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Abstract—Given an undirected graph G = (V,E), S ⊆ V
is an independent set if no two nodes in S are adjacent to
each other. S is a maximal independent set (MIS) if no proper
superset of S is also an independent set. We model the problem
of finding an MIS in a distributed system as a noncooperative
graphical game and propose an algorithmic mechanism design
for the problem. We show Nash equilibrium, correctness, and
Pareto optimality of the design and then turn the design
into a self-stabilizing algorithm running under a synchronous
daemon. The convergence property and time complexity of
the algorithm is shown. Simulation results indicate that the
proposed protocol performs better than previous work in terms
of MIS size under various representative types of network
topologies.

Keywords-self-stabilization; independent set; distributed al-
gorithms; game theory

I. INTRODUCTION

We consider a distributed system consisting of several pro-
cesses. Processes communicate by sharing variables. Each
variable is owned by and exclusively updated by one process.
Other processes can only read the value of this variable. A
snapshot capturing all variable’s values comprises a system
state. A system state may be legitimate or illegitimate with
respect to a predicate that specifies the system’s goal. When
a system is in a legitimate state, an occurrence of a fault may
bring the system into an illegitimate state. A self-stabilizing
distributed algorithm tolerates transient faults (faults that do
not persist) by always reaching legitimate system states in
a finite time regardless of initial system configuration [1].

Game theory provides a mathematical framework for the
study of competitions and potential cooperations among par-
ticipating agents. This study views a self-stabilizing system
as a noncooperative game. Processes that have their own
behavior are analogous to autonomous agents or players in a
game. Processes update their variables as agents change their
strategies. A quiescent state in self-stabilizing systems, in
which no process will further modify its variables, naturally
corresponds to a Nash equilibrium in noncooperative games
where no agent has the incentive to change her/his own
strategy. However, agents in a game are rational yet selfish.
They typically seek their own interests rather than a common
good. In contrast, processes in a self-stabilizing system have
no local, private objectives. They are coded to achieve a
system goal. It is our motivation to achieve a system goal by
designing private objectives of individual processes. In other
words, we were seeking utility functions for autonomous

players whose rational yet selfish interactions with one
another dynamically lead the game to a stable state where
the system goal is satisfied. This holds regardless of initial
game state because system state is arbitrary after a fault.

Game theory has been applied to solve certain instances of
combinatorial optimization problems. However, little work
has been done toward the application of game theory to the
design of self-stabilizing distributed algorithms. Cohen et al.
[2] first introduced the notion of selfish stabilization, where
processes may seek their private goals while cooperating
with one another in achieving a common goal. The private
goals of different processes may be conflicting. Under this
assumption, the authors devised a stabilizing distributed
algorithm that forms a spanning tree. If there are two types
of processes that have conflicting private goals, the authors
proved that the algorithm is weakly stabilizing [3]. Weak
stabilization means that starting from an arbitrary state, there
exists at least one sequence of state transitions that leads
the system to a stable state. In contrast, self-stabilizations
typically demands that any sequence of state transitions
leads the system into a stable state starting from whatever
initial state. Gouda [3] shows that weak stabilization of a
system implies stabilization of the same system under some
reasonable conditions.

Gouda and Acharya [4] assumed that gain functions (i.e.,
utility functions) of processes are defined only at quiescent
states. The action systems of all processes are assumed
independent of the gain functions and designed to lead the
system into a quiescent state. After entering a quiescent
state, processes may cause perturbations as a result of
attempting to increase their individual gains. The authors
are concerned with whether such behaviors can bring the
system into illegitimate states.

Both studies mentioned above argued that individual goals
may be an obstacle to system goal. In contrast, Yen and
Chen [5] proposed an algorithmic mechanism design that
achieves an intended system goal through private goals of
processes. The proposed game-theoretic design guarantees
the formation of a minimal multi-dominating set [6] starting
from an arbitrary initial state. The authors converted the
game design into a distributed algorithm which achieves
weak stabilization.

This paper considers designing a self-stabilizing algorithm
to find a maximal independent set (MIS) among all processes
in a distributed system. In this problem, a binary relation



on the set of all processes is abstracted by an undirected
graph, where nodes represent processes and edges represent
the existence of the relation between two relevant processes1.
In an undirected graph G = (V,E), where V is the vertex
set and E is the edge set, S ⊆ V is an independent set if
no vertices in S are adjacent to one another. S is an MIS if
no proper superset of S is also an independent set.

Shukla et al. [7] proposed the first self-stabilizing algo-
rithm to find an MIS, followed by others [8]–[11]. Refer
to [12] for a recent literature survey on self-stabilizing
algorithms for MIS. All the existing algorithms are ad
hoc designed. To the best knowledge of the authors, the
proposed approach is the first game-theoretic protocol design
for MIS formation. Game theory helps rigorous proof of
desired properties. For example, we can prove that the
proposed game-theoretic approach always enters a Nash
equilibrium regardless of initial configurations. This property
corresponds to the convergence property of self-stabilizing
algorithms [1]. We show that the proposed design indeed
identifies an MIS in any Nash equilibrium. We also show
that any Nash equilibrium in the proposed game model is
also Pareto optimal.

We convert the game design into a distributed algorithm
expressed in guarded commands [13]. We show the conver-
gence property and time complexity of the algorithm running
under a synchronous daemon. A salient feature of our work
that sets us apart from previous game-theoretic designs
[2], [5] is that the proposed algorithm is self-stabilizing
rather than merely weak-stabilizing. We conducted extended
simulations to study the average-case performance of the
proposed work. The results with a variety of network
topologies show that, compared with existing self-stabilizing
MIS algorithms, the proposed work provides a significant
improvement regarding the size of independent set.

The remainder of this paper is organized as follows:
Background information and related work are presented in
Section II. In the following section, we present a game
model for the MIS problem, prove its properties, and con-
vert it to self-stabilizing algorithms. Section IV studies the
performance of the proposed approach through simulations.
The simulation results are compared with those of existing
solutions. Section V concludes this paper.

II. BACKGROUND AND RELATED WORK

An independent set is a maximum independent set if it
has the largest size among all. While finding a maximum
independent set for a given graph is known to be NP-
complete [14], finding an MIS is not. Conventional approach
to the MIS problem is to sequentially or recursively [15]
examine each node to determine if it should be in the MIS.

A distributed algorithm is self-stabilizing if it meets
convergence and closure conditions [1]. The former requires

1We thus use nodes and processes interchangeably in this paper

that starting from arbitrary state (possibly illegitimate), the
algorithm eventually reaches a legitimate state. The latter
property states that any state following a legitimate state
is also legitimate. In our problem, a state is legitimate if
all nodes that decide to be in the set in the state indeed
constitute an MIS.

Self-stabilizing algorithms typically assume that processes
communicate with one another via shared variables. In this
model, each process owns local variables to which it can
exclusively write values. Local variables can be read and
can only be read by the owner and the owner’s neighboring
processes. A distributed algorithm is anonymous if it does
not assume the availability of unique process identifiers. The
program executed by an individual process is often expressed
in the form of guarded commands [13]. Each command
consists of a guard (Boolean expression) and an action
(assignment statements) separated by ‘→’. A command is
enabled if its guard is true. Only at that time can the
corresponding action be executed. The whole system enters
a quiescent state (called a fixed point in [4]) if no commands
are enabled. The level of execution concurrency among
processes is specified by three possible execution models,
namely, central, synchronous, and distributed daemons. The
central daemon allows only one process to execute at a
time, while all processes execute in a lock-step manner in
a synchronous daemon. These two daemons are subsumed
by the distributed daemon, which allows a subset of all
processes to execute in parallel.

Shukla et al. [7] proposed an anonymous self-stabilizing
algorithm that finds an MIS under a central daemon. This
algorithm consists of two simple rules. First, a node joins the
MIS if none of its neighbors is in the MIS. Second, a node
leaves the MIS if one of its neighbors is also in the MIS.
The same algorithm was also proposed by other researchers
[16].

These two rules are general, but the proposed algorithm
was designed to run under a central daemon. It does not
work under a distributed or synchronous daemon. More
specifically, two neighboring nodes could enter the MIS by
the first rule in the same round and then leave the MIS
by the second rule in the next round. Such scenario causes
instability. Ikeda et al. [8] took the first rule but used node
identifiers to break node symmetry in the second rule. In
their algorithm, a node should leave the MIS only if any of
its neighbors that has a smaller identifier is also in the MIS.

Turau [9] proposed a self-stabilizing algorithm that has a
lower time complexity than the one proposed by Ikeda et
al. This algorithm is also not anonymous and runs under a
distributed daemon. Beside identifier, each node maintains a
variable that indicates the current status of the node. While
values IN and OUT indicate the node is and is not in the
MIS, respectively, value WAIT indicates that the node wants
to but not yet join the MIS under construction.

Goddard et al. [10] proposed a non-anonymous self-



stabilizing algorithm that identifies an MIS under a syn-
chronous daemon. Each node in this algorithm executes the
following two rules. First, a node joins the MIS if it is not
currently in the MIS and there is no neighboring node in
the MIS that has a larger identifier than it. Second, a node
leaves the MIS if there is any neighboring node in the MIS
that has a larger identifier than it.

Unlike all approaches mentioned above, Shi et al. [11]
proposed a self-stabilizing algorithm that identifies an 1-
MIS under a central daemon. An 1-MIS is an MIS with
an extra property that any removal of a node from the MIS
does not allow an addition of more nodes into the MIS.
This algorithm works for tree-structured topology and is
anonymous.

Table I summarizes all the related work.

III. THE PROPOSED APPROACH

A. The MIS Game

A noncooperative game Γ can be defined as Γ =
[{pi}ni=1; {Si}ni=1; {ui}ni=1], where P = {pi}ni=1 is the set
of players (agents), Si is player pi’s strategy set indicating
pi’s available choices, and ui is pi’s utility function. In our
problem, P is the set of all processes in a distributed system.
We define Si = {IN,OUT} indicating whether player pi
chooses to be in the MIS or not.

Our problem considers an undirected graph G = (V,E),
where V = P and E ⊆ P × P . The pair (G,Γ) formulates
a graphical game [17]. We refer to this game as the MIS
game. We assume that the MIS game is a dynamic game,
where no two or more players act simultaneously. Sec. III-B
will relax this assumption and discuss how to deal with
simultaneous actions when the game design is turned into
a self-stabilizing algorithm running under a synchronous or
distributed daemon.

Let Ni = {pj |(pi, pj) ∈ E} be the set of pi’s neigh-
boring nodes in G. For each player pi, let Mi = Ni ∩
{pj |deg(pj) ≤ deg(pi)}. A strategy profile is an n-tuple
C = (c1, c2, . . . , cn), where ci ∈ Si represents player pi’s
strategy. We sometimes express C as (ci, c−i), where c−i
indicates a tuple of all player’s strategies other than pi’s.
Given a strategy profile C = (ci, c−i), we define the utility
of pi associated with C as

ui(C) =

 0 if ci = OUT
−α if ci = IN ∧ ∃pj ∈Mi : cj = IN
α otherwise,

(1)

where α > 0 is a constant. The initial (tentative) strategy of
each player is arbitrary, resembling an arbitrary system state
after a fault. Players can change their strategies if necessary,
following the so-called best-response rule. This rule states
that player pi selects strategy ci∗ only if

ci∗ = argmax
ci∈Si

ui(ci, c−i). (2)

The sequence of players changing their strategies is arbitrary.
When choosing strategies, players are aware of other player’s
choices.

Consider two neighboring nodes pi and pj that are initially
OUT and compete in joining the MIS. Either one can be
IN earlier than the other because the sequence of strategy
changes is non-deterministic. This action does not prevent
the other from also joining the MIS later, as long as doing
so is the other’s best response. As a reaction, the one that
acts first may change its strategy to OUT to avoid a negative
utility. It is our major concern whether such a chain reaction
leads to instability of the MIS game, i.e., a situation where
some players repeatedly changing their strategies.

The stability of a game is characterized by the notion of
Nash equilibrium. When a game enters a Nash equilibrium,
no player can further increase its utility by unilaterally
deviating from its current strategy.

Definition 1 (Nash equilibrium): Given a game
Γ = [P ; {Si}ni=1; {ui}ni=1], a strategy profile
C∗ = (c∗1, c

∗
2, . . . , c

∗
n) is a Nash equilibrium if

∀i ∈ {1, 2, . . . , n} : ∀ci ∈ Si :: ui(c
∗
i , C

∗
−i) ≥ ui(ci, C∗−i).

To ease our discussion, we decompose the stability of a
game into a function of the stabilities of individual players.

Definition 2: During a game play, a player is stable if it
changes its strategy a finite number of times.

Because only one player is allowed to change her/his
strategy at one time, the best-response rule implies the
following two properties of the MIS game.

Property 1: If pi sets ci to IN at some time t other than
the initial time, then either Mi = ∅ or ∀pj ∈Mi : cj = OUT
at t.

Property 2: If pi sets ci to OUT at some time t other
than the initial time, then ∃pj ∈Mi : cj = IN at t.

These two properties are needed in the proof of Lemma 1.
Lemma 1: Define Dk = {pi|deg(pi) = k} and Uk =

{pi|deg(pi) ≤ k}. In any game play, if Dk+1 6= ∅ and
either Uk = ∅ or all players in Uk are stable, where k ≥ 0,
then all players in Dk+1 are stable as well.

Proof: By way of contradiction, assume that either
Uk = ∅ or all players in Uk are stable but some player
pi ∈ Dk+1 is not, i.e., pi constantly changes its strategy.
Note that Mi 6= ∅ since otherwise pi can be stable by
setting ci = IN. Consider any time point t after which
no player in Uk changes its strategy (t is simply set to 0
if Uk = ∅). The condition that pi constantly changes its
strategy implies that pi changes ci from IN to OUT for
infinitely many times. Suppose that pi sets ci to IN at some
time t1 > t and changes ci back to OUT at some later
time t2 > t1. By Property 1, the former action implies that
∀pj ∈ Mi : cj = OUT at t1. By Property 2, the latter
action implies that ∃pj ∈ Mi : cj = IN at t2. It turns out
that there must exist some pj ∈ Mi that changes cj from
OUT to IN at some time t3 ∈ (t1, t2). Refer to Fig. 1 for
an illustration. It is impossible that pj ∈ Dk+1, because in



Table I
EXISTING SELF-STABILIZING MIS ALGORITHMS

Work Objective Control daemon Topology Anonymous?
Shukla et al. [7] MIS Centralized General Yes
Ikeda et al. [8] MIS Distributed General No
Turau [9] MIS Distributed General No
Goddard et al. [10] MIS Synchronous General No
Shi et al. [11] 1-MIS Centralized Tree Yes
This work MIS Synchronous General No

OUT OUT

OUT

t t1 t2t3

ci

cj

time

IN

IN

Figure 1. Interaction between neighboring players pi and pj

that case changing cj from OUT to IN at t3 only causes a
negative utility gain for pj (as ci = IN at t3). Therefore, pj
must be in Mi\Dk+1 = Ni∩Uk, which contradicts with the
assumption that either Uk = ∅ or no player in Uk changes
its strategy after t.

Lemma 1 indicates that, as long as all players with lower
node degrees are stable, race conditions between any two
neighboring players that are of the same degree do not cause
instability. When both are eligible to join the MIS set, the
one that acts first does not revise her decision, preventing the
other from also joining the set. Because no two players can
act at the same time, this arbitration rule guarantees stability.

If all players are stable, then eventually no player further
changes its strategy. This corresponds to a Nash equilibrium.
We therefore have the following result.

Theorem 1: The MIS game (G,Γ) eventually reaches a
Nash equilibrium regardless of initial game configurations.

Proof: We prove the theorem by showing that all
players are stable in any game play. Let c be the minimal
degree in G. If c = 0, any node in U0 is isolated and can
be stable by choosing the dominating strategy IN. If c > 0,
then Uc−1 = ∅. So all players in Dc and thus Uc are stable
by Lemma 1. For any positive integer k > c, assume that all
players in Uk−1 are stable. Lemma 1 shows that all players
in Dk and thus Uk = Uk−1 ∪ Dk are stable as well. By
induction on k, we can show that all players are stable.

Theorem 1 proves the stability of the MIS game. The
following theorem shows that when the MIS game ends up
entering a Nash equilibrium, the set S = {pi|ci = IN} is
indeed an independent set.

Theorem 2: When the MIS game (G,Γ) ends up in
a Nash equilibrium, the set S = {pi|ci = IN} is an
independent set in G.

Proof: By way of contradiction, assume that S =
{pi|ci = IN} at a Nash equilibrium is not an independent
set in G = (V,E). It is implied that there exists (pi, pj) ∈ E

such that pi ∈ S and pj ∈ S. In that case, pi or pj (or both,
if deg(pi) = deg(pj)) has a negative utility value (−α).
Either player can have a utility gain if it changes its strategy
to OUT, contradicting with the assumption that the game has
reached a Nash equilibrium. So S must be an independent
set.

We can prove further that the independent set at a Nash
equilibrium is maximal by showing that the Nash equilib-
rium is Pareto optimal.

Definition 3 (Pareto optimal): A strategy profile C =
(c1, c2, . . . , cn) is Pareto optimal if and only if there exists
no other strategy profile C ′ = (c′1, c

′
2, . . . , c

′
n) such that ∀i ∈

{1, 2, . . . , n} : ui(C
′) ≥ ui(C) and ∃j ∈ {1, 2, . . . , n} :

uj(C
′) > uj(C).

To see why, first note that the utility of any player at
a Nash equilibrium is either 0 or α. Because any player
with utility value −α can raise its utility to 0 by switching
its strategy from IN to OUT, no players can have utility
value −α at a Nash equilibrium. Furthermore, all players
having utility value α cannot further increase their utilities.
Therefore, only players with utility value 0 (i.e., players
choosing OUT) can possibly increase their utilities. If a
Nash equilibrium is Pareto optimal, which implies that no
players with utility value 0 can increase their utilities without
decreasing the utility of any others, we cannot add any
node to the independent set S without removing any others
from S. Therefore, there exists no superset of S that is
also an independent set. On the other hand, if S at a Nash
equilibrium is an MIS, then adding any player pj 6∈ S
into S does not increase pj’s utility because some neighbor
of pj must be in S. Since all players in S already have
the maximal utility value, the Nash equilibrium is Pareto
optimal.

Theorem 3: Every Nash equilibrium of the MIS game is
Pareto optimal.

Proof: We prove the theorem by showing that no
players with utility value 0 at a Nash equilibrium can
increase their utilities without decreasing the utility of any
others. By (1), any player pi having utility value 0 at a Nash
equilibrium implies that ci = OUT and ∃pj ∈Mi : cj = IN.
Note that pj’s utility must be α. To increase pi’s utility, ci
must be changed to IN while cj must be changed to OUT.
This means that pj’s utility must be degraded. Therefore, it
is impossible to increase pi’s utility without decreasing pj’s,



which means that every game result is Pareto optimal.
Although the result in any Nash equilibrium is an MIS,

it is not necessarily a maximum independent set.

B. Self-Stabilizing MIS Algorithm

When converting the MIS game into a self-stabilizing
algorithm, player’s strategies in the game correspond to local
states of processes. We assume that each process pi uses a
local variable ci to keep pi’s current strategy. Let A be the
converted algorithm. A consists of two guarded commands
at each process pi as shown below.

R1 ci 6= OUT ∧ ∃pj ∈Mi : cj = IN
→ ci := OUT

R2 ci 6= IN ∧ (Mi = ∅ ∨ ∀pj ∈Mi : cj = OUT)
→ ci := IN

R1 and R2 correspond to Properties 2 and 1, respectively.
Each process pi needs the information of Mi, which includes
the set of neighbors of pi and the degree of each neighbor.
We may assume that Ni is fixed and let each process
pi maintain another shared variable di that represents pi’s
degree. Then we should have another guarded command that
corrects the value of di after a transient fault. To ease our
discussion, we simply assume that the graph information
(i.e., Ni and di) is preserved when transient failures occur.

The proposed MIS game is a dynamic game, which
disallows simultaneous decision makings. This property en-
sures the correctness of A running under a central daemon.
However, it requires special treatments to turn a dynamic
game into a self-stabilizing algorithm that runs under a
synchronous or distributed daemon.

The execution time of a distributed algorithm under a
synchronous or distributed daemon can be divided into a
series of rounds. In each round, one or more processes act
in parallel. The action of each process in a round depends
on the status of its neighboring processes in the previous
round.

In case of A, allowing two neighboring processes that
are of the same degree to act simultaneously may cause
ping-pong effects and thus instability. To illustrate, let pi
and pj be two neighboring processes such that deg(pi) =
deg(pj). Suppose that all rounds are sequentially numbered
as T1, T2, . . . . If pi and pj both have R2 enabled in round
Tk, they will join the set in round Tk+1. Then, because
pi ∈ Mj and pj ∈ Mi, pi and pj will have R1 enabled
and consequently leave the set in round Tk+2. See Fig. 2.
This possibility can lead to a strategy change cycle that lasts
forever.

As a remedy, we use process identifiers to break the
symmetry that occurs to neighboring processes of the same
degree. Suppose that every node has a unique identifier. We
define precedence relation between nodes as follows.

Definition 4: The precedence relation (≺). Let id(u) be
the identifier of node u. For any two nodes pi and pj , pi ≺

OUT OUT

Tk+1

ci

cj

time

IN

OUT OUTIN

Tk+2Tk

Figure 2. Simultaneous moves of two neighboring players pi and pj
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Figure 3. A sample topology

pj if and only if (1) deg(pi) < deg(pj) or (2) deg(pi) =
deg(pj) and id(pi) < id(pj).

Note that ≺ is irreflexive, antisymmetric and transitive.
Define Mi as Mi = Ni ∩ {pj |pj ≺ pi}. The modified
algorithm A′ consists of two guarded commands as shown
below.

R1 ci 6= OUT ∧ ∃pj ∈Mi : cj = IN
→ ci := OUT

R2 ci 6= IN ∧ (Mi = ∅ ∨ ∀pj ∈Mi : cj = OUT)
→ ci := IN

For the topology shown in Fig. 3, Table II shows a
possible state transition sequence of A′. Here id(pi) = i
for all i, 1 ≤ i ≤ 7.

C. Stability and Time Complexity Analyses

We shall now show self-stability and time complexity
of A′. We first define stabilities of processes under a
synchronous or distributed daemon.

Definition 5: When running a distributed self-stabilizing
algorithm under a synchronous or distributed daemon, pro-
cess pi is stable in round Tk if none of pi’s guarded
commands are enabled after Tk. We say that pi becomes
stable in round Tk if it is stable in Tk but not in round
Tk−1.

The stability of nodes relies on precedence relation
between nodes. A precedence graph is a directed graph
Gp(V,L) constructed from a given undirected graph
G(V,E) such that G and Gp share the same vertex set V

Table II
A POSSIBLE STATE TRANSITION SEQUENCE

Round c1 c2 c3 c4 c5 c6 c7
0 OUT IN IN OUT IN OUT OUT
1 IN IN OUT OUT IN IN IN
2 IN OUT OUT OUT OUT IN OUT
3 IN OUT OUT IN OUT IN OUT



and for every (pi, pj) ∈ E, (pi, pj) ∈ L iff pi ≺ pj . Because
≺ is irreflexive and transitive, Gp must not contain directed
cycles. That is, Gp is an acyclic orientation of G.

Theorem 4: Let P be a finite set of nodes. Let Ri ⊆ P be
the set of nodes that become stable in the i-th round when
running Algorithm A′ under a synchronous daemon. Sup-
pose that no nodes are stable initially. Then, the following
two condition hold.

1) R1 6= ∅.
2) If Ri 6= ∅ and ∪1≤j≤iRj 6= P , then Ri+1 6= ∅.

Proof: Let D+
i denote the set of all nodes having

indegree 0 in Gp. Because Gp is acyclic, D+
0 6= ∅. In the

first round of A′, all nodes in D+
0 will choose IN by R2

and become stable. Thus R1 6= ∅. Suppose that Ri 6= ∅
and ∪1≤j≤iRj 6= P for some i. Assume that Ri+1 = ∅,
which means that no node in P \ {R1 ∪ R2 ∪ . . . ∪ Ri}
becomes stable in the (i + 1)-th round. Consider any node
pj ∈ P \{R1∪R2∪. . .∪Ri}. IfMj ⊆ {R1∪R2∪. . .∪Ri},
either R1 or R2 of pj is enabled and pj can become stable in
the (i+1)-th round. Therefore, there must be some pk ∈Mj

such that pk ∈ P \ {R1 ∪R2 ∪ . . .∪Ri}. By the same argu-
ment, we can show that there must be some node pl ∈Mk

such that pl ∈ P \{R1∪R2∪ . . .∪Ri}, and so forth. It turns
out that every node in P \{R1∪R2∪ . . .∪Ri} must have a
predecessor in Gp that is also in P \ {R1 ∪R2 ∪ . . .∪Ri}.
Because P \ ∪1≤j≤iRj is finite, there must be at least
one cycle in Gp, which contradicts the property that Gp

is acyclic. We thus have the proof.
Theorem 4 indicates that n nodes will become stable

within n rounds when running A′ under a synchronous
daemon, so the time complexity of A′ is O(n). Consider
running A′ on a complete graph consisting of n nodes. The
node that has the smallest identifier will join the MIS in
the first round. All other nodes will be out of the set in the
second round. This condition is valid regardless of n, which
represents a best-case execution time.2

As an example of the worst-case execution, consider
running A′ on a ring graph. Suppose that all n nodes are
consecutively assigned identifier 0, 1, . . . , n − 1 along the
ring. The corresponding digraph will be like that shown
in Fig. 4. Suppose that all nodes are OUT initially. In the
first round, all nodes will become IN. Only node 0 will
become stable in this round. In the second round, nodes
1, 2, . . . , n− 1 will change to OUT, and nodes 1 and n− 1
will become stable. In the third round, nodes 2, 3, . . . , n−2
will change back to IN, and only node 2 will become stable.
In general, node k, 0 ≤ k < n − 1 will become stable in
Round k + 1. The whole execution takes n− 1 rounds.

2A similar scenario also occurs to star topology, where all leaf nodes
will join the set in the first round and the hub node will leave the set in
the second round.

n-1

0

1

2n-2

Figure 4. The precedence graph corresponding to a ring with monotoni-
cally increasing identifiers

IV. SIMULATION RESULTS

We conducted simulations for performance comparisons
between the proposed algorithm and several existing ap-
proaches. The approaches under consideration include those
proposed by Ikeda et al. [8], Goddard et al. [10] and Turau
[9]. These approaches all use node identifiers and run under
a synchronous or distributed daemon. Our major concern is
the size of MIS. A larger MIS indicates a better result.

Self-stabilizing algorithms ought to tolerate transient
faults. After an arbitrary transient fault, the system state
becomes unpredictable. To simulate this scenario, all pro-
cess variables were assigned randomly-determined values
initially. Process identifiers were randomly yet uniquely set.
Each result was averaged over 1000 trials.

The size of MIS depends on network topology. For a fair
comparison, we tested four representative types of network
topologies. These types are Unit Disk Graph (UDG) [18],
ER model [19], WS model [20], and BA model [21].

In a UDG, nodes are characterized by their locations and
communication ranges. A link exists between two nodes if
and only if these two nodes are within the communication
rage of each other. We randomly deployed 50 to 100 nodes
in a 1000×1000 m2 region. Each node has a communication
range of 200 m. Fig. 5 shows average MIS size with respect
to the number of nodes. Clearly, the MIS size generally
increases with increasing number of nodes. The proposed
algorithm achieves the best result among all.

In ER model, whether an edge exists between any two
nodes is determined by an edge probability pe. The resulting
topology is a random graph. Fig. 6 shows how average MIS
size changes with pe in random graphs with 100 nodes. As
pe changes from 0.1 to 0.5, the average MIS size decreases.
The reason is that the average node degree increases with
an increasing pe. Here the proposed algorithm still performs
the best.

In WS model, a regular graph is first formed, where each
node has 2k edges connecting to its 2k nearest neighbors.
Then, for each node, we rewire every edge of this node to
a randomly selected node with probability pr. We assumed
a graph of 100 nodes and k = 2. Fig. 7 shows the result of
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average MIS size with various settings of pr. When pr = 0,
the proposed approach yielded smaller MIS than the work by
Turau [9]. However, as pr increases, the proposed approach
retakes its first place.

In BA model, the graph has n0 nodes initially. Other nodes
are incrementally added into the graph. When adding a node
into the graph, we build m edges that connect this node to
m nodes already in the graph. The other end of each edge
is randomly determined. The probability that a new edge
connects to node u is proportional to the degree of u. We
tested a 100-node graph with n0 = 5. Fig. 8 shows average
MIS sizes with respect to m. A larger m generally implies
a higher probability of a small set of nodes dominating
all other nodes and thus a smaller MIS. Therefore, the
performance of all methods degrades as m increases. Even
though, the proposed algorithm still performs the best.

All the results can be explained by the distribution of node
degrees in the tested network topologies. Node degree in a
random graph or UDG has a binomial distribution [22], [23].
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The BA model creates a network topology for which the
distribution of node degrees follows a power law. Therefore,
node degrees differ in these settings, which explains the
superiority of the proposed algorithm in MIS size over the
counterparts because the proposed algorithm prefers small-
degree nodes in forming an MIS. However, each node has
uniformly 2k neighbors in regular graphs (pr = 0 in WS
model). In this case, the preference for small-degree nodes
in the formation of an MIS does not really affect the result.
Consequently, other design considerations may be critical.

V. CONCLUSIONS

We have proposed the MIS game, a noncooperative
graphical game design for identifying MIS in an n-node
graph. The MIS game eventually enters a Nash equilibrium
regardless of initial game configuration, and the game result
is correct yet Pareto optimal. The MIS game have been
converted into a self-stabilizing distributed algorithm run-
ning under a synchronous daemon. We have proved that the



time complexity of the algorithm is O(n). The performance
of the algorithm has been studied through simulations with
four types of representative network topologies. The simu-
lation results indicate that the proposed game-theoretic self-
stabilizing algorithm generally outperforms other existing
approaches in terms of MIS size.

ACKNOWLEDGEMENTS

The authors are grateful to anonymous reviewers for their
constructive and helpful comments on the earlier version
of the paper. This work has been supported by Ministry
of Science and Technology, Taiwan, under contract MOST
103-2221-E-390-002.

REFERENCES

[1] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed
control,” Comm. ACM, vol. 17, no. 11, pp. 643–644, Nov.
1974.

[2] J. Cohen, A. Dasgupta, S. Ghosh, and S. Tixeuil, “An exercise
in selfish stabilization,” ACM Trans. on Autonomous and
Adaptive Systems, vol. 3, no. 4, Nov. 2008.

[3] M. G. Gouda, “The theory of weak stabilization,” in Lecture
Notes in Computer Science 2194, A. Datta and T. Herman,
Eds. Springer-Verlag, 2001, pp. 114–123.

[4] M. G. Gouda and H. B. Acharya, “Nash equilibria in stabi-
lizing systems,” Theoretical Computer Science, vol. 412, pp.
4325–4335, 2011.

[5] L.-H. Yen and Z.-L. Chen, “Game-theoretic approach to self-
stabilizing distributed formation of minimal multi-dominating
sets,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12, pp.
3201–3210, Dec. 2014.

[6] L. Jia, R. Rajaraman, and T. Suel, “An efficient distributed
algorithm for constructing small dominating sets,” Distributed
Computing, vol. 15, no. 4, pp. 193–205, 2002.

[7] S. K. Shukla, D. J. Rosenkrantz, and S. S. Ravi, “Obser-
vations on self-stabilizing graph algorithms for anonymous
networks,” in Proc. 2nd Workshop on Self-Stabilizing Systems,
1995.

[8] M. Ikeda, S. Kamei, and H. Kakugawa, “A space-optimal
self-stabilizing algorithm for the maximal independent set
problem,” in Proc. 3rd Int’l Conf. on Parallel and Distributed
Computing, Applications and Technologies, 2002.

[9] V. Turau, “Linear self-stabilizing algorithms for the indepen-
dent and dominating set problems using an unfair distributed
scheduler,” Inform. Process. Lett., vol. 103, no. 3, pp. 88–93,
2007.

[10] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K.
Srimani, “A self-stabilizing distributed algorithm for minimal
total domination in an arbitrary system graph,” in Proc. 17th
Int’l Parallel and Distributed Processing Symp., Apr. 2003.

[11] Z. Shi, W. Goddard, and S. T. Hedetniemi, “An anonymous
self-stabilizing algorithm for 1-maximal independent set in
trees,” Inform. Process. Lett., vol. 91, no. 2, pp. 77–83, 2004.

[12] N. Guellati and H. Kheddouci, “A survey on self-stabilizing
algorithms for independence, domination, coloring, and
matching in graphs,” J. Parallel Distrib. Comput., vol. 70,
pp. 406–415, 2010.

[13] E. W. Dijkstra, “Guarded commands, nondeterminacy, and
formal derivation of programs,” Comm. ACM, vol. 18, no. 8,
pp. 453–457, Aug. 1975.

[14] R. E. Tarjan and A. E. Trojanowski, “Finding a maximum
independent set,” SIAM Journal on Computing, vol. 6, no. 3,
pp. 537–546, 1977.
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