
Resource Request Dispatch in Standalone and
Federated MEC Systems: A Matching Game

Approach
Ming-Yi Lin, Li-Hsing Yen, and Hojjat Baghban

Department of Computer Science, College of Computer Science
National Chiao Tung University, Hsinchu, Taiwan.

Abstract—Multi-access edge computing (MEC) system con-
sisting of geographically-distributed heterogeneous servers can
provide low-latency virtualized resource to support computation
offloading of smart devices. When bulk offloading requests comes
to an MEC system, how to dispatch requests to servers so as
to maximize divergent objectives of MEC service providers and
users is challenging. The problem further involves money transfer
when different MEC service providers can share resource to
each other. In this paper, we address request dispatch issues
in a standalone MEC and among federated MEC systems
using matching game theory. We have adapted several classical
matching algorithms to our problem. Simulation results show that
we can serve more requests while still meeting latency constraints.
For federated MEC systems, we can also have high revenue.

Index Terms—Resource Allocation, Edge Computing, Match-
ing Theory.

I. INTRODUCTION

Cloud service providers have already deployed ubiquitous
cloud services so that users can access the cloud from any-
where on earth. A variety of cloud services have been provided
to meet the demands of different kinds. For example, Infras-
tructure as a Service (IaaS) offers virtual machines (VMs) to
users for running their own applications in the cloud.

Internet of Things (IoT) aims to provide connectivity of
millions of smart devices to the Internet. When IoT devices
or user equipments (UEs) do not have enough computation
or storage capacity to run computation-intensive tasks like
Virtual Reality (VR) and Augmented Reality (AR), offloading
the tasks to cloud is a feasible solution. However, the latency
between a device and a distant cloud may be too high for
delay-sensitive or time-critical applications. Multi-access edge
computing (MEC) [1] aims at providing low-latency cloud
services by placing distributed clouds to the proximity of
mobile users. Together with less than 1 ms standard latency
in 5G, MEC could meet strict delay constraint of most time-
sensitive applications. MEC also helps reducing backhaul
traffic by saving the traffic between the cloud and the edge.

Fog computing is another technology that can provide
computing service or resource to UEs or IoT devices yet meet
the constraint of extra-low latency. Typical fog devices are
access points, vehicles, smart phones, and wearable devices.
Unlike MEC servers, fog devices may be mobile and volatile,
and usually have limited resource. For this reason, fog devices
may also offload their tasks to MEC servers.

In this paper, we assume that an MEC system comprises a
set of connected heterogeneous yet geographically-distributed
MEC servers that are operated and managed by a single edge
service provider (ESP). IoT devices, UEs, or even fog devices
as edge users may request VMs from ESP for computation
offloading. The requests go toward edge access points (EAPs),
which are wireless gateways to an MEC system where requests
are dispatched to appropriate MEC servers. In general, a
VM request can be served by any MEC server that has
enough resource yet meets requirements specific to the request.
However, when various VM requests come to an MEC system
from different EAPs, how to conduct request dispatch so as
to maximize both the requester’s and the server’s objectives is
challenging. On one hand, requesters may prefer MEC servers
that minimize the communication latency between the servers
and the requesters to maintain a certain quality of service. On
the other hand, MEC servers may prefer serving requests with
less resource demands so as to maximize the total number of
served requests, i.e., to minimize the request denial ratio.

The dispatch could be done by a single dispatcher (like
Mobile Edge Orchestrator in ETSI’s MEC framework [2]) in
the MEC system. However, that dispatcher renders a single
point of failure and may become a performance bottleneck.
Furthermore, resource requests may come with physical con-
straint that can only be met by some servers. For example,
requests may specify additional physical resource (e.g., GPU-
enabled VM) or resource that is only accessible or valuable
in some region (e.g., wireless spectrum or location-based
context information). Therefore, we consider a distributed
publish-subscribe messaging platform where MEC servers
publish their availabilities and capabilities to EAPs which are
subscribers. When resource requests come to an EAP, the EAP
forwards requests on behalf of the requesters to best-suited
MEC servers. MEC servers may reject some requests when
they do not have enough residual capacity. Any request that
gets rejected by an MEC server can be resent by the EAP to
the next best-suited MEC server. This process repeats until no
more matching can be arranged.

Different ESPs may have overlapping service coverage
areas. If these ESPs are federated, they can collaboratively
share resources and requests to increase their profits. However,
MEC federation also adds another dimension to the dispatch
problem because the dispatch process should consider resource

provider’s revenue as well as resource consumer’s payment.
Typically, resource requesters aim to maximize payoff and
minimize latency while ESPs aim to maximize their revenue.

In this paper, we address the request dispatch problem for
both standalone and federated MEC systems. We considered it
as a matching problem between MEC users and servers. Unlike
classical bipartite matching, which has a single objective
that maximizes either the cardinality or the total weight of
matched pairs, the matching problem here considers each
party’s preference on matching, rendering it a multi-objective
optimization problem.

There is a trend of applying matching theory to network
resource allocation and management problems recently. Pham
et al. [3] modeled computation offloading in MEC as two
matching problems, one for user’s selections on MEC servers
and the other for user’s selections on offloading channels. In
[4], the authors considered resource allocations in a three-
tier IoT fog system, for which the pairing between fog nodes
and service providers and also that between fog nodes and
service users were both modeled as matching games. In this
paper, we consider several possible matching models for the
dispatch problem, including maximum-cardinality/weight bi-
partite matching, capacitated house allocation (CHA) [5], [6],
stable marriage, and college admissions. We modify the orig-
inal college admissions model to fit our problem, and modify
associated algorithms such as CHA, Boston [7], and deferred-
acceptance (DA), for request dispatch within an MEC. We
model request dispatch across MECs as a matching game with
(money) transfer, and propose using DA with transfer (DA-
T) for resource requesters to interactively negotiate payments.
Simulation results show that DA serves more requests than
the counterparts in intra-ESP offloading. For inter-ESP request
dispatch, DA-T makes more revenue for ESPs than Boston.

The rest of this paper is organized as follows. Sec. II
presents our system model with problem formulation. Sec. III
presents the proposed dispatch methods for intra- and inter-
ESP request dispatch. Sec. IV shows simulation results and
the last section concludes this work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We assume a federated edge ecosystem consisting of n
ESPs {p1, p2, . . . , pn}. Intra-ESP offloading model considers
request dispatch only within an ESP while inter-ESP offload-
ing model considers dispatching requests with payments across
different ESPs. Each ESP pi owns a set of mi MEC servers
Si = {si,1, si,2, . . . , si,mi

}.
Assume that there are ni resource requests denoted by set

Qi = {q1i , q2i , . . . , q
ni
i } submitted to ESP pi. Each request

qki ∈ Qi comes with two parameters: resource descriptor and
the associated latency constraint. Let V be the set of all VM
types (called flavors) that are provided to MEC users. The
resource descriptor is mk

i = (mk,1
i ,mk,2

i , . . . ,m
k,|V |
i), where

mk,j
i is the number of instances of VM Type j, where 1 ≤

j ≤ |V |, that is requested by qki . Let tki,max be the latency

user 1's

request
qi

1
 = (mi

1
, ti,

1
max)

si,1

si,2

si,3

si,4

qi
2
 = (mi

2
, ti,

2
max)

user 2's

request

user k's

request
qi

k
 = (mi

k
, ti,

k
max)

ESP pi

requesting di
1

accept or
reject

:

requesting di
2

requesting di
k

EAPs MEC
servers

Fig. 1. An example of intra-ESP offloading with four MEC servers

constraint associated with qki . Formally, each request qki ∈ Qi

is a pair (mk
i , t

k
i,max).

Let R denote the set of all different types of physical
resource (CPU, memory, storage, etc.). Each server si,j ∈ Si

has a limited supply of each resource type r ∈ R, denoted
by Cr

i,j . We denote the current capacity of si,j as a vector
Ci,j = (C1

i,j , C
2
i,j , . . . , C

|R|
i,j).

When MEC users need computation offloading, they send
resource requests to nearby EAPs. When an EAP receives a
request qki = (mk

i , t
k
i,max), it converts mk

i to a demand vector
dk
i = (dk,1i , dk,2i , . . . , d

k,|R|
i), where dk,ji is the amount of the

j-th physical resource needed by qki . Furthermore, the EAP
estimates the minimal expected latency tki,j when qki is served
by each MEC server si,j ∈ Si. If tki > tki,max, si,j cannot
serve qki even if it has enough resource capacity. The EAP
selects the best server for qki to send a resource request. If the
request is rejected, the EAP then resends the request to the
second best server, and so forth. Fig. 1 shows an example of
intra-ESP offloading where k requests are dispatched to four
MEC servers.

For inter-ESP resource sharing, we assume that each ESP
pi has an Orchestration and Control System (OCS) denoted
by OCSi. OCSs periodically exchange resource and latency
related information following the publish-subscribe messaging
paradigm. When an MEC user of pi is willing to pay for
some service not provided by pi, OCSi finds out all candidate
MEC servers in the federated MEC systems that have enough
capacity yet meet the user’s latency and other constraints.
For each candidate MEC server, OCSi provides information
including the estimated latency and minimal selling price (i.e.,
the asked price) to the user. The user selects the most preferred
server to send the request with offered price (i.e., bid). The
server may accept or reject the request. If the request is not
accepted, the user may in turns raise her bid and resend the
request to the same server, or send the request (possibly with
a different bid) to the next preferred MEC server. The process
repeats until the user’s request gets accepted or all candidate
MEC servers reject the user’s request for which the user cannot
further raise the bid.

B. Problem Formulation

We model the dispatch of resource requests to servers as
a matching problem. Since requests cannot be split, qki for
every i and k can only be matched to one server and served
there. On the other hand, a server can be matched to several
requests subject to its capacity and the latency constraints
associated with requests. We use matrix xi = [xki,j]

k
j to denote

the matching result in ESP pi, where xki,j ∈ {0, 1} indicating
whether request qki ∈ Qi is dispatched to server si,j ∈ Si.

Edge users and servers have different objectives. Users want
to get served by servers that can minimize their latencies.
Formally, the objective of every qki ∈ Qi is

max

mi∑
j=1

(
xki,j × (tki,max − tki,j)

)
. (1)

On the other hand, every server si,j ∈ Si wants to maximize
the number of requests that it can serve, i.e.,

max

ni∑
k=1

xki,j . (2)

The matching result is subject to several constraints. When
xki,j 6= 0, the amount of physical resource of type r in si,j
that is allocated to request qki is dk,ri . The capacity constraint
asserts that

∀r ∈ R,∀si,j ∈ Si,

ni∑
k=1

(
dk,ri · xki,j

)
≤ Cr

i,j . (3)

The demand constraint ensures that any request is either not
served at all or allocated the exact amount of physical resource
that it demands from a single server. More specifically,

∀qki ∈ Qi,∀si,j ∈ Si,

mi∑
j=1

(
dk,ri · xki,j

)
≤ dk,ri . (4)

and

∀qki ∈ Qi,∀si,j ∈ Si, x
k
i,j ∈ {0, 1}. (5)

(5) is the no-split constraint, which demands that no request
can be split and served separately by different servers.

For request dispatch in federated MEC systems, we reuse
infrastructure, resource, and capacity-related notations defined
for the intra-ESP offloading problem like Si, R, and Ci,j . For
request-related notations, qki ’s (and, accordingly, Qi’s, mk

i ’s,
and ti,max’s) are submitted toward ESP pi. These requests are
from other ESPs pj 6= pi.

The operational cost of each server si,j is defined on each
resource type as ci,j = (c1i,j , c

2
i,j , . . . , c

|R|
i,j), where cri,j is

the unit operational cost of physical resource type r at si,j .
With ci,j , the total operational cost incurred by request qki , if
granted, can be calculated as

θi,j(q
k
i) =

|R|∑
r=1

(
cri,j · d

k,r
i

)
. (6)

Let bki,j be the actual payment of qki when it is served by
si,j . Only if bki,j > θi,j(q

k
i) can si,j serve qki . Each ESP pi’s

objective is to maximize its own profit defined as

max

mi∑
j=1

ni∑
k=1

xki,j
(
bki,j − θi,j(qki)

)
. (7)

On the other hand, the requester who submits qki has a
valuation vki on the request. This serves as the highest possible
payment that the requester is willing to pay to ESP pi when
qki is granted. The requester of qki wants to maximize the
difference between vki and bki,j (i.e., payoff) while minimizing
the latency. We thus define the requester’s utility as the payoff
per unit of latency time. Formally, the objective of every
qki ∈ Qi is

max

mi∑
j=1

(
xki,j ·

vki − bki,j
tki,j

)
. (8)

Their objectives are still subject to the capacity, demand, and
no-split constraints defined above.

III. PROPOSED MECHANISMS

A. Problem Analysis

By (1), xki,j should not be 1 if tki,j > tki,max. Therefore, we
can construct a bipartite graph Gi = (S̄i ∪ Q̄i, Ēi) for each
ESP pi such that each vertex sj ∈ S̄i corresponds to server
si,j ∈ Si, each vertex qk ∈ Q̄i represents request qki ∈ Qi,
and (sj , qk) ∈ Ēi if and only if tki,j < tki,max. In this way, the
request dispatch problem in pi becomes a matching problem
in Gi.

Classical bipartite matching problem is to maximize the
number of matched pairs (i.e., maximum-cardinality bipartite
matching). This formulation only reflects the objective of the
servers. When a request prefers some server to another because
the former offers a lower latency, that preference cannot be
captured by the cardinality-based objective.

We may recap the preference of all possible matched pairs
by weights associated with corresponding edges in the bipartite
graph. Accordingly, the objective is to maximize the total
weight associated with all matched pairs (i.e., maximum-
weight bipartite matching). However, this modeling does not
fit when the two peers in a match may have different valuations
on that match.

Gale and Shapley [8] considered marriage as a matching
problem between males and females where each individual’s
valuation matters. In marriage, each male can be matched to
only one female (and vice versa), which makes marriage a one-
to-one matching problem. It has been used to model allocation
of wireless channels to mobile users [3]. However, our problem
is not a one-to-one matching because an MEC server can serve
more than one requests (subject to the capacity constraint).

Capacitated house allocation (CHA) is a many-to-one
matching problem, which is to allocate a set of houses to a
bunch of agents. It extends bipartite matching in two ways.
First, agents can have preference on houses. Second, every
house has a capacity which specifies the maximal number of

TABLE I
DIFFERENT MATCHING PROBLEMS

Problem Type Preference
Maximum-Cardinality Bipartite Match-
ing

One-to-one No

Maximum-Weight Bipartite Matching One-to-one On matches
Capacitated House Allocation (CHA) Many-to-one One-sided
Stable Marriage One-to-one Two-sided
College Admissions Many-to-one Two-sided

agents that it can accommodate. However, CHA still does not
well fit our problem due to the following reasons. First, both
requesters and servers have preference in our problem, but
CHA considers only one-sided preference. Second, agents are
assumed to have equal size, so the maximal number of agents
that can be accommodated in each house is fixed and known.
In contrast, requests come with different sizes (amounts of
requested resource) in our problem. Consequently, an MEC
server may fulfill the aggregated demand of three requests but
not that of another two.

College admissions problem [8] is also a many-to-one
matching, where a college can give admissions to more than
one students. It differs from CHA in that colleges have
preference on applicants. In [3], computation offloading from
a set of mobile users to a set of MEC servers is modeled
as a many-to-one matching game with the assumption that
each server can execute at most some certain number of
computation tasks. Here both mobile users and MEC servers
have preference for the other party, so it falls into the college
admission problem. However, college admissions model still
does not perfectly fit our problem as each college has a fixed
and known quota for admissions. In contrast, the maximal
number of requests that a server can serve is not fixed.

Table I summarizes all mentioned models of matching
problem.

B. Intra-ESP Request Dispatch

We model intra-ESP request dispatch as a many-to-one,
two-sided preference matching game. For each request qki ∈
Qi, the latency when it is served by each server si,j ∈ Si is
a vector tki = (tki,1, t

k
i,2, ..., t

k
i,mi

). The preference value of qki
when it is served by si,j is

φki (si,j) = tki,max − tki,j . (9)

The preference list of qki denoted by PQk
i contains all si,j’s

in an ascending order of φki (si,j) for which φki (si,j) > 0.
The EAP receiving qki sends resource request dk

i on behalf of
qki to the most preferred MEC server in PQk

i . If the request
gets rejected, the EAP then sends the request to the second
preferred MEC server in PQk

i , and so forth.
Each server, on the other hand, may receive multiple re-

source requests in a short time. If its residual capacity can
accommodate all the requests, all requests will be accepted.
Otherwise, the server must identify the best subset of requests
to grant so as to maximize the number of served requests. It
is a bin packing problem, which is known to be NP-hard. As

a heuristic, we define a preference function Φi,j(q
k
i) for each

each MEC server si,j as follows:

Φi,j(q
k
i) =

|R|∑
r=1

(
wr

i,j · (1−
dk,ri

Cr
i,j

)

)
, (10)

where wr
i,j is a real number in [0, 1] that represents the weight

(e.g., scarcity) of physical resource type r to si,j with the
property that

∑
r w

r
i,j = 1. All requests qki ’s toward si,j are

granted one by one in the increasing order of their preference
function values. When the server can no longer grant an
request with its residual capacity, it rejects the request and
all requests with lower preference function values (if any).

An MEC server may have accepted some requests but have
to reject some other requests later due to insufficient residual
capacity. When this happens, it is an issue whether the MEC
server should retract a previous grant to make room for a new
request simply because the new one has a higher preference
function value than the previous1. If we allow retraction,
it is a variant of deferred-acceptance (DA) algorithm [8],
which possesses a property that servers may tentatively accept
requests. If acceptance is always firm (cannot be retracted),
the approach is a variant of Boston [7].

C. Inter-ESP Request Dispatch

For inter-ESP request dispatch, each MEC server si,j values
all requests toward it by the following preference function
Φi,j(q

k
i):

Φi,j(q
k
i) =

bki,j − θi,j(qki)∑|R|
r=1

(
wr

i,j · d
k,r
i /Cr

i,j

) . (11)

Intuitively, this function gives the profit per unit of the
weighted sum of all normalized physical resource requested.

On the other hand, the requester of qki (qki for short here-
after) values each candidate MEC server si,j by the following
preference function:

φki (si,j) =
vki − bki,j
tki,j

, (12)

where bki,j is the price offered by qki to si,j . This is exactly
the utility of qki being served by si,j . Note that qki may offer
different prices to different servers for the same request. The
offered price depends on the minimal selling price θi,j(q

k
i)

provided by si,j , expected latency tki,j when qki is served by
si,j , and the valuation on the request vki . Clearly, qki will not
consider si,j if θi,j(qki) > vki . If θi,j(qki) < vki , qki can have a
positive utility if θi,j(qki) ≤ bki,j < vki . To maximize its utility,
qki tends to minimize bki,j . However, as si,j ranks all requests
toward it by (11), a request with low offered price also has low
chance to be granted. When a request is rejected, the requestor
can either raise the price to bki,j + δ and resend the request to
the same server or send a different offered price to another
MEC server. The decision depends on which one can give the

1Of course, the rejected request can sent another request to the next
preferred MEC server.

TABLE II
SIMULATION SETTING FOR SERVER CAPACITY

Parameter Distribution Mean Standard Deviation
Number of CPU cores Gaussian 50 10
Amount of memory (GB) Gaussian 500 50
Amount of storage (GB) Gaussian 500 100

TABLE III
VM INSTANCE TYPES OFFERED BY AMAZON EC2–US WEST

(NORTHERN CALIFORNIA) REGION

Medium Large XLarge 2XLarge
CPU core 1 2 4 8
Memory (GB) 3.75 7.5 15 30
Storage (GB) 4 32 80 160

requester a higher utility. The process repeats until all requests
either get granted or cannot further raise their offered prices.
This is a modification of the DA algorithm with the inclusion
of monetary exchange, which is similar to [9].

IV. SIMULATION RESULTS

We conducted a series of simulations to investigate the
performance of the proposed mechanisms and compare it with
that of others. Both intra-ESP and inter-ESP request dispatches
were considered.

A. Environment Settings

We randomly placed ten EAPs (numbered from 0 to 9)
in a 100 × 100 km2 area. Each EAP was co-located with
an MEC server. The capacity of each server was randomly
determined with the setting shown in Table II. We varied
the number of requests from 50 to 1000. To generate non-
uniform distributions of user requests on EAPs, the identifier
of the serving EAP was set by applying a floor function to
a Gaussian distributed random variable (with mean 5 and
standard deviation 2.5) truncated at 0 and 9.

We assumed four types of VMs as those offered by Amazon
EC2 in US West Region (Table III). Each request was a
combination of these flavors with most requests demanded
Medium and Large VMs. Only a few demanded XLarge and
2XLarge ones. About 60% requests had latency constraints
uniformly set in the range from 1 to 100 ms. Other requests
did not have latency constraints. When a request was served by
the MEC server co-located with the serving EAP, the latency
was assumed 1 ms. When the request was served by any other
MEC server, the latency was 1 ms plus the propagation delay
between the MEC server and the serving EAP. For inter-ESP
resource sharing, the cost of physical resources were set based
on real prices [10], [11], [12].

B. Intra-ESP Request Dispatch

We tested several matching mechanisms, including CHA,
adapted Boston, and adapted DA, and compared the results
with those of random matching and no offloading (denoted by
No-Share). In No-Share, requests were always dispatched to
the MEC servers co-located with the respective serving EAPs
of the requests.

0 200 400 600 800 1000

Number of requests

0

200

400

600

800

1000

N
u
m

b
e
r

o
f
s
e
rv

e
d
 r

e
q
u
e
s
ts

DA

Boston

CHA

Random

No Share

Fig. 2. Total numbers of served requests in intra-ESP request dispatch

0 200 400 600 800 1000

Number of requests

0

10

20

30

40

A
v
e
ra

g
e
 l
a
te

n
c
y
 p

e
r

re
q
u
e
s
t
(m

s
)

DA

Boston

CHA

Random

No Share

Fig. 3. Average latency per request in intra-ESP request dispatch

Figure 2 shows how the number of served requests changes
with increasing number of requests using different approaches.
DA clearly outperforms all others, followed by Boston. CHA
and Random roughly performed the same. They performed
better than No-Share only with few requests. The reason is
that servers in CHA did not have preference on requests, so
the set of requests that were granted when a server did not
have enough capacity was not carefully determined. This is
like Random.

Figure 3 shows the average latency per granted request. Here
No-Share had the lowest latency, which is reasonable because
only local requests could be granted. Random had the highest
latency, which is also predictable. The superiority of Boston
over DA comes from the property that once Boston grants a
request, it never retracts the grant. Therefore, granted requests
tended to be dispatched to their most preferred MEC servers.
In contrast, DA may retract a request grant to make room
for another request that is more preferable. Therefore, granted
requests were less likely to be matched to their most preferred
servers. Together with Fig. 2, we can see that this strategy is
to trade requester’s preference for server’s.

C. Inter-ESP Resource Sharing

For inter-ESP resource sharing, we primarily considered
DA with transfer (referred to as DA-T). In DA-T, different

0 200 400 600 800 1000

Number of requests

10

15

20

25

30

35

40

A
v
e
ra

g
e
 l
a
te

n
c
y
 p

e
r

re
q
u
e
s
t
(m

s
)

DA-T (= 4)

DA-T (= 10)

Boston

Random

Fig. 4. Average latency per request in inter-ESP offloading

0 200 400 600 800 1000

Number of requests

1000

1500

2000

2500

3000

3500

4000

4500

R
e
v
e
n
u
e DA-T (= 4)

DA-T (= 10)

Boston

Random

Fig. 5. Total revenue in inter-ESP offloading

requesters may have different settings on the increments of
their bids (the value of δ) when the proposed bids are not
accepted. Generally speaking, servers prefer higher δ value
while requesters prefer lower. We used a parameter λ to set
up the maximal number of times that each requester is allowed
to raise its bid toward the same server. It indirectly controls
the granularity of δki,j (δ for each qki) as follows:

δki,j =
vki − aki,j

λ
, (13)

where aki,j is the asked price si,j provides to qki . In our
simulations, we assumed that aki,j = θi,j(q

k
i).

Figure 4 shows the average latency per granted request
in inter-ESP resource sharing. The performance of Random
and Boston was expected. DA-T with λ = 10 had a lower
latency than DA-T with λ = 4. This can be justified as a
small granularity of bid increment (λ = 10) gave requests
more chances to be considered by their most preferred servers
(before switching to less preferred servers in their preference
lists).

Figure 5 shows total revenue of the system. Though Boston
gave granted requests low latencies, the revenue of the system
was nearly the same as Random. The reason is that it did
not give MEC servers the opportunity to replace low-profit
requests with high-profit ones. DA-T outperformed Boston

because it allows such replacements. Here large granularity of
bid increment (λ = 4) gave the ESPs higher revenue, which
is intuitive. However, the gap is not significant.

V. CONCLUSIONS

We have modeled resource request dispatch in an MEC
system as a many-to-one matching with two-sided preference.
In this model, requests prefer MEC servers that give them
short latencies while servers prefer requests that demand less
resource (based on the server’s own weightings on different
types of resources). Approaches including CHA, Boston, and
DA have been considered. For federated MEC system, re-
source requests come with offered payment. Requesters prefer
servers that give them high payoff per unit time of latency
while servers prefer requests that bring in high profit per
unit of weighted, normalized physical resource. The proposed
approach, DA-T, enables interactive payment negotiation. Sim-
ulation results show that DA serves more requests than the
counterparts in intra-ESP offloading. For inter-ESP request
dispatch, DA-T makes more revenue for ESPs than Boston.

ACKNOWLEDGEMENTS

This work was partially supported by the Ministry of Sci-
ence and Technology, Taiwan, under grant numbers 106-2221-
E-009-004 and by the H2020 collaborative Europe/Taiwan
research project 5G-CORAL (grant number 761586).

REFERENCES

[1] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys
and Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.

[2] ETSI, “Mobile Edge Computing (MEC); terminology, v1.1.1,” European
Telecommunications Standards Institute (ETSI), Group Specification
(GS), Mar. 2016, MEC Standard 001.

[3] Q.-V. Pham, T. LeAnh, N. H. Tran, B. J. Park, and C. S. Hong, “De-
centralized computation offloading and resource allocation for mobile-
edge computing: A matching game approach,” IEEE Access, vol. 6, pp.
75 868–75 885, Dec. 2018.

[4] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing
resource allocation in three-tier IoT fog networks: A joint optimization
approach combining Stackelberg game and matching,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1204–1215, Oct. 2017.

[5] D. F. Manlove and C. T. S. Sng, “Popular matchings in the capacitated
house allocation problem,” in Algorithms – ESA 2006, Y. Azar and
T. Erlebach, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 492–503.

[6] C. T. S. Sng, “Efficient algorithms for bipartite matching problems with
preferences,” Ph.D. dissertation, University of Glasgow, 2008.

[7] A. Abdulkadiroğlu and T. Sönmez, “School choice: A mechanism design
approach,” American Economic Review, vol. 93, no. 3, pp. 729–747, Jun.
2003.

[8] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[9] J. Alexander S. Kelso and V. P. Crawford, “Job matching, coalition
formation, and gross substitutes,” Econometrica, vol. 50, no. 6, pp.
1483–1504, Nov. 1982.

[10] (2018, Apr.) Price chart of amd and intel desk-
top cpus (latest). [Online]. Available: http://www.cpu-
world.com/Price Compare/Desktop CPU prices (latest).html

[11] J. C. McCallum. (2018, Apr.) Memory prices (1957-2017). [Online].
Available: https://jcmit.net/memoryprice.htm

[12] A. Klein. (2017, Jul.) Hard drive cost per gigabyte. [Online]. Available:
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/

