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Abstract—Sniffer tools capture protocol data. Kernel-

profiling tools track function calls and events occurring in the 

kernel. These two types of tools help us observe external and 

internal behaviors of networking protocols, respectively. We 

need both types of data for a comprehensive view of protocol 

behavior. However, few tools perform these two tasks in an 

integrated way. We developed Kernel and Protocol Analysis Tool 

(KPAT). KPAT injects software probes into Linux kernel to 

track interested function calls and event occurrences in the 

kernel. Probe injection is done systematically and does not 

require recompiling the kernel. A module in KPAT finds the 

association between the tracked functions and protocol data 

captured by an independent sniffer. The result as an integrated 

log allows users to identify two-way relationship between 

protocol data and the execution sequence of network functions in 

the kernel. We successfully used KAPT to identity accurate 

latency of each handover phase in IEEE 802.11 wireless networks. 

Experimental results show that KPAT causes light overhead to 

the patched kernel. 

Keywords—Embedded Devices; Kernel Functions; Kernel 

Events; Networking Protocols; Packet Sniffers 

I. INTRODUCTION 

For decades, the industry and academic both have spent a 
great amount of efforts on developing efficient communication 
sub-system for embedded computation and communication 
devices. The communication sub-system should provide 
network access service with satisfactory performance to 
applications running on an embedded device. Therefore, it is a 
need for protocol design in embedded systems to reduce 
message delays, response times and packet losses on network. 
To meet this need, designers need tools for benchmarking and 
for the analysis of internal kernel behaviors and external 
protocol behaviors. A well-rounded tool should facilitate 
analyzing, debugging, and performance tuning processes which 
are important to compact timing of system prototyping and 
performance optimization. 

Sniffer tools (such as Wireshark, tcpdump and Kismet [1-3]) 
are commonly used to intercept and log protocol data (e.g., 
frames, packets, segments), enabling an easy monitoring of 
contents and exchange sequences. However, sniffers do not 
provide a complete view of protocol behaviors because 
information about protocol-related activities in the kernel (such 

as function calls and events triggered by a particular protocol 
data) is absent. Kernel-profiling tools [8-12], on the other hand, 
inject software probes somewhere in the kernel to collect 
operation and performance information from the system. These 
tools, often designed for general purpose, allow us to track a 
certain type of system events and call sequences. However, 
kernel-profiling tools alone neither provide a complete view of 
protocol behaviors because contents and timing information of 
protocol data are often unavailable.  

This work was motivated by the need to investigate 
empirically handover latency of a mobile node (MN) roaming 
between two access points in IEEE 802.11 wireless local area 
networks. For a detailed analysis, we need to know the exact 
timing of both kernel events and packet 
transmissions/receptions. For example, the probing phase of an 
inter-ESS layer-2 handover defined in [28] starts from the 
occurrence of a link-down event (an event signified by the 
kernel that can be logged by kernel-profiling tools) and ends 
with the transmission of the first authentication frame (a 
protocol data that can be captured by sniffer tools). It turns out 
that calculating the latency of the probing phase requires both 
external and internal behaviors of a protocol. 

To provide a complete view incorporating external and 
internal behaviors of a protocol, this paper proposes Kernel and 
Protocol Analysis Tool (KPAT). KPAT injects software probes 
into Linux kernel to track interested function calls and event 
occurrences in the kernel. Probe injection is not manually done 
and does not require recompiling the kernel. The injected 
probes create a function log and an event log. An analyzer 
module in KPAT processes these logs and finds the association 
between these functions and protocol data captured by an 
independent sniffer. The result as an integrated log allows 
users to observe detailed protocol behaviors such as the 
execution sequence and latency of network functions, 
processing time and the call graph for processing a protocol 
data, and detailed handover latency. Experimental results 
indicate that KPAT causes light computation overhead to the 
kernel. We successfully used KPAT in the analysis of 
handover latency. 

The remainder of this paper is organized as follows. We 
first review existing sniffer tools and kernel-profiling tools. 
Section III describes the design of KPAT in details and Section 



IV presents numerical results of our experiments. The last 
section concludes this paper. 

II. RELATED WORKS 

Sniffer tools such as Wireshark, tcpdump and Kismet [1-3] 
intercept and log protocol data, allowing users to examine the 
contents and the timing of protocol data. Wireshark [1], one of 
the most acknowledged sniffer tools, is a free and open source 
(license) utility for network traffic capturing and analyzing. 
Wireshark allows users to examine captured protocol data in 
every detail. This paper adopts Wireshark to work with KPAT. 

Kernel-profiling tools [8-12] inject software probes into 
system kernel. However, different approaches differ in how the 
probes are injected. Source instrumentation approach places 
probes by modifying the source code of the kernel while binary 
instrumentation approach targets the object code of the kernel. 
Statistical sampling approach uses a stand-alone monitor 
process to probe the execution of CPU instructions periodically. 
This approach records the execution counts and period of each 
instruction and each function. 

Table 1 lists several kernel-level profiling tools. LTT, 
KTAU and LKST all gather generic information about the 
kernel (average load, context switch, send signal, interrupt, 
exception, memory allocation and so on.) Kernprof and KFT 
focus on function executions in the kernel and provide a 
function call graph of the kernel. Kprobe, KernInst and DTrace 
adopt dynamic binary instrumentation mechanism, which 
allows a dynamic selection of locations in an object code to 
place probes. However, finding the address of target instruction 
demands the assistance of a compiler and a disassembler. To 
ease this task, SystemTap provides a user interface to find the 
addresses of target instructions and help configure Kprobe with 
the target function name. KLASY allows users to find all the 
addresses of instructions that ever access a specific data 
structure (by specifying the data structure name of the target), 
and helps configure the setting of KernInst accordingly. 
Oprofile uses timer interrupt to periodically probe the 
execution of CPU instructions (with the help of built-in 
performance counters in CPU). These tools provide rich 
profiling functions. However, none of these tools are designed 
to identify all kernel behaviors that associate with a particular 
protocol data. Furthermore, these tools do not integrate logs of 
kernel behaviors (function log and event log) with logs of 
protocol behaviors for a complete view of networking behavior. 

TABLE I.  KERNEL-LEVEL PROFILING TOOLS CLASSIFIED BY PROBE-
INJECTION TECHNIQUE 

Source 

Instrument 

Linux Trace Toolkit (LTT) [6] 

Kernprof [5] 
Kernel Function Trace (KFT) [4] 

Kernel Tuning and Analysis Utilities (KTAU) [13][14] 

Linux Kernel State Tracer (LKST) [15] 

Binary 
Instrument 

Kprobe [16] 
KernInst [18] 

DTrace (Solaris-based) [20] 

SystemTap [17] 
Kernel Level Aspect-oriented System (KLASY) [19] 

Statistical 

Sampling 
Oprofile [21][22] 

III. KERNEL AND PROTOCOL ANALYSIS TOOL (KPAT) 

DEVELOPMENT 

KPAT works with Wireshark and assumes Linux as the 
target platform. Fig. 1 illustrates the system architecture of 
KPAT. KPAT includes three major parts: kernel tracer, 
network sniffer, and integrated analyzer. Kernel tracer running 
on the device under test (DUT) traces network-related function 
calls and events to generate a kernel behavior log (KBL). 
Network sniffer running on another device captures all frames 
exchanged on the physical network to generate a protocol 
behavior log (PBL). Integrated analyzer integrates the KBL 
from kernel tracer with the PBL from sniffer, and provides 
users with a graphic user interface (GUI) for exploration and 
further analysis. Kernel tracer and integrated analyzer shall be 
discussed in details in the following two subsections. 
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Fig. 1. System architecture of KPAT. 

KBL consists of a function log and an event log. The 
function log keeps track of all function calls that have ever 
processed any protocol data. Recorded information includes 
the sequence of function calls, latency between function calls 
and function execution time. The event log records the 
occurrences of all network-related events such as link-down 
and link-up events of the network interface. 

A. Kernel Tracer 

Kernel tracer tracks specific function calls and particular 
signals raised by the kernel. Possible implementations of kernel 
tracer are through the use of system calls or by probe injections. 
System call is a fundamental interface between applications 
and kernel, and a probe is a piece of codes injected into kernel 
to monitor the execution of kernel system. Because system 
calls incur considerable overheads due to frequent mode 
switches between kernel mode and user mode, we chose probe 
injection. 

Two possible approaches to probe injection are source 
instrumentation and binary instrumentation. Binary 
instrumentation is tightly bound to CPU architecture. In 
contrast, source instrumentation targets source code and thus is 
hardware-independent. For this reason, kernel tracer uses 
source instrumentation for probe injection. 

Fig. 2 shows the architecture of kernel tracer. After probes 
have been injected into selected network functions, calling 
these functions will trigger probes, which in turn cause 



instrument module to log the call of the function. Event module 
detects occurrences of particular network events in the kernel. 
Instrument module and event module are both implemented as 
Linux kernel modules [23-25]. Linux kernel modules can be 
compiled in the user space. By mounting these modules, KPAT 
effectively extends Linux kernel.  

We can also inject probes into network applications to 
capture behaviors of application layer protocols. For instance, 
if users are interested in handover analysis, they also inject 
probes into DHCP client to track the actions of IP address 
acquisition. 
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Fig. 2. Architecture of Kernel Tracer. 

Probe injection can be done manually or systematically. 
Manual injection of probes into kernel is infeasible due to 
numerous target locations. Another reason for not using 
manual injection is that the target locations for probes vary 
with kernel versions. Our work thus proposes selective auto-
instrument technique, which systematically injects probes into 
selected kernel functions. Linux kernel uses structure sk_buff 
(for socket buffer) [26] to keep contents and related 
information of each protocol data. Since all network-related 
functions in the kernel access this structure, the proposed auto-
instrument technique finds all target functions with keyword 
sk_buff. After a compete search on kernel source code, this 
technique generates a patched source code. This patch allows 
us to inject probes without recompiling the whole kernel. 

Profile manager consists of kernel function monitor and 
event monitor. Kernel function monitor periodically moves the 
function log generated by instrument module to a permanent 
storage whereas event monitor does the same for the event log. 
Profile manager also provides configurable kernel instrument 
(CKI) that allows users to select functions to track before each 
run. As Fig. 3 shows, users select functions to track by 
enabling or disabling the links between injected probes and 
instrument module. 
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Fig. 3. Architecture of Configurable Kernel Instrument. 

Kernel functions may generate considerable probing data to 
the function log. If instrument module uses printk() to output 
data, the incurred overhead will severely drag down kernel’s 
performance. Therefore, the proposed instrument module 
writes all probing data into the function log that resides in 
kernel space. Profile manager then uses memory MAP 
technique [31] to perform a background-transfer logging that 
copy contents from the function log to disk storage space (Fig. 
4). As this data transfer is performed only in system’s idle time, 
kernel’s performance is not significantly affected. 
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Fig. 4. mmap background-transfer logging mechanism. 

B. Integrated Analyzer 

Integrated analyzer provides a GUI for the presentation of 
integrated log information, including the processing flow and 
timing information of each protocol data in protocol stack and 
the processing time in each handover phase. As Fig. 5 
illustrates, integrated analyzer consists of log matcher, call 
procedure analyzer, time analyzer and GUI. 
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Fig. 5. Architecture of Integrated Analyzer. 

1) Log matcher 
Log matcher reads data from KBL, PBL and DHCP log. It 

attempts to match records and find associations between KBL 
and PBL. Users can select one protocol data from PBL and let 
log matcher find out all kernel functions that have ever 
processed this data. A reverse function-to-data lookup is also 
possible. To support these services, instrument module stores 
footprints (Fig. 6 (a)) in function log for the identification of 
specific protocol data. Instrument module writes footprints of a 
protocol data to the function log every time a target function 
accesses the protocol data. As a kernel function may access 
multiple protocol data that have already entered the system, 
one record in function log may contain several footprints (Fig. 
6 (b)). Log matcher uses footprints from the function log and 
protocol headers from PBL to find all records corresponding to 
the same protocol data (Fig. 7). 
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Fig. 7. The association between a footprint and a protocol data. 
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Fig. 6. (a) Format of a footprint (b) Format of a record in function log. 

A footprint includes header fields of each layer (link layer, 
network layer, and transportation layer) to enable a layer-
specific matching. In transport layer, information about IP or 
MAC address of a segment is generally not available to 
protocol functions, and port number alone does not uniquely 
identify this segment. As a remedy, KPAT assigns an ID that is 
unique in transport layer to each segment when the segment 
first enters the protocol stack. Since Linux kernel allocates a 
memory block to each protocol data for storing structure 
sk_buff, we use the memory address of sk_buff as the 
segment’s transport-layer ID. 

According to RFC 791 [27], the identification filed of IP 
header in each packet should be unique during the period of a 
source-destination connection. We use a 4-tuple data 
(destination IP address, source IP Address, identification and 
protocol number) to uniquely identify a layer-3 protocol data. 
In case that a protocol data do not include IP header (e.g., ARP 
or RARP), the type field of MAC header and timestamp 
information are used for identification. 

2) Call procedure analyzer 
Call procedure analyzer shows by what functions and in 

what sequence a selected protocol data was processed in the 
kernel. This is done by tracing the ID of the protocol data in 
footprints. Call procedure analyzer uses call graph to present 
hierarchical calling relationship among logged kernel functions. 
For instance, the call graph shown in Fig. 8 shows that the first 
function called by ip_rcv() is ip_local_deliver(), which then 
calls tcp_v4_rcv(). The call to ip_rcv() ends with 
ip_rcv_finish(). 

 

 

Fig. 8. Call Graph of a TCP segment. 

3) Time analyzer 
Time analyzer provides detailed timing information, 

including protocol data processing time, function processing 
time statistic and handover latency. Protocol data processing 
time shows the processing time of every kernel function that 
has processed a particular protocol data [11]. Function 
processing time statistic shows a list of functions that incur a 
processing time lower or higher than a threshold set by users. 
Handover latency presents the delay of each phase of a 
handover process. 



IV. NUMERICAL RESULTS 

We conducted several experiments to study the feasibility 
of selective auto-instrumentation, kernel overhead, and the 
latency of handover process. 

A. Selective Auto-Instrumentation 

This experiment investigated whether auto-instrumentation 
is really needed for probe injection. We searched network-
related directories (/include and /net) in Linux for sk_buff and 
all its polymorphism (alias, customized data type, and nested 
structure). The result shown in Table 2 reveals the number of 
packet processing functions and total functions. The result 
differs for different versions of Linux kernel. Since the number 
of functions to inject probes is huge, the result concludes that 
manual injection of probes is hardly possible. 

TABLE II.  FUNCTION STATISTICS IN LINUX KERNEL 

 Source folder Linux-2.6.17 Linux-2.6.21 

Source files 
/include 5492 5959 

/net 741 816 

Polymorphism 

of sk_buff 

Alias 20 20 

Customized data 

type 
26 24 

Nested structure 367 328 

Packet processing functions 6623 6813 

Total functions 11175 12166 

B. Kernel Overhead 

To gauge the load imposed by KPAT on the kernel and 
compare the result with that of KFT [4], we measured TCP 
throughput with the help of iperf [29]. This experiment sets up 
a standalone TCP server beforehand to accept connection 
requests from the DUT. After the DUT connected to the TCP 
server, it transmitted TCP segments for throughput (called 
transmission rate in iperf) measurements. 

Fig. 9 shows the result when we turned off the logging 
function of KPAT. KPAT (2.6.21-SI in the graph) yielded a 
result identical to that of the original kernel (2.6.21-RAW). In 
contrast, KFT (2.6.21-KFT) yielded a much lower transmission 
rate. This result indicates that TCP performance is not affected 
by our probes when memory logging is not performed. 

 
Fig. 9. TCP transmission rate – memory logging disabled. 

Fig. 10 shows the result when instrument module enabled 
memory logging but disabled background-transfer logging. 
Here the performance gap between 2.6.21-RAW and 2.6.21-SI 

is not significant (only 0.1 Mbps). In contrast, the transmission 
rate of 2.6.21-KFT is much lower than those of 2.6.21-RAW 
and 2.6.21-SI. 

 
Fig. 10. TCP transmission rate - memory logging enabled and disk movement 

disabled. 

Fig. 11 shows the result when both memory logging and 
background-transfer logging were enabled. The obtained 
transmission rate of 2.6.21-SI is only 4% lower than that of 
2.6.21-RAW. In contrast, the transmission rate of 2.6.21-KFT 
is 94.47% lower than that of 2.6.21-RAW. These experiments 
show that, compared with KFT, KPAT causes a much lighter 
overhead to the kernel. 

 
Fig. 11. TCP transmission rate - memory logging enabled and disk movement 

enabled. 

C. Handover Latency 

We conducted an experiment that uses KPAT to analyze 
handover latency (Fig. 12). This experiment sets up a VoIP 
communication between a mobile node, the DUT, and a 
corresponding node (CN). We placed the MN, a sniffer, and 
antennas of AP1 and AP2 in a shielding box to avoid external 
interference. Attenuators (attenuator1 and attenuator2) placed 
between access points (APs) and their antennas adjust 
transmission power to simulate the change of signal strength 
during a typical handover process. 
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Fig. 12. Testing environment for handover latency analysis. 



The MN associated with AP1 initially. The MN’s handover 
from AP1 to AP2 was simulated by letting atenuator1 decrease 
the signal strength of AP1 and attenuator2 increase the signal 
strength of AP2. A link-down event occurred at the MN when 
the received signal strength dropped below a threshold. After a 
new link to AP2 had been established, a link-up event occurred. 
These two events divide different phases of the handover. 

Fig. 13 shows the latency analysis of handover process 
generated by integrated analyzer. The integrated analyzer 
calculates the latency of each phase in handover process by 
retrieving information form the integrated log. As Fig. 13 
illustrates, the handover latency is about 50 seconds. The 
probing phase accounts for 90% time of the entire process. 

 
Fig. 13. Latency analysis of handover process. 

V. CONCLUSIONS 

We have presented the design of Kernel and Protocol 
Analysis Tool (KPAT). KPAT uses auto-instrument technique 
to systematically inject software probes into selected kernel 
functions without recompiling the kernel, uses Wireshark to 
independently collect protocol data, and uses proposed 
footprints as an effective technique to bind protocol data with 
logged functions. Consequently, KPAT allows users to observe 
detailed protocol behaviors such as the execution sequence and 
latency of network functions, processing time and the call 
graph for a TCP segment, and detailed handover latency. 
Experimental results show that KPAT imposes negligible 
overheads to the kernel. We successfully used KPAT to obtain 
detailed handover latency of mobile hosts in a wireless local 
area network. 
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