
Reinforcement Learning for Channel and Radio
Allocations to Wireless Backhaul Links

Juliana Liman and Li-Hsing Yen
Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Email: ushipei.ee08@nycu.edu.tw, lhyen@nctu.edu.tw

Abstract—WMN’s mesh access points (MAPs) are linked
through a wireless backhaul network that consist of mesh points
(MPs) that is equipped with multiple radios that use multiple non-
overlapping channels in parallel. MPs will establish designated
links that should satisfy both common channel constraint and
interference constraint which are conflicting in nature. Yen and
Dai proposed game-theoretic radio resources allocation in WMN
which is better than centralized and greedy approach if only two
radios are available at each node, but when there are more than
two radios per node, centralized and greedy approach perform
better. So, this study would like to utilize reinforcement learning
to improve previous research so the approach is also effective if
there are more than two radios available per node. This study
attempts to maximize the number of operative designated links
in the backhaul networks subject to common channel constraint
and interference constraint. We use multi-agent deep Q-learning
to tackle this problem. We conduct simulations to compare the
proposed approach with game based approach. The results of our
experiments show that the proposed deep Q-learning algorithm
performs better than game-theoretic approach in dense network
where there are more than two in each MP, while the game-
theoretic approach performs better than our proposed DQL
algorithm in sparse network.

Index Terms—wireless mesh network, reinforcement learning,
deep Q-learning, radio resource, multi agent reinforcement learn-
ing

I. INTRODUCTION

WMN connects several nodes, extending the coverage area
of wireless signal, minimizing dead zones and thus providing
better Internet connectivity [1]. WMN’s mesh access points
(MAPs) are linked through a wireless backhaul network that
consist of mesh points (MPs) that is equipped with multiple
radios that use multiple non-overlapping channels in parallel.
MPs will establish designated links that should satisfy both
common channel constraint and interference constraint which
are conflicting in nature.

This study attempts to maximize the number of opera-
tive designated links in the backhaul networks by allocating
channels to radios/links such that the common channel con-
straint is met while minimizing the co-channel interference
of links. This study is limited to co-channel interference and
interference from adjacent channels are not considered. Our
approach is based on reinforcement learning, which is a type
of machine learning where the learner or agent will be able to
discover which action yields the highest rewards by trial-and-
error search and delayed rewards [2]. We conduct experiments
to compare our proposed reinforcement learning approach with
the game theoretic approach. The results of our experiments

show that the proposed deep Q-learning algorithm performs
better than game-theoretic approach in dense network, while
the game-theoretic approach performs better than our proposed
DQL algorithm in sparse network where there are two radios
in each MP.

The remainder of the paper is organized as follows. Sec-
tion II reviews related works. Section III introduces our system
model and problem formulation. Section IV details our system
implementation. Our performance evaluations are presented
in Section V. Finally, Section VI concludes this work and
discusses several potential future works.

II. RELATED WORK

A. Channel Allocation with Reinforcement Learning

The most commonly used reinforcement learning method
for channel allocation is Q-Learning [3] [4] [5] [6]. Q-learning
has an advantage where agents need no prior knowledge about
their actions’ effect on the environment [5], but Q-learning
will take too much memory for the Q-table if the environment
is complex or there are numerous agents, so some works
[7] use Deep Q-learning instead. Deep Q-learning is better
than Q-learning if the environment is constantly changing
or more complex, as deep Q-learning will use loss function
to predict Q-value instead of using Q-table, making it more
memory efficient. However, deep-Q-learning requires more
training time and computation resources than Q-learning, so in
a small and simple environment, Q-learning is enough. Some
works [8] [9] use Double Deep Q-learning (DDQN) to avoid
overestimation [10].

B. Channel Allocation with Game Theoretic Approach

Yen and Dai [11] did similar research for efficient radio
resources allocation in WMN using game-theoretic approach.
They guarantee the common-channel constraint by using Pi-
geonhole Principle to limit the number of channels avail-
able for the radios to select. They attempt to minimize the
co-channel interference by using two-stage non-cooperative
game-theoretic approach with the consideration of physical-
layer interference. The first stage assigns channels to radios
while the second stage assigns the radio-channel pairs to links.
They define utility to ensure the quality of their proposed
approach to avoid co-channel interference. If the radios in the
same MP use the same channel, then the utility of that assign-
ment will be much lower than if the radios in the same MP
use different channels. This approach results in more operative



links than other similar approaches such as centralized and
greedy approach if only two radios are available at each node,
but when there are more than two radios per node, centralized
and greedy approach perform better.

This study will to compare the result of the game-theoretic
approach by Yen and Dai [11] with the proposed approach
based on reinforcement learning in solving the channel allo-
cation problem in the WMN environment.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The WMN environment for the reinforcement learning
follow the same settings proposed by Yen and Dai [11].

A. Channel Allocation to Radios

Let N = {1, 2, ..., n} denote the set of MPs that are
deployed in the backhaul network, with ri radio interfaces
available in every MP. Let P = {p1, p2, ..., pm} denote the
set of radios that will act as agents in reinforcement learning.
The placement of the MPs can be represented by the MPs’
coordinates, will be static, so the distance between any pair
of MPs remain the same. The agents will choose a channel to
be used for it. The initial channel assignment for the radios is
arbitrary. The agents (i.e., radios) can change their channels
throughout the entire learning phase. We set the learning
termination condition to be if the step already reaches the
maximum step or if there is no any change in the joint reward.
To determine an agent’s utility when it selects a channel, we
will use the utility function proposed by Yen and Dai [11].
When agent pi chooses channel ci, the utility is defined as

ui(ci) =
∑
j ̸=i

f(ci, cj), (1)

where f(ci, cj) is the intensity of the interference experienced
by pi and pj when they choose ci and cj , respectively. More
specifically,

f(ci, cj) =


0 if ci ̸= cj

− 1
dα
i,j

if ci = cj

−β if ci = cj and MP (pi) = MP (pj),
(2)

where di,j is the physical distance between pi and pj , α is
path loss exponent constant ranging from 2 to 4, and β is a
constant that is much larger than 1

dα
i,j

, which represents the
severe self-interference that will happen if two radios in the
same MP choose the same channel.

B. Channel Allocation to Links

After the assignment of channels to radios, it is possible
that two or more radio-channel pairs can be assigned to a
designated link. For this reason, we will assign the radio-
channel pairs selected by agents to the designated links such
that each link is assigned a specific radio-channel pair. In case
like this, we need to choose one radio-channel pair for the link
that will cause the lowest interference. We use the second stage
of the game based approach proposed by Yen and Dai [11] to
allocate radio-channel pairs to links.

C. Operative Link Ratio

Designated links that satisfy both common channel con-
straint and interference constraint are called operative links.
Common channel constraint means operative links must have
one common channel for communication and interference
constraint means the Signal-to-interference-plus-noise ratio
(SINR) on both nodes of the link exceed a threshold. In this
study, we sill set the threshold to be 1 dB. Operative Link
Ratio (OLR) is defined as the total number of operative links
divided by the total number of designated links [12].

IV. PROPOSED MECHANISM

A. Cooperative Multi-Agent Reinforcement Learning

Our agents are radios in WMN. All agents will learn at
the same time, but all of agents must cooperatively maximize
a single joint reward, so this study is an application of
cooperative multi-agent reinforcement learning with single
joint reward [13]. The state, reward and action in the proposed
algorithm are defined as follows:

1) State: Our state space consists of the vector of channels
used by each radio (i.e., the vector of all actions), which is
defined as S = [c1, c2, ..., cm], where ci is the channel radio i
chooses in a certain time.

2) Action: The action space for every agent consists of
the channels that the agent can choose, which is defined
as A = {c1, ..., ck}, then the action vector is defined as
A = [a1, a2, ..., am]. An agent can only choose a channel in
a time.

3) Rewards: The reward ranges from -30 to +30. Let us
define designated links that satisfy common channel constraint
as D′ = {(u1, v1), (u2, v2), ..., (um, vm)}. If the number of
D′ increases after all agents choose new channels, then the
agents will receive a joint reward 30, but if the number of D′

decreases instead, then the agents will receive joint penalty
-30 instead. If the number of D′ remains unchanged, then the
joint rewards is determined by the summation of the individual
rewards of the agents

∑
rnt based on their utilities.

The agent will receive +5 points if the new channel the
agent chooses yield a significant utility improvement. If the
utility improvement is not significant, then the agent will
receive +1 point. If the utility decreases instead, then agent
will get 5 points penalty if the decrease is significant and 1
point penalty if the decrease is not significant. If the utility
remains unchanged, then agent will not receive any reward or
penalty. The rewards are defined as:

rt =


30 if the number of D′ increased
−30 if the number of D′ decreased∑

rnt if if the number of D′ stays the same,
(3)

with the reward for individual agent rnt defined as:



rnt =



5 if un
t − un

t−1 ≥ β

1 if un
t > un

t−1 and un
t − un

t−1 < β

0 if un
t = un

t−1

−1 if un
t < un

t−1 and un
t − un

t−1 > −β

−5 if un
t < un

t−1 and un
t − un

t−1 ≤ −β

(4)

V. EXPERIMENT RESULTS

We will evaluate the performance of our proposed approach
using three types of WMS network environment: sparse net-
work, regular network, and dense network. We will compare
the effect of different learning rates in our study. We will
compare the proposed approach with another approach, that is
the game-theoretic approach by Yen and Dai [11]. The basic
experiment settings are listed in Table I. We calculate the
maximum possible OLR in a network with exhaustive search.
We measure the time-averaged regrets as performance metric,
which is defined as

1

T
∗

T∑
i=1

(Maximum possible OLR − OLR at episode i) (5)

TABLE I: Basic Experiment Settings

Parameter Value

CPU 12th Gen Intel(R) Core(TM) i7 - 12700KF
GPU NVIDIA GeForce RTX 3070
RAM 32 GB, 4400 MHz
Discount rate 0.95
Learning rate 0.001, 0.1, 0.7
Total episodes 300
Maximum step per episode 100
Nodes 10

A. Sparse Network
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Fig. 1: Sparse Network Topology

TABLE II: Sparse Network Experiment Settings

Parameter Value

Number of designated links 10
Radios per node 2
Transmission range 150 m
Number of channels 6

Figure 1 is the topology for sparse network. The settings
for this topology is listed in Table II.

Figure 3 is the time-averaged regrets of sparse topology
from game based approach and Deep Q-learning with learning
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Fig. 2: The OLR comparison between game based approach and DRL
approach in sparse network

rate 0.001, 0.1, and 0.7. In this topology, game based approach
performs better than deep Q-learning approach because game
base approach have lower time-averaged regrets. As we can
see from Figure 2, the lower time-averaged regrets of game-
theoretic approach is because game-theoretic approach can
achieve higher OLR, while the proposed DRL algorithm
approach converged at 0.6. However, even though the ini-
tial time-averaged regrets of proposed DRL approach is a
lot higher than game-theoretic approach, the proposed DRL
algorithm’s time-averaged regrets is steadily going down. This
is because at the beginning, the proposed DRL approach is
going through trial and error before finally converging to a
certain value.
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Fig. 3: The time-averaged regrets of game based approach and deep Q-learning
approach with learning rate = 0.001, 0.1, and 0.7 in sparse network

B. Dense Network
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Fig. 4: Dense Network Topology

Figure 4 is the topology for dense network in this study.
The settings for this topology is listed in Table III.

Figure 6 shows the time-averaged regrets of game based
approach and deep Q-learning in dense network with 3 radios



TABLE III: Dense Network Experiment Settings

Parameter Value

Number of designated links 32
Radios per node 3
Transmission range 350 m
Number of channels 12
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Fig. 5: The OLR comparison between game based approach and DRL
approach in dense network with 3 radios per node

per node. In this setting, the proposed DQL algorithm has
lower time-averaged regrets. In dense network, both game-
theoretic approach and proposed DQL algorithm have a hard
time to reach high OLR, but as we can see in Figure 5, because
game theoretic approach doesn’t converge, it reached low OLR
more often than proposed DQL algorithm. In this setting, all
learning rates have similar time-averaged regrets.
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Fig. 6: The time-averaged regrets of game based approach and deep Q-learning
approach with learning rate = 0.001, 0.1, and 0.7 in dense network with 3
radios per node

VI. CONCLUSIONS

In this work, we model the channel allocation problem in
wireless mesh network to maximize the operative link ratio
(OLR) using reinforcement learning. We use multi-agent deep
Q-learning to solve this problem. The radios can work coop-
eratively to maximize the utilities gained when choosing the
channel so the network can maximize its operative link ratio
(OLR). We use reinforcement learning to allocate channels
to radios, then use game theory to allocate the radio-channel
pairs to links. After assigning the radio-channel pairs to links,
we calculate the OLR to determine how good our proposed
approach is.

We conducted simulations determine how effective our
proposed approach is. We conducted the simulations with 2
different environments, sparse network and dense network. We
compare the results of the simulations of these 3 environments
with the result of the game based approach in the same
environments.

The result of our experiments show that the proposed
deep Q-learning algorithm performs better than game-theoretic
approach in dense network, while game-theoretic approach
performs better than our proposed DQL algorithm in sparse
network because the number of channels is of no problem
in sparse network, but it’s critical in dense network as game
theoretic approach in dense network does not have enough
channels for allocation due to the Pigeonhole principle.

This proposed approach still has room for improvements.
The time needed to run the algorithm is too long and need
considerable amount of computing power, so more efficient
algorithm like double deep Q-learning might be better. This
proposed approach also don’t have any dynamics because the
radios are stationary and the initial channel assignments are
arbitrary, so it will improve the algorithm flexibility if the
future works incorporate more dynamics.
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