes the proof.

Next we analyze the time complexity and performance ratio of A′MWIS. Theorem 4.3
indicates that n nodes will become stable within n rounds when running A′MWIS under
a synchronous daemon, so the time complexity of A′MWIS is O(n). Consider running
A′MWIS on a complete graph G consisting of n nodes. Because G is a complete graph,
the corresponding precedence graph will contain only one source. The source node will
join the MWIS in the first round, while all other nodes will be out of the set in the
second round. This is valid regardless of n, which represents a best-case execution
time.

As an example of the worst-case execution, consider running A′MWIS on a ring graph.
Suppose that all n nodes having the same fp(·) value are consecutively assigned iden-
tifiers 0, 1, . . . , n− 1 along the ring. Refer to the corresponding digraph shown in Fig. 7.
Assume that all nodes are initially OUT. In the first round, all nodes will become IN.
Only node 0 will become stable in this round. In the second round, nodes 1, 2, . . . , n− 1
will change to OUT, and nodes 1 and n−1 will become stable. In the third round, nodes
2, 3, . . . , n − 2 will change back to IN, and only node 2 will become stable. In general,
node k, 0 ≤ k < n − 1 will become stable in Round k + 1. The whole execution takes
n− 1 rounds.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 L. Yen et al.

n-1

0

1

2n-2

Fig. 7. The precedence graph corresponding to a ring with monotonically increasing identifiers

5. PERFORMANCE EVALUATION
We conducted simulations to investigate the performance of the proposed approach.
In case of the MWIS problem, we are concerned with total weight in an independent
set. For the MIS problem, we are concerned with the size of MIS and also the rate of
convergence for all approaches running under a synchronous daemon.

5.1. Experimental Setup
The performance metrics depends on network topology. For a fair comparison, we
tested four representative types of network topologies: Unit Disk Graph (UDG) [Clark
et al. 1990], ER model [Erdös and Rényi 1959], WS model [Watts and Strogatz 1998],
and BA model [Barabási and Albert 1999].

In a UDG, nodes are characterized by their locations and communication ranges. A
link exists between two nodes if and only if these two nodes are within the communi-
cation rage of each other. We randomly deployed n nodes in a 1000 × 1000 m2 region.
Each node has a communication range of 200 m.

In the ER model, whether an edge exists between any two nodes is determined by
an edge probability pe. The resulting topology is a random graph.

In the WS model, a regular graph is first formed, where each node has 2k edges
connecting to its 2k nearest neighbors. Then, for each node, we rewire every edge of
this node to a randomly selected node with probability pr. The result is a small-world
network. We assumed a graph of 100 nodes and k = 2.

In the BA model, the graph has n0 nodes initially. Other nodes are incrementally
added to the graph. When adding a node into the graph, we build m edges that connect
this node to m nodes already in the graph. The other end of each edge is randomly
determined. The probability that a new edge connects to node u is proportional to the
degree of u. The result is a scale-free network. We tested a 100-node graph with n0 = 5.

To simulate arbitrary system states after a transient fault, all process variables
were initialized with randomly-determined values. Process identifiers were randomly
yet uniquely set. For a system consisting of n processes, the weight of each process was
set to an integer randomly selected from [0, n− 1]. Each result was averaged over 1000
trials.

5.2. Results
As mentioned, several brand new self-stabilizing MWIS algorithms can be derived
from asymmetric MWIS games, each with a different definition of fp(·). We considered
AGWMIN, AGWMIN2, A′GWMIN, and A′GWMIN2. We measured the performance of these four

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:21

50 60 70 80 90 100
4000

4500

5000

5500

6000

6500

7000

Number of nodes

T
o

ta
l
w

e
ig

h
ts

 i
n

 t
h

e
 M

IS

GWMIN (greedy)

A
GWMIN

A’
GWMIN

GWMIN2 (greedy)

A
GWMIN2

A’
GWMIN2

(a) UDG

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

p
e
 (edge probability)

T
o

ta
l
w

e
ig

h
ts

 i
n

 t
h

e
 M

IS

GWMIN (greedy)

A
GWMIN

A’
GWMIN

GWMIN2 (greedy)

A
GWMIN2

A’
GWMIN2

(b) ER model (100 nodes)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
6400

6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

p
r
 (rewiring probability)

T
o

ta
l
w

e
ig

h
ts

 i
n

 t
h

e
 M

IS

GWMIN (greedy)

A
GWMIN

A’
GWMIN

GWMIN2 (greedy)

A
GWMIN2

A’
GWMIN2

(c) WS model (k = 2; 100 nodes)

1 1.5 2 2.5 3 3.5 4 4.5 5
0.7

0.8

0.9

1

1.1

1.2

1.3
x 10

4

m (number of edges each new node has to build)

T
o

ta
l
w

e
ig

h
ts

 i
n

 t
h

e
 M

IS

GWMIN (greedy)

A
GWMIN

A’
GWMIN

GWMIN2 (greedy)

A
GWMIN2

A’
GWMIN2

(d) BA model (n0 = 5 forming a clique; 100 nodes)

Fig. 8. Average total weights in an MWIS

algorithms in terms of average total weight in identified independent sets. The results
were compared with that of GWMIN and GWMIN2 [Sakai et al. 2003]. Note that the
counterparts are not self-stabilizing algorithms. We conducted such comparisons sim-
ply because up to now there exists no self-stabilizing algorithm for the MWIS problem.

Figure 8 shows the average total weight in various types of network topologies. The
performance gap between GWMIN2 and GWMIN is hardly noticeable in UDG and BA
models. However, GWMIN2 significantly outperformed GWMIN in WS model. These
two greedy approaches are both superior to all the four self-stabilizing algorithms in
all settings. This result is justifiable since the counterparts are centralized algorithms
with a global view. Another difference is that these centralized algorithms start with
a fixed initial configuration (all processes were out of the independent set initially)
while the initial configuration for the self-stabilizing algorithms was purely random.
There is no significant performance difference between AGWMIN and A′GWMIN, and be-
tween AGWMIN2 and A′GWMIN2. This suggests that process execution models do not have
significant impact on the quality of the results.

For the MIS problem, we considered existing approaches proposed by Shukla et al.
[1995], Ikeda et al. [2002], Goddard et al. [2003] and Turau [2007]. We ran the first
under a central daemon and the others under a synchronous daemon. We did not con-
sider the symmetric MWIS game because its performance would be similar to [Shukla
et al. 1995] under a central daemon and [Ikeda et al. 2002; Goddard et al. 2003] un-
der a synchronous daemon. Instead, we tested A′deg, the degree-aware self-stabilizing

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 L. Yen et al.

50 60 70 80 90 100
13

14

15

16

17

18

19

Number of nodes

M
IS

 s
iz

e

A’
deg

Shukla et al.

Ikeda et al.

Goddard et al.

Turau

(a) UDG

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
5

10

15

20

25

30

p
e
 (edge probability)

M
IS

 s
iz

e

A’
deg

Shukla et al.

Ikeda et al.

Goddard et al.

Turau

(b) ER model (100 nodes)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
26

28

30

32

34

36

38

40

42

p
r
 (rewiring probability)

M
IS

 s
iz

e

A’
deg

Shukla et al.

Ikeda et al.

Goddard et al.

Turau

(c) WS model (k = 2; 100 nodes)

1 1.5 2 2.5 3 3.5 4 4.5 5
30

35

40

45

50

55

60

65

70

75

m (number of edges each new node has to build)

M
IS

 s
iz

e

A’
deg

Shukla et al.

Ikeda et al.

Goddard et al.

Turau

(d) BA model (n0 = 5 forming a clique; 100 nodes)

Fig. 9. Average cardinality of MIS

algorithms running under distributed and synchronous daemons. Our major concern
is the size of MIS. A larger MIS indicates a better result. We also measured the rate of
convergence for all approaches running under a synchronous daemon.

Figure 9 shows the average MIS size in these four types of network topologies. The
average MIS size generally increases with increasing number of nodes in UDGs. It
also increases with pr in small-world networks. In ER model, the average MIS size
decreases as pe changes from 0.1 to 0.5. The reason is that the network diameter (i.e.,
the length of the longest shortest path between any pair of nodes) decreases with an
increasing pe. In scale-free networks, the performance of all methods degrades as m
increases. This is because a larger m generally implies a higher probability of a small
set of nodes dominating all other nodes and thus a smaller MIS.

In all settings, A′deg generally outperforms all the counterparts, thanks to the con-
sideration of node degree in its design. Node degree in a random graph or UDG has a
binomial distribution [Bollobás 1998; Hekmat and Van Meighem 2003]. The BA model
creates a network topology for which the distribution of node degrees follows a power
law. Because A′deg prefers small-degree nodes in forming an MIS, diverging node de-
grees in these settings explain the superiority of A′deg in MIS size over the counter-
parts. However, each node has uniformly 2k neighbors in regular graphs (pr = 0 in WS
model). In this case, the preference for small-degree nodes in the formation of an MIS

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:23

50 60 70 80 90 100
1

2

3

4

5

6

7

Number of nodes

N
u

m
b

e
r

o
f

ro
u

n
d

s

A’
deg

Ikeda et al.

Goddard et al.

Turau

(a) UDG

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
3

4

5

6

7

8

9

p
e
 (edge probability)

N
u

m
b

e
r

o
f

ro
u

n
d

s

A’
deg

Ikeda et al.

Goddard et al.

Turau

(b) ER model (100 nodes)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
3

3.5

4

4.5

5

5.5

6

6.5

p
r
 (rewiring probability)

N
u

m
b

e
r

o
f

ro
u

n
d

s

A’
deg

Ikeda et al.

Goddard et al.

Turau

(c) WS model (k = 2; 100 nodes)

1 1.5 2 2.5 3 3.5 4 4.5 5
2

3

4

5

6

7

8

9

10

m (number of edges each new node has to build)

N
u

m
b

e
r

o
f

ro
u

n
d

s

A’
deg

Ikeda et al.

Goddard et al.

Turau

(d) BA model (n0 = 5 forming a clique; 100 nodes)

Fig. 10. Rate of convergence (average number of rounds before stabilization)

does not really affect the result. Consequently, A′deg does not outperform the counter-
parts. A′deg retakes its first place as pr increases.

We also measured the rate of convergence (defined as the average number of rounds
before stabilization) for each approach. Only the synchronous daemon was used here
because it allows exact process execution sequences. Fig. 10 shows the results in each
type of network topology. The approach proposed by Shukla et al. was excluded because
it cannot be run under a synchronous daemon. The results indicate that A′deg has the
fastest convergence rate, followed in turn by those proposed by Ikeda et al., Goddard
et al., and Turau. The only exception is in UDG, where A′deg is next to that proposed
by Ikeda et al.

6. CONCLUSIONS
Game theory provides a mathematical framework for the study of competitions and
potential cooperations among participating agents. In this paper, we have proposed a
generic game for identifying MIS/MWIS in a general graph. From the generic game
many specific games can be defined depending on whether neighboring players have
mutual influence and how such influence is defined. All games under consideration
eventually enter a Nash equilibrium regardless of initial game configurations and best-
reply path, and the game result is correct yet Pareto optimal. We have transformed
specific game designs to corresponding self-stabilizing distributed algorithms under a

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 L. Yen et al.

central daemon. In particular, a self-stabilizing algorithm that considers node degree
when forming an MIS has been proposed with its performance ratio analyzed. We also
have shown how to handle simultaneous moves which is essential to the execution of
self-stabilizing algorithms running under a distributed or synchronous daemon. The
performance of several algorithms transformed from games has been studied through
simulations with four types of representative network topologies. The simulation re-
sults indicate that the self-stabilizing algorithms for MWIS are only slightly inferior
to sequential greedy approaches in terms of total average weight. Nevertheless, the
self-stabilizing algorithm that is degree-aware generally outperforms other existing
approaches in terms MIS size and convergence rate.

The proposed MIS algorithms also serve as approaches to the minimal dominating
set. By taking the complement of the results yielded by the MIS/MWIS algorithms,
we have approximations to the (weighted) minimum vertex cover problem. With a
polynomial-time transformation, the proposed MIS/MWIS approaches can also serve
as approximations to the (weighted) maximum set packing problem. Finally, the pro-
posed approaches might be used to solve similar problems (e.g., [Shi et al. 2004; Hedet-
niemi et al. 2013]) with some modifications.

REFERENCES
Noga Alon, László Babai, and Alon Itai. 1986. A Fast and Simple Randomized Parallel Algorithm for the

Maximal Independent Set Problem. Journal of Algorithms 7, 4 (Dec. 1986), 567–583.
Albert-László Barabási and Réka Albert. 1999. Emergence of Scaling in Random Networks. Science 286

(Oct. 1999), 509–512.
Stefano Basagni. 2001. Finding a Maximal Weighted Independent Set in Wireless Networks. Telecommuni-

cation Systems 18 (2001), 155–168.
Vittorio Bilò, Angelo Fanelli, Michele Flammini, and Luca Moscardelli. 2011. Graphical Congestion Games.

Algorithmica 61 (2011), 274–297.
B. Bollobás. 1998. Modern Graph Theory. Springer-Verlag New York.
Brent N. Clark, Charles J. Colbourn, and David S. Johnson. 1990. Unit disk graphs. Discrete Mathematics

86, 1-3 (Dec. 1990), 165–177.
Johanne Cohen, Anurag Dasgupta, Sukumar Ghosh, and Sébastien Tixeuil. 2008. An Exercise in Selfish

Stabilization. ACM Trans. on Autonomous and Adaptive Systems 3, 4 (Nov. 2008).
E. W. Dijkstra. 1974. Self-stabilizing systems in spite of distributed control. Comm. ACM 17, 11 (Nov. 1974),

643–644.
E. W. Dijkstra. 1975. Guarded Commands, Nondeterminacy, and Formal Derivation of Programs. Comm.

ACM 18, 8 (Aug. 1975), 453–457.
P. Erdös and A. Rényi. 1959. On Random Graphs I. Publications Mathematicae, Debrecen 6 (1959), 290–297.
M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, New York.
Wayne Goddard, Stephen T. Hededtniemi, David P. Jacobs, Pradip K. Srimani, and Zhenyu Xu. 2008. Self-

Stabilizing Graph Protocols. Parallel Process. Lett. 18, 1 (2008), 189–199.
Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, and Pradip K. Srimani. 2003. A Self-Stabilizing

Distributed Algorithm for Minimal Total Domination in an Arbitrary System Graph. In Proc. 17th Int’l
Parallel and Distributed Processing Symp.

Mohamed G. Gouda. 2001. The Theory of Weak Stabilization. In Lecture Notes in Computer Science 2194,
A.K. Datta and T. Herman (Eds.). Springer-Verlag, 114–123.

M. G. Gouda and H. B. Acharya. 2011. Nash equilibria in stabilizing systems. Theoretical Computer Science
412 (2011), 4325–4335.

Daniel Grosu and Anthony T. Chronopoulos. 2004. Algorithmic Mechanism Design for Load Balancing in
Distributed Systems. IEEE Trans. on Systems, Man, and Cybernetics–Part B: Cybernetics 34, 1 (Feb.
2004), 77–84.

Nabil Guellati and Hamamache Kheddouci. 2010. A survey on self-stabilizing algorithms for independence,
domination, coloring, and matching in graphs. J. Parallel Distrib. Comput. 70 (2010), 406–415.

M. M. Halldórsson and J. Radhakrishnan. 1997. Greed is Good: Approximating Independent Sets in Sparse
and Bounded-Degree Graphs. Algorithmica 18, 1 (1997), 145–163.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:25

Joseph Y. Halpern. 2003. A computer scientist looks at game theory. Games and Economic Behavior 45
(2003), 114–131.

S. M. Hedetniemi, S.T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. 2003. Self-Stabilizing Algorithms for
Minimal Dominating Sets and Maximal Independent Sets. Computers & Mathematics with Applications
46, 5-6 (Sept. 2003), 805–811.

Stephen T. Hedetniemi, David P. Jacobs, and K.E. Kennedy. 2013. Linear-Time Self-Stabilizing Algorithms
for Disjoint Independent Sets. Comput. J. 56, 11 (2013), 1381–1387.

R. Hekmat and P. Van Meighem. 2003. Degree Distribution and Hopcount in Wireless Ad-hoc Networks. In
Proc. 11th IEEE Int’l Conf. on Networks. 603–609.

M. Ikeda, S. Kamei, and H. Kakugawa. 2002. A space-optimal self-stabilizing algorithm for the maximal
independent set problem. In Proc. 3rd Int’l Conf. on Parallel and Distributed Computing, Applications
and Technologies.

Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. 2002. An Efficient Distributed Algorithm for Construct-
ing Small Dominating Sets. Distributed Computing 15, 4 (2002), 193–205.

Hirotsugu Kakugawa and Toshimitsu Masuzawa. 2006. A Self-Stabilizing Minimal Dominating Set Algo-
rithm with Safe Convergence. In Int’l Parallel and Distributed Processing Symposium.

S. Kamei and H. Kakugawa. 2003. A self-stabilizing algorithm for the distributed minimal k-redundant dom-
inating set problem in tree network. In Proc. 4th International Conference on Parallel and Distributed
Computing, Applications and Technologies.

S. Kamei and H. Kakugawa. 2005. A self-stabilizing approximation algorithm for the distributed minimum
k-domination. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences
5 (2005), 1109–1116.

Richard M. Karp and Avi Wigderson. 1985. A fast parallel algorithm for the maximal independent set prob-
lem. J. ACM 32, 4 (Oct. 1985), 762–773.

Michael Kearns, Siddharth Suri, and Nick Montfort. 2006. An Experimental Study of the Coloring Problem
on Human Subject Networks. Science 313 (Aug. 2006), 824–827.

Micheal J. Kearns, Michael L. Littman, and Satinder P. Singh. 2001. Graphical models for game theory. In
Proc. 17th Conf. in Uncertainty in Artificial Intelligence. 253–260.

Jason R. Marden, Behrouz Touri, Ragavendran Gopalakrishnan, and J. Patrick O’Brien. 2015. Impact of
Information in a Simple Multiagent Collaborative Task. In IEEE Conference on Decision and Control.
4543–4548.

I. Milchtaich. 1996. Congestion games with player-specfic payoff functions. Games and Economic Behavior
13, 1 (1996), 111–124.

Dov Monderer and Lloyd S. Shapley. 1996. Potential Games. Games and Economic Behavior 14 (1996),
124–143.

Andrea Montanari and Amin Saberi. 2010. The spread of innovations in social networks. Proc. Natl Acad.
Sci. USA 107 (2010), 20196–20201.

Noam Nisan and Amir Ronen. 2001. Algorithmic Mechanism Design. Games & Economic Behavior 35 (2001),
166–196.

R. W. Rosenthal. 1973. A class of games possessing pure-strategy Nash equilibria. International Journal of
Game Theory 2, 1 (1973), 65–67.

Shuichi Sakai, Mitsunori Togasaki, and Koichi Yamazaki. 2003. A note on greedy algorithms for the maxi-
mum weighted independent set problem. Discrete Applied Mathematics 126 (2003), 313–322.

Reinhard Selten and Myrna H. Wooders. 2001. Cyclic Games: An Introduction and Some Examples. Games
& Economic Behavior 34 (2001), 138–152.

Z. Shi, W. Goddard, and S. T. Hedetniemi. 2004. An anonymous self-stabilizing algorithm for 1-maximal
independent set in trees. Inform. Process. Lett. 91, 2 (2004), 77–83.

Sandeep K. Shukla, Daniel J. Rosenkrantz, and S. S. Ravi. 1995. Observations on self-stabilizing graph
algorithms for anonymous networks. In Proc. 2nd Workshop on Self-Stabilizing Systems.

R. E. Tarjan and A. E. Trojanowski. 1977. Finding a Maximum Independent Set. SIAM J. Comput. 6, 3
(1977), 537–546.

Cem Tekin, Mingyan Liu, Richard Southwell, Jianwei Huang, and Sahand H. A. Ahmad. 2012. Atomic
Congestion Games on Graphs and its Applications in Networking. IEEE/ACM Trans. on Networking
20, 5 (Oct. 2012), 1541–1552.

Volker Turau. 2007. Linear self-stabilizing algorithms for the independent and dominating set problems
using an unfair distributed scheduler. Inform. Process. Lett. 103, 3 (2007), 88–93.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 L. Yen et al.

Volker Turau. 2010. Self-Stabilizing Vertex Cover in Anonymous Networks with Optimal Approximation
Ratio. Parallel Processing Letters 20, 2 (2010), 173–186.

Volker Turau and Bernd Hauck. 2011. A new Analysis of a Self-Stabilizing Maximum Weight Matching
Algorithm with Approximation Ratio 2. Theoretical Computer Science 412, 40 (Sept. 2011), 5527–5540.

Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature 393
(June 1998), 440–442.

Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani. 2003. A synchronous self-stabilizing minimal dom-
ination protocol in an arbitrary network graph. In Lecture Notes in Computer Science 2918. Springer-
Verlag, 26–32.

Li-Hsing Yen and Zong-Long Chen. 2014. Game-theoretic approach to self-stabilizing distributed formation
of minimal multi-dominating sets. IEEE Trans. Parallel Distrib. Syst. 25, 12 (Dec. 2014), 3201–3210.

H. P. Young. 1993. The Evolution of Conventions. Econometrica 61, 1 (Jan. 1993), 57–84.

Appendix: Proof of Γsym being an exact potential game
To prove, we need the following lemma.

LEMMA 6.1. For any player pi and any strategy profile C, ui(C) = 0 if ci = 0.

PROOF. If ci = 0, then w(ci, cj) = 0 for all pj ∈ Ni. Therefore, ui(C) =∑
pj∈Li

w(ci, cj) + ci = 0.

THEOREM 6.2.

Φ(C) =
1

2

n∑
j=1

∑
pk∈Nj

w(cj , ck) +

n∑
j=1

cj

is an exact potential function for Γsym.

PROOF. Let C = (ci, c−i) and C∗ = (c∗i , c−i) be two strategy profiles before and after
process pi changes its strategy from ci to c∗i , respectively. Φ(C) can be rephrased as

Φ(C) =
1

2
(ui(C)− ci +

∑
j 6=i

(uj(C)− cj)) +

n∑
j=1

cj . (14)

Similarly,

Φ(C∗) =
1

2
(ui(C

∗)− c∗i +
∑
j 6=i

(uj(C
∗)− cj)) +

∑
j 6=i

cj + c∗i . (15)

For any player pj 6∈ Ni ∪ {pi}, uj(·) is not affected by pi’s strategy change. Let Ui =
{pj |pj ∈ Ni ∧ cj = 1}. Lemma 6.1 yields uk(C) = uk(C∗) = 0 for all pk ∈ Ni \ Ui.
Therefore,

Φ(C∗)− Φ(C) =
1

2
(ui(C

∗)− ui(C) + ci − c∗i)

+
1

2

∑
pj∈Ui

(uj(C
∗)− uj(C)) + (c∗i − ci). (16)

Player pi can make two possible transitions: (ci, c
∗
i) = (0, 1) and (ci, c

∗
i) = (1, 0).

Case 1. (ci, c
∗
i) = (0, 1). This transition happens only if cj = 0 for all pj ∈ Ni (other-

wise ui(C∗) ≤ −α + 1 < 0 and pi would not have an incentive to set c∗i = 1). So Ui = ∅.
Furthermore, w(ci, cj) = w(c∗i , cj) = 0 for all pj ∈ Ni and thus

ui(C) =
∑

pj∈Ni

w(ci, cj) + ci = 0 (17)

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing Self-Stabilizing Systems Using Game Theory A:27

and

ui(C
∗) =

∑
pj∈Ni

w(c∗i , cj) + c∗i = 1. (18)

Therefore, (16) becomes

Φ(C∗)− Φ(C) = c∗i − ci = 1 (19)
= ui(C

∗)− ui(C).

Case 2. (ci, c
∗
i) = (1, 0). Because ui(C∗) = 0 by Lemma 6.1, ui(C) must be negative.

This implies that Ui 6= ∅. For all pj ∈ Ui,

uj(C
∗) = uj(C)− w(cj , ci) + w(cj , c

∗
i)

= uj(C) + α. (20)

Since

ui(C) =
∑

pj∈Ui

w(ci, cj) +
∑

pj∈Ni\Ui

w(ci, cj) + ci

=
∑

pj∈Ui

(−α) + ci = −α|Ui|+ 1, (21)

we have ui(C∗)− ui(C) = α|Ui| − 1. Now (16) becomes

Φ(C∗)− Φ(C) =
1

2
(α|Ui| − 1 + 1) +

1

2

∑
pj∈Ui

α+ (−1)

= α|Ui| − 1 = ui(C
∗)− ui(C). (22)

Since the strategy space of Γsym is finite, Γsym is a finite (exact) potential game.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

