
KPAT: A Kernel and Protocol Analysis Tool for

Embedded Networking Devices

Ming-Hung Wang, Chia-Ming Yu, Chia-Liang Lin,

Chien-Chao Tseng

Dept. Computer Science

National Chiao Tung University

Hsinchu, Taiwan, R.O.C.

Li-Hsing Yen

Dept. Computer Science and Information Engineering

National University of Kaohsiung

Kaohsiung, Taiwan, R.O.C.

Abstract—Sniffer tools capture protocol data. Kernel-

profiling tools track function calls and events occurring in the

kernel. These two types of tools help us observe external and

internal behaviors of networking protocols, respectively. We

need both types of data for a comprehensive view of protocol

behavior. However, few tools perform these two tasks in an

integrated way. We developed Kernel and Protocol Analysis Tool

(KPAT). KPAT injects software probes into Linux kernel to

track interested function calls and event occurrences in the

kernel. Probe injection is done systematically and does not

require recompiling the kernel. A module in KPAT finds the

association between the tracked functions and protocol data

captured by an independent sniffer. The result as an integrated

log allows users to identify two-way relationship between

protocol data and the execution sequence of network functions in

the kernel. We successfully used KAPT to identity accurate

latency of each handover phase in IEEE 802.11 wireless networks.

Experimental results show that KPAT causes light overhead to

the patched kernel.

Keywords—Embedded Devices; Kernel Functions; Kernel

Events; Networking Protocols; Packet Sniffers

I. INTRODUCTION

For decades, the industry and academic both have spent a
great amount of efforts on developing efficient communication
sub-system for embedded computation and communication
devices. The communication sub-system should provide
network access service with satisfactory performance to
applications running on an embedded device. Therefore, it is a
need for protocol design in embedded systems to reduce
message delays, response times and packet losses on network.
To meet this need, designers need tools for benchmarking and
for the analysis of internal kernel behaviors and external
protocol behaviors. A well-rounded tool should facilitate
analyzing, debugging, and performance tuning processes which
are important to compact timing of system prototyping and
performance optimization.

Sniffer tools (such as Wireshark, tcpdump and Kismet [1-3])
are commonly used to intercept and log protocol data (e.g.,
frames, packets, segments), enabling an easy monitoring of
contents and exchange sequences. However, sniffers do not
provide a complete view of protocol behaviors because
information about protocol-related activities in the kernel (such

as function calls and events triggered by a particular protocol
data) is absent. Kernel-profiling tools [8-12], on the other hand,
inject software probes somewhere in the kernel to collect
operation and performance information from the system. These
tools, often designed for general purpose, allow us to track a
certain type of system events and call sequences. However,
kernel-profiling tools alone neither provide a complete view of
protocol behaviors because contents and timing information of
protocol data are often unavailable.

This work was motivated by the need to investigate
empirically handover latency of a mobile node (MN) roaming
between two access points in IEEE 802.11 wireless local area
networks. For a detailed analysis, we need to know the exact
timing of both kernel events and packet
transmissions/receptions. For example, the probing phase of an
inter-ESS layer-2 handover defined in [28] starts from the
occurrence of a link-down event (an event signified by the
kernel that can be logged by kernel-profiling tools) and ends
with the transmission of the first authentication frame (a
protocol data that can be captured by sniffer tools). It turns out
that calculating the latency of the probing phase requires both
external and internal behaviors of a protocol.

To provide a complete view incorporating external and
internal behaviors of a protocol, this paper proposes Kernel and
Protocol Analysis Tool (KPAT). KPAT injects software probes
into Linux kernel to track interested function calls and event
occurrences in the kernel. Probe injection is not manually done
and does not require recompiling the kernel. The injected
probes create a function log and an event log. An analyzer
module in KPAT processes these logs and finds the association
between these functions and protocol data captured by an
independent sniffer. The result as an integrated log allows
users to observe detailed protocol behaviors such as the
execution sequence and latency of network functions,
processing time and the call graph for processing a protocol
data, and detailed handover latency. Experimental results
indicate that KPAT causes light computation overhead to the
kernel. We successfully used KPAT in the analysis of
handover latency.

The remainder of this paper is organized as follows. We
first review existing sniffer tools and kernel-profiling tools.
Section III describes the design of KPAT in details and Section

IV presents numerical results of our experiments. The last
section concludes this paper.

II. RELATED WORKS

Sniffer tools such as Wireshark, tcpdump and Kismet [1-3]
intercept and log protocol data, allowing users to examine the
contents and the timing of protocol data. Wireshark [1], one of
the most acknowledged sniffer tools, is a free and open source
(license) utility for network traffic capturing and analyzing.
Wireshark allows users to examine captured protocol data in
every detail. This paper adopts Wireshark to work with KPAT.

Kernel-profiling tools [8-12] inject software probes into
system kernel. However, different approaches differ in how the
probes are injected. Source instrumentation approach places
probes by modifying the source code of the kernel while binary
instrumentation approach targets the object code of the kernel.
Statistical sampling approach uses a stand-alone monitor
process to probe the execution of CPU instructions periodically.
This approach records the execution counts and period of each
instruction and each function.

Table 1 lists several kernel-level profiling tools. LTT,
KTAU and LKST all gather generic information about the
kernel (average load, context switch, send signal, interrupt,
exception, memory allocation and so on.) Kernprof and KFT
focus on function executions in the kernel and provide a
function call graph of the kernel. Kprobe, KernInst and DTrace
adopt dynamic binary instrumentation mechanism, which
allows a dynamic selection of locations in an object code to
place probes. However, finding the address of target instruction
demands the assistance of a compiler and a disassembler. To
ease this task, SystemTap provides a user interface to find the
addresses of target instructions and help configure Kprobe with
the target function name. KLASY allows users to find all the
addresses of instructions that ever access a specific data
structure (by specifying the data structure name of the target),
and helps configure the setting of KernInst accordingly.
Oprofile uses timer interrupt to periodically probe the
execution of CPU instructions (with the help of built-in
performance counters in CPU). These tools provide rich
profiling functions. However, none of these tools are designed
to identify all kernel behaviors that associate with a particular
protocol data. Furthermore, these tools do not integrate logs of
kernel behaviors (function log and event log) with logs of
protocol behaviors for a complete view of networking behavior.

TABLE I. KERNEL-LEVEL PROFILING TOOLS CLASSIFIED BY PROBE-
INJECTION TECHNIQUE

Source

Instrument

Linux Trace Toolkit (LTT) [6]

Kernprof [5]
Kernel Function Trace (KFT) [4]

Kernel Tuning and Analysis Utilities (KTAU) [13][14]

Linux Kernel State Tracer (LKST) [15]

Binary
Instrument

Kprobe [16]
KernInst [18]

DTrace (Solaris-based) [20]

SystemTap [17]
Kernel Level Aspect-oriented System (KLASY) [19]

Statistical

Sampling
Oprofile [21][22]

III. KERNEL AND PROTOCOL ANALYSIS TOOL (KPAT)

DEVELOPMENT

KPAT works with Wireshark and assumes Linux as the
target platform. Fig. 1 illustrates the system architecture of
KPAT. KPAT includes three major parts: kernel tracer,
network sniffer, and integrated analyzer. Kernel tracer running
on the device under test (DUT) traces network-related function
calls and events to generate a kernel behavior log (KBL).
Network sniffer running on another device captures all frames
exchanged on the physical network to generate a protocol
behavior log (PBL). Integrated analyzer integrates the KBL
from kernel tracer with the PBL from sniffer, and provides
users with a graphic user interface (GUI) for exploration and
further analysis. Kernel tracer and integrated analyzer shall be
discussed in details in the following two subsections.

Network Device

User Space

Kernel Space

(Patched Kernel)

Transport Layer

Network Layer

Link Layer

Physical Network

KBL PBL

Monitor

Device Sniffer

Integrated Analyzer

Log Matcher

GUI

Kernel

Tracer

KBL: kernel behavior log

PBL: protocol behavior log

Fig. 1. System architecture of KPAT.

KBL consists of a function log and an event log. The
function log keeps track of all function calls that have ever
processed any protocol data. Recorded information includes
the sequence of function calls, latency between function calls
and function execution time. The event log records the
occurrences of all network-related events such as link-down
and link-up events of the network interface.

A. Kernel Tracer

Kernel tracer tracks specific function calls and particular
signals raised by the kernel. Possible implementations of kernel
tracer are through the use of system calls or by probe injections.
System call is a fundamental interface between applications
and kernel, and a probe is a piece of codes injected into kernel
to monitor the execution of kernel system. Because system
calls incur considerable overheads due to frequent mode
switches between kernel mode and user mode, we chose probe
injection.

Two possible approaches to probe injection are source
instrumentation and binary instrumentation. Binary
instrumentation is tightly bound to CPU architecture. In
contrast, source instrumentation targets source code and thus is
hardware-independent. For this reason, kernel tracer uses
source instrumentation for probe injection.

Fig. 2 shows the architecture of kernel tracer. After probes
have been injected into selected network functions, calling
these functions will trigger probes, which in turn cause

instrument module to log the call of the function. Event module
detects occurrences of particular network events in the kernel.
Instrument module and event module are both implemented as
Linux kernel modules [23-25]. Linux kernel modules can be
compiled in the user space. By mounting these modules, KPAT
effectively extends Linux kernel.

We can also inject probes into network applications to
capture behaviors of application layer protocols. For instance,
if users are interested in handover analysis, they also inject
probes into DHCP client to track the actions of IP address
acquisition.

Instrument

Module

Instrument

Module

Profile Manager
DHCP

Client
Kernel

Function

Monitor

Event

Monitor

Event

Module

Event

Module

User

Kernel

Application

Transport

Network

Link

Event
LogFunction

Log

DHCP

Log

Instrument

Module

Instrument

Module

Profile Manager

Kernel

Function

Monitor

Event

Monitor

Event

Module

Event

Module

Probes

Event
LogFunction

Log

DHCP
Log

(Patched)

Fig. 2. Architecture of Kernel Tracer.

Probe injection can be done manually or systematically.
Manual injection of probes into kernel is infeasible due to
numerous target locations. Another reason for not using
manual injection is that the target locations for probes vary
with kernel versions. Our work thus proposes selective auto-
instrument technique, which systematically injects probes into
selected kernel functions. Linux kernel uses structure sk_buff
(for socket buffer) [26] to keep contents and related
information of each protocol data. Since all network-related
functions in the kernel access this structure, the proposed auto-
instrument technique finds all target functions with keyword
sk_buff. After a compete search on kernel source code, this
technique generates a patched source code. This patch allows
us to inject probes without recompiling the whole kernel.

Profile manager consists of kernel function monitor and
event monitor. Kernel function monitor periodically moves the
function log generated by instrument module to a permanent
storage whereas event monitor does the same for the event log.
Profile manager also provides configurable kernel instrument
(CKI) that allows users to select functions to track before each
run. As Fig. 3 shows, users select functions to track by
enabling or disabling the links between injected probes and
instrument module.

Linux Kernel Source Code

outputFunction{

record related

timestamp information;

}

Instrument ModuletransportLayerFunction3

transportLayerFunction2

transportLayerFunction1

networkLayerFunction2

networkLayerFunction1

macLayerFunction3

macLayerFunction2

macLayerFunction1

Fig. 3. Architecture of Configurable Kernel Instrument.

Kernel functions may generate considerable probing data to
the function log. If instrument module uses printk() to output
data, the incurred overhead will severely drag down kernel’s
performance. Therefore, the proposed instrument module
writes all probing data into the function log that resides in
kernel space. Profile manager then uses memory MAP
technique [31] to perform a background-transfer logging that
copy contents from the function log to disk storage space (Fig.
4). As this data transfer is performed only in system’s idle time,
kernel’s performance is not significantly affected.

Kernel space

1MB for RX

1MB for TX

2MB

RAM

Virtual memory areas of

profile manager

mmap

User space

KBL

move

Disk file

...
...

...
...

Fig. 4. mmap background-transfer logging mechanism.

B. Integrated Analyzer

Integrated analyzer provides a GUI for the presentation of
integrated log information, including the processing flow and
timing information of each protocol data in protocol stack and
the processing time in each handover phase. As Fig. 5
illustrates, integrated analyzer consists of log matcher, call
procedure analyzer, time analyzer and GUI.

Integrated Analyzer

 Log Matcher

Call Procedure

Analyzer

Time

Analyzer

Log Accessor

Graphic User Interface

User

InputPBL

Function

Event

DHCP

Fig. 5. Architecture of Integrated Analyzer.

1) Log matcher
Log matcher reads data from KBL, PBL and DHCP log. It

attempts to match records and find associations between KBL
and PBL. Users can select one protocol data from PBL and let
log matcher find out all kernel functions that have ever
processed this data. A reverse function-to-data lookup is also
possible. To support these services, instrument module stores
footprints (Fig. 6 (a)) in function log for the identification of
specific protocol data. Instrument module writes footprints of a
protocol data to the function log every time a target function
accesses the protocol data. As a kernel function may access
multiple protocol data that have already entered the system,
one record in function log may contain several footprints (Fig.
6 (b)). Log matcher uses footprints from the function log and
protocol headers from PBL to find all records corresponding to
the same protocol data (Fig. 7).

A footprint

ID of Packet

Frame Type

Source IP addr.

Destination IP addr.

Identification

Protocol

Protocol behavior log

Fig. 7. The association between a footprint and a protocol data.

Instrument point

ID of Function

ID of Caller

Length

Timestamp

Footprint 1

(b) A record in function log

Footprint 2

Footprint N

(a) A footprint

ID of Packet

Layer

Type of MAC

Matching

information of IP

Fig. 6. (a) Format of a footprint (b) Format of a record in function log.

A footprint includes header fields of each layer (link layer,
network layer, and transportation layer) to enable a layer-
specific matching. In transport layer, information about IP or
MAC address of a segment is generally not available to
protocol functions, and port number alone does not uniquely
identify this segment. As a remedy, KPAT assigns an ID that is
unique in transport layer to each segment when the segment
first enters the protocol stack. Since Linux kernel allocates a
memory block to each protocol data for storing structure
sk_buff, we use the memory address of sk_buff as the
segment’s transport-layer ID.

According to RFC 791 [27], the identification filed of IP
header in each packet should be unique during the period of a
source-destination connection. We use a 4-tuple data
(destination IP address, source IP Address, identification and
protocol number) to uniquely identify a layer-3 protocol data.
In case that a protocol data do not include IP header (e.g., ARP
or RARP), the type field of MAC header and timestamp
information are used for identification.

2) Call procedure analyzer
Call procedure analyzer shows by what functions and in

what sequence a selected protocol data was processed in the
kernel. This is done by tracing the ID of the protocol data in
footprints. Call procedure analyzer uses call graph to present
hierarchical calling relationship among logged kernel functions.
For instance, the call graph shown in Fig. 8 shows that the first
function called by ip_rcv() is ip_local_deliver(), which then
calls tcp_v4_rcv(). The call to ip_rcv() ends with
ip_rcv_finish().

Fig. 8. Call Graph of a TCP segment.

3) Time analyzer
Time analyzer provides detailed timing information,

including protocol data processing time, function processing
time statistic and handover latency. Protocol data processing
time shows the processing time of every kernel function that
has processed a particular protocol data [11]. Function
processing time statistic shows a list of functions that incur a
processing time lower or higher than a threshold set by users.
Handover latency presents the delay of each phase of a
handover process.

IV. NUMERICAL RESULTS

We conducted several experiments to study the feasibility
of selective auto-instrumentation, kernel overhead, and the
latency of handover process.

A. Selective Auto-Instrumentation

This experiment investigated whether auto-instrumentation
is really needed for probe injection. We searched network-
related directories (/include and /net) in Linux for sk_buff and
all its polymorphism (alias, customized data type, and nested
structure). The result shown in Table 2 reveals the number of
packet processing functions and total functions. The result
differs for different versions of Linux kernel. Since the number
of functions to inject probes is huge, the result concludes that
manual injection of probes is hardly possible.

TABLE II. FUNCTION STATISTICS IN LINUX KERNEL

 Source folder Linux-2.6.17 Linux-2.6.21

Source files
/include 5492 5959

/net 741 816

Polymorphism

of sk_buff

Alias 20 20

Customized data

type
26 24

Nested structure 367 328

Packet processing functions 6623 6813

Total functions 11175 12166

B. Kernel Overhead

To gauge the load imposed by KPAT on the kernel and
compare the result with that of KFT [4], we measured TCP
throughput with the help of iperf [29]. This experiment sets up
a standalone TCP server beforehand to accept connection
requests from the DUT. After the DUT connected to the TCP
server, it transmitted TCP segments for throughput (called
transmission rate in iperf) measurements.

Fig. 9 shows the result when we turned off the logging
function of KPAT. KPAT (2.6.21-SI in the graph) yielded a
result identical to that of the original kernel (2.6.21-RAW). In
contrast, KFT (2.6.21-KFT) yielded a much lower transmission
rate. This result indicates that TCP performance is not affected
by our probes when memory logging is not performed.

Fig. 9. TCP transmission rate – memory logging disabled.

Fig. 10 shows the result when instrument module enabled
memory logging but disabled background-transfer logging.
Here the performance gap between 2.6.21-RAW and 2.6.21-SI

is not significant (only 0.1 Mbps). In contrast, the transmission
rate of 2.6.21-KFT is much lower than those of 2.6.21-RAW
and 2.6.21-SI.

Fig. 10. TCP transmission rate - memory logging enabled and disk movement

disabled.

Fig. 11 shows the result when both memory logging and
background-transfer logging were enabled. The obtained
transmission rate of 2.6.21-SI is only 4% lower than that of
2.6.21-RAW. In contrast, the transmission rate of 2.6.21-KFT
is 94.47% lower than that of 2.6.21-RAW. These experiments
show that, compared with KFT, KPAT causes a much lighter
overhead to the kernel.

Fig. 11. TCP transmission rate - memory logging enabled and disk movement

enabled.

C. Handover Latency

We conducted an experiment that uses KPAT to analyze
handover latency (Fig. 12). This experiment sets up a VoIP
communication between a mobile node, the DUT, and a
corresponding node (CN). We placed the MN, a sniffer, and
antennas of AP1 and AP2 in a shielding box to avoid external
interference. Attenuators (attenuator1 and attenuator2) placed
between access points (APs) and their antennas adjust
transmission power to simulate the change of signal strength
during a typical handover process.

Attenuator1

Attenuator2

Shading Box

Shading Box

Shading Box

Router

Sniffer

CN

(SIP UA)

AP1
CH6

CH11
AP2

MN

Fig. 12. Testing environment for handover latency analysis.

The MN associated with AP1 initially. The MN’s handover
from AP1 to AP2 was simulated by letting atenuator1 decrease
the signal strength of AP1 and attenuator2 increase the signal
strength of AP2. A link-down event occurred at the MN when
the received signal strength dropped below a threshold. After a
new link to AP2 had been established, a link-up event occurred.
These two events divide different phases of the handover.

Fig. 13 shows the latency analysis of handover process
generated by integrated analyzer. The integrated analyzer
calculates the latency of each phase in handover process by
retrieving information form the integrated log. As Fig. 13
illustrates, the handover latency is about 50 seconds. The
probing phase accounts for 90% time of the entire process.

Fig. 13. Latency analysis of handover process.

V. CONCLUSIONS

We have presented the design of Kernel and Protocol
Analysis Tool (KPAT). KPAT uses auto-instrument technique
to systematically inject software probes into selected kernel
functions without recompiling the kernel, uses Wireshark to
independently collect protocol data, and uses proposed
footprints as an effective technique to bind protocol data with
logged functions. Consequently, KPAT allows users to observe
detailed protocol behaviors such as the execution sequence and
latency of network functions, processing time and the call
graph for a TCP segment, and detailed handover latency.
Experimental results show that KPAT imposes negligible
overheads to the kernel. We successfully used KPAT to obtain
detailed handover latency of mobile hosts in a wireless local
area network.

ACKNOWLEDGMENT

This work was supported in part by National Science
Council, Taiwan, under Grants NSC 100-2221-E-009-072-
MY3, NSC 101-2221-E-009 -031 -MY3 and NSC 101-2219-
E-009-028.

REFERENCES

[1] Wireshark, http://www.wireshark.org

[2] tcpdump, http://www.tcpdump.org

[3] Kismet, http://www.kismetwireless.net

[4] Kernel Function Trace, http://elinux.org/Kernel_Function_Trace

[5] Kernprof (Kernel Profiling), http://oss.sgi.com/projects/kernprof/

[6] Linux Trace Toolkit, http://www.opersys.com/ltt/

[7] Nmap project, http://nmap.org

[8] S. Best, Linux® Debugging and Performance Tuning: Tips and
Techniques, Prentice Hall, Oct. 2005. 

[9] M. Ducasse and J. Noye, “Tracing Prolog programs by source
instrumentation is efficient enough,” The Journal of Logic Programming,
vol. 43, pp. 157–172, 2000.

[10] J. Levon, “Profiling in Linux HOWTO,” The Linux Documentation
Project, 2002.

[11] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok, “Operating
system profiling via latency analysis,” In USENIX’06: Proceedings of
the 7th conference on USENIX Symposium on Operating Systems
Design and Implementation. USENIX Association, 2006.

[12] Y. Guo, Z. Chen, and X. Chen, “A lightweight dynamic performance
monitoring framework for embedded systems,” in Proceedings of the
International Conference on Embedded Software and Systems, May
2009, pp. 256-262.

[13] A. Nataraj, A. D. Malony, S. Shende, and A. Morris, “Kernel-level
measurement for integrated parallel performance views the KTAU
Project,” IEEE International Conference on Cluster Computing, pp. 1–
12, 2006.

[14] KTAU, http://www.cs.uoregon.edu/research/ktau/docs.php

[15] LKST, http://lkst.sourceforge.net/

[16] R. Krishnakumar, “Kernel Korner: Kprobes - a Kernel Debugger,”
Linux Journal, vol. 2005, Issue 133, Jun. 2006.

[17] SystemTap, http://sourceware.org/systemtap/

[18] KernInst - Dynamic Kernel Instrumentation Tool Suite,
http://www.paradyn.org/html/kerninst.html

[19] KLASY - Kernel Level Aspect-oriented System, Available from:
http://www.csg.is.titech.ac.jp/~yanagisawa/KLASY/

[20] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
Instrumentation of Production Systems,” USENIX Annual Technical
Conference, pp. 15–28, 2004.

[21] OProfile - A System Profiler for Linux (News),
http://oprofile.sourceforge.net/news/

[22] J. Levon, “OProfile Internals,” 2003 [Online]. Available:
http://oprofile.sourceforge.net/doc/internals/index.html

[23] Bryan Henderson, “Linux Loadable Kernel Module HOWTO,” Sept.
2006 [Online]. Available: http://www.tldp.org/HOWTO/Module-
HOWTO/

[24] Jongmoo Choi, “Kernel aware module verification for robust
reconfigurable operating system,” Journal of Information Science and
Engineering, Vol. 23 No. 5, pp. 1339–1347, Sep. 2007.

[25] Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman, Linux
Device Driver, 3rd edition, O'Reilly, 2005

[26] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M. Bechler, The Linux
Networking Architecture – Design and Implementation of Network
Protocols in the Linux Kernel, Prentice Hall, Apr. 2004.

[27] M. D. Rey, “Internet Protocol,” IETF RFC 791, Sept. 1981.

[28] L.-H. Yen, H.-H. Chang, S.-L. Tsao, C.-C. Hung, and C.-C. Tseng,
“Experimental study of mismatching ESS-subnet handoffs on IP over
IEEE 802.11 WLANs,” in Eighth International Conference on Wireless
and Optical Communications Networks (WOCN), May 2011.

[29] Iperf, http:// sourceforge.net/projects/iperf/

[30] Memory Map, http://en.wikipedia.org/wiki/Memory_map

[31] R. Love, Linux Kernel Development, 1st edition, SAMS Publishing,
2003.

