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Abstract—Churn refers to a large number of arriving and 
departing participants within a short time in peer-to-peer 
(P2P) networks. This paper studies the impact of churn on 
real-world unstructured P2P networks. To this end, we need 
collecting snapshots of P2P network topology and associated 
performance metrics. Because P2P topology changes 
dynamically, the time to take a snapshot must be sufficiently 
short for the snapshots to be accurate. We propose Third-
party-to-servent Crawling with Servent-to-servent Sampling 
(TCSS) system. TCSS uses a third-party crawling technique 
to collect network topology information without disturbing 
the original P2P network under investigation. Furthermore, 
TCSS adopts distributed and parallel techniques to speed up 
the crawling process. TCSS also employs a servent-to-
servent sampling technique to gather the corresponding 
performance metrics of the P2P network simultaneously. 
Empirical results show that TCSS takes around 7 minutes to 
take a topology snapshot of the P2P network. Besides, we 
found that churn is indeed a combined effect of peer 
arrivals/departures and neighbor replacements. As the 
number of peers increases, the number of very long-lived 
peers remains nearly constant and the P2P network 
possesses a small-world property. Moreover, as churn 
aggravates, the average booting time of peers increases and 
the variation is proportional to the degree of churn. The 
response time of the top-rank keyword searches is not 
affected by the degree of churn. 

Keywords-Churn; Real-world; Unstructured; Peer-to-peer; 
Performance; TCSS 

I. INTRODUCTION 
Over the past decade, peer-to-peer (P2P) applications 

have increased greatly in popularity and grown 
aggressively in Internet traffic. Unlike traditional client-
server model, where the whole processing load is placed 
on centralized servers, peers in a P2P network share 
contents with each other in a distributed manner. For this 
reason, peers in P2P networks are also known as servents 
(servers and clients), possessing properties of both a server 
and a client. Typical P2P applications include file-sharing 
and multimedia streaming. 

Many approaches have been proposed to enhance P2P 
network performance. These approaches include particular 
network structures, efficient search algorithms, and special 
mechanisms based on different overlay structures. 
However, many mechanisms do not perform well under 
real-world conditions. It is believed that the performance 
problem is caused by a phenomenon named churn, which 

refers to a large number of independent arriving and 
departing servents within a short time. This phenomenon 
results from unpredictable servent behaviors possibly due 
to network conditions, user behaviors, or servent 
overloading. Churn exists in a real-world environment but 
it is hard to precisely analyze churn in a simple analytical 
model. 

Overlay is a logical networking structure built on top of 
P2P networks that provides connectivity and efficient route 
for P2P messages. Churn may affect the main functionality 
of the overlay and significantly degrade the performance 
of P2P applications. Researchers have analyzed servent 
behaviors [2] to study the cause of churn, but the 
performance impact of churn on overlay networks has not 
yet been considered. From [20], we know that structured 
file-sharing P2P has been well-studied. For further 
understanding of the correlation between churn and P2P 
overlay performance, we focus on analyzing how churn 
affects real-world unstructured file-sharing P2P software. 

Each servent maintains a servent neighbor list to keep 
track of its neighboring servents. To keep the neighbor list 
updated, each servent removes neighbors that are no longer 
reachable from the list, and attempts to contact potential 
new neighbors. This process changes the overlay topology 
over time. The goal of this study is to figure out how such 
changes affect the performance of the overlay under a real-
world environment. To this end, we need two datasets: a 
sequence of topology snapshots and the performance 
metrics of a specific topology. We therefore developed 
Third-party-to-servent Crawling system with Servent-to-
servent Sampling (TCSS). TCSS integrates the crawler 
presented in [4] with accurate snapshot capture techniques 
to record overlay topologies as graphs. TCSS also deploys 
some customized P2P peers called modified servents 
which cooperatively run a sampling technique [3] to gather 
particular performance metrics. The combination of 
crawler and modified servent has not ever been 
implemented before. Consequently, TCSS can efficiently 
and accurately collect topology snapshots and performance 
metrics (such as initial boot time and search response time) 
for P2P overlay. We have used the data collected by TCSS 
to study the correlation between fluctuating topologies and 
corresponding performance metrics. 

In summary, our goals are to accomplish the following 
tasks under a real-world environment: (i) datasets 
collection and (ii) analysis of overlay performance under 
various overlay topologies. The rest of this paper is 
organized as follows. Section 2 introduces our target P2P 



overlay, Gnutella [8]. We present relevant works on 
dataset collection in Section 3. Section 4 describes TCSS 
in details and Section 5 shows our analysis results. The last 
section concludes this paper and discusses our future work. 

II. BACKGROUND 
There are several criteria to select a real-world P2P 

overlay for our study. First, the overlay type must be 
unstructured and file-sharable. Second, the overlay should 
be of large size, as a popular overlay will provide us rich 
data and thus statistically significant results. Third, the 
overlay protocol must be well-designed and well-defined 
with clear descriptions and open documentation. Thus, we 
decided to conduct our empirical study on the Gnutella 
overlay based on a number of its unique features. 

A. Unstructured File-Sharing P2P and High-Popularity 
Gnutella is widely regarded as the first fully distributed 

file-sharing P2P and is one of the most popular P2P 
applications [21]. From its inception in 2000, Gnutella is 
one of the most studied P2P networks in the literature. 
There are many measurement studies [3, 5, 7, 13-15] and 
tools [9-12, 16-17, 22] focusing on the Gnutella overlay, 
and these works have helped us gain an insight about the 
characteristics of Gnutella. 

B. Well-Designed P2P Protocol 
The Gnutella protocol is defined in RFCs [8] and its 

mechanisms are well-documented [18]. For scalability, 
current Gnutella (version 0.6) adopts a two-tier overlay 
architecture. As shown in Figure 1, there are two types of 
peers: top-level peers and leaf peers. Top-level peers 
include ultrapeers and legacy peers. High-performance 
ultrapeers handle connections and query requests from 
other peers. Leaf peers constitute the majority of the 
members in the Gnutella overlay; they connect to the 
overlay through a few ultrapeers. High-bandwidth and 
high-capacity leaf peers become ultrapeers if needed in 
order to maintain a proper ultrapeer-to-leaf ratio. This two-
tier architecture of Gnutella greatly reduces the traffic 
caused by the flooding mechanism in traditional 
unstructured P2P architectures. Moreover, Gnutella 
provides a protocol hook that allows shared file lists and 
neighbor lists [19] to be easily extracted from a peer 
through a method called crawler protocol. These features 
enable users to learn of information about other peers. 
From this information, we can construct necessary datasets 
of the Gnutella overlay. 

III. RELATED WORKS 

A. Dataset Collection Techniques 
The authors in [2] classified prior collection methods 

into two groups based on how the peers interact with these 
methods. These groups are passive monitoring and active 
probing. 

1) 

2) 

Passive Monitoring 
Passive data collection techniques gather datasets by 

tracking logs in static devices, such as routers in large ISP 
networks or trackers in BitTorrent. In [6], the authors 
extracted logs of specific P2P protocols according to port 
number information in flow-level logs recorded at multiple 
border routers across the ISP’s network. This approach 

misses some data since P2P applications may randomly 
generate port numbers. In addition, this technique finds 
only partial overlay topology since not all routers are self-
controlled. Logs from the routers and the trackers may also 
be fragmental because some peers may only generate 
intermittent traffic throughout the observation period. 
These limitations degrade the accuracy of the 
measurements made by passive monitoring. 

Active Probing 
Active probing uses a crawling technique similar to a 

web spider that retrieves a list of links to other web pages. 
This crawling technique enables us to connect to overlay 
peers actively and then send requests to retrieve 
information of interest. Unlike passive monitoring, active 
probing has the ability to contact each peer on the overlay 
as long as it has the peer’s address information. Active 
probing can gather more comprehensive topological 
information when compared with passive monitoring. 

 
Figure 1.  Two-Tier Topology of Modern Gnutella 

B. Active Probing Approaches 
As mentioned, we use active probing to collect dataset 

from the Gnutella overlay. There are two different 
crawling techniques for active probing, which are 
discussed below. 

1) 

2) 

Third Party Crawler 
This type of crawler collects datasets via some crawler 

protocol supported by Gnutella. For example, the crawler 
in [4] takes a snapshot of the overlay topology by 
progressively exploring the Gnutella overlay, querying 
peers for their neighbor lists, and adding fresh peers to the 
crawler’s ready queue for the next round of crawling. Two 
kinds of retrievable data are defined in the crawler 
protocols: the neighbor list and the file-sharing list. The 
crawler is not a P2P peer. Therefore, it can be 
implemented with less overhead and can be customized to 
achieve high efficiency. 

Modified Servent 
The modified servent utilizes inter-peer messages to 

gather topological data. Different from the third party 
crawler, modified servent is a P2P peer and it can collect 
not only topological overviews but also performance 
related data through interactions with other overlay peers. 
However, this approach can incur high execution latency 
due to time-consuming peer interactions [22]. 

C. Speed-up Techniques for Accurate Datasets 
The most common approach to measurement-based 

analysis of P2P system is to capture the overlay snapshot 
via the active probing technique. In addition, our goal is to 
analyze the impact of churn, a dynamically changing 
phenomenon, on overlay performance. To identify the 
change of churn in a given sequence of overlay snapshots, 
the intervals between consecutive snapshots must be of 



similar size for a convincible result. Moreover, because of 
the large size of the overlay and the dynamic nature of P2P 
peers, snapshots taken with a long capturing period will be 
distorted. Thus, we need techniques that can shorten the 
time period of snapshot capturing. 

1) 

2) 

3) 

4) 

1) 

2) 

Gnutella Overlay Protocol 
a) Support of Crawler Protocol 

Gnutella peers implement a special handshake feature 
designed to facilitate crawling, allowing a quick query to 
be sent to a peer for connectivity information. This allows 
the crawler to discover the addresses of the peer’s 
neighbors, and for an ultrapeer, the addresses of its leaves. 

b) Two-Tier Architecture 
Since each leaf connects to an ultrapeer and there is no 

direct connection between leaves, we can capture all the 
nodes and links of the overlay by contacting only top-level 
peers. Furthermore, the high degree of peer connectivity 
within the top-level peers substantially increases the 
probability of detecting new ultrapeers. 

Distributed System Architecture 
The crawler employs a client-server architecture to 

achieve high-degree concurrency and to effectively utilize 
available resources on multiple workstations. A server 
process coordinates multiple client processes that act as 
virtual independent crawlers. Each crawler explores a 
particular portion of the network and all crawlers work in 
parallel. The clients are also responsible for detecting 
duplicated peer addresses in the reported neighbor lists. All 
newfound peers are reported back to the server, and the 
server dispatches these new peers to the clients for the next 
crawling. 

Asynchronous I/O 
Each client crawls hundreds of peers in parallel using 

asynchronous I/O. Servers also implement an adaptive 
load management mechanism to ensure that the clients’ 
processes do not become overwhelmed. We adopt this 
speed-up technique in our FreeBSD and Linux 
workstations. 

Sampling Technique 
Contacting every peer on the overlay is very time 

consuming. A sampling technique finds out representative 
peers within a large scale P2P overlay. It greatly reduces 
the crawling time by contacting only a group of 
representative peers. A study in [3] presents a sampling 
technique named Metropolized Random Walk with 
Backtracking (MRWB) that shows a nearly unbiased 
selection of representative peers. MRWB can correct the 
bias towards high degree peers and cope with departed 
peers within a highly dynamic P2P overlay. 

IV. THIRD-PARTY-TO-SERVENT CRAWLING SYSTEM 
WITH SERVENT-TO-SERVENT SAMPLING 

A. Datasets vs. Active Probing Approaches 
Since churn dynamically changes overlay topology, we 

want to track such changes in order to figure out the 
correlation between churn and the overlay performance. A 
sequence of topology snapshots provides us the scenario 
how the Gnutella overlay topology changes over time. Our 
task involves two datasets: a sequence of topology 
snapshots and the performance metrics of a specific 
topology. We used the active probing approach to gather 

these datasets. Section 3 already presents two approaches 
to active probing (the third party crawler and the modified 
servent). Each approach has its own features for dataset 
collection. In the following paragraphs, we analyze both 
the advantages and shortcomings of these two approaches 
and point out the design concept of our system. 

Topology of Gnutella Overlay 
Both the third party crawler and the modified servent 

can capture the snapshot of the overlay topology. However, 
they differ in some ways. Here, we look at the two 
approaches in details. 

a) Third Party Crawler 
The third party crawler is implemented using the 

Gnutella crawler protocol. It works as follows: (1) The 
server gives bootstrapping peers to the crawler. (2) The 
crawler queries peers for neighbor lists via crawler 
protocol. (3) The crawler extracts fresh peers from the 
reported neighbor list. (4) The crawler repeats Steps (2) 
and (3) until no new peers can be discovered. 

The third party crawler can be customized for topology 
collection, and it does not participate in the normal 
operations of the Gnutella network. This feature allows us 
to implement the third party crawler with low overhead for 
the lack of time-consuming peer interactions. Hence, the 
third party crawler can achieve higher efficiency than the 
modified servent. 

b) Modified Servent 
The modified servent operates using Gnutella inter-

servent messages. It works as follows: (1) Modified 
servents connect to ultrapeers and request for services. (2) 
The ultrapeers broadcast requests via inter-servent 
messages over the Gnutella overlay. (3) Peers that receive 
request messages reply. (4) On receiving peer’s replies, 
ultrapeers forward the replies back to the modified servent. 

Current version of Gnutella uses several mechanisms to 
minimize the number of request messages and prevent the 
Internet from being flooded with broadcasting messages. 
For this reason, the topological information gathered by 
modified servent is fragmented and does not form a full-
scale view. Furthermore, the modified servent is inefficient 
due to time-consuming peer interactions. 

For the reasons stated above, we choose the third party 
crawler to capture the topology dataset. We implemented 
the third party crawler with several speed-up techniques 
that accelerate the process of data collection, minimizing 
the distortion of topology caused by long crawling period. 
We call the captured topology dataset crawler-to-servent 
dataset. 

Performance Metrics 
Since the third party crawler is not a servent in the 

Gnutella overlay, we can only gather metrics of overlay 
performance via the modified servent. We name the 
performance metrics dataset gathered by the modified 
servent servent-to-servent dataset. We enhanced the 
modified servent by adding the sampling technique to 
shorten the crawling period. However, there is no way to 
capture overlay topology via the sampling technique. We 
need complete topologies to identify the changing factors 
within each overlay snapshot. 

In short, TCSS uses the third party crawler with speed-
up techniques to capture overlay topology and the 



modified servent with the sampling technique to gather 
performance metrics. 

B. TCSS Overview 
TCSS is designed to work on the Gnutella overlay. As 

shown in Figure 2, TCSS consists of a third-party crawler 
and modified servents. The third-party crawler contains 
three components: dispatching/sampling server, crawling 
clients, and central repository. The modified servents are 
Gnutella servents modified to gather performance metrics 
in our analysis. The datasets collected by TCSS are the 
crawler-to-servent dataset and the servent-to-servent 
dataset. 

 
Figure 2.  TCSS Architecture 

The data-collecting work consumes considerable 
computing resources. As an improvement, we implement 
TCSS with divide and conquer concepts. The main part of 
TCSS is built upon distributed architecture. The 
dispatching/sampling server can master several 
independent crawling clients and modified servents, and 
assign them jobs depending on their functionalities. Both 
the crawling client and modified servents adopt 
asynchronous I/O for enhancing the parallelism when 
handling network communication. 

C. Fast Fresh-Peer Refinement 
Our experience in implementing the crawling function 

in TCSS revealed that numerous peers found in reported 
neighbor lists are duplicated. It therefore becomes a 
challenge to extract fresh peers in an efficient way. We 
devised two approaches that have been incorporated into 
crawling clients to deal with this problem. 

1) 

2) 

1) 

2) 

3) 

4) 

1) 

Cache Mechanism 
Since the number of neighbor lists to be reported is 

enormous, identifying and eliminating duplicated data can 
significantly reduce processing cost. To facilitate 
duplication checks and shorten the crawling period, it is 
necessary to have a cache in each client. 

Multiprocess Programming 
We augmented the clients with multiprocessing 

abilities to accelerate their crawling tasks. Each client has a 
main process that creates child processes called workers. 
Workers check whether peers in the reported neighbor lists 
are duplicated. Cache for duplication check is divided into 
two layers. The first-layer cache, maintained by the main 
process, stores all the peers that have ever been explored. 
The second-layer cache is maintained by each worker and 
synchronized with the first-layer cache periodically. The 

use of multiprocessing and divided caching enables a 
parallel duplication check and thus shortens the whole 
crawling process. 

D. TCSS Design Details 
In this section, we interpret the functions of the four 

components in TCSS. 
Dispatching/Sampling Server 

a) Fresh Peers Management 
This server maintains fresh peers reported by the 

crawling clients. The server also manages the queues for 
each client and dispatches fresh peers to client’s queues. It 
balances the load among crawling clients by controlling 
the sending rate of fresh peers to clients. 

b) Representative Ultrapeers Sampling/Distributing 
When clients crawl the overlay, the server extracts 

representative ultrapeers from the overlay simultaneously. 
A list of these sampled peers will be forwarded to the 
modified servents, which will then attempt to interact with 
these sampled peers to gather the servent-to-servent dataset. 

Crawling Clients 
a) Phase 1 – Neighbor List Query 

Crawling clients know the presence of fresh peers from 
the server and contact these peers to capture the crawler-
to-servent dataset. A two-tier overlay architecture eases the 
crawling task, since all leaf peers connect to the overlay 
through a small number of ultrapeers. This means that we 
can crawl only the top-level layer to capture the whole 
overlay topology. To avoid redundant crawling, the next 
phase will detect and remove peers found duplicated in the 
reported neighbor list. 

b) Phase 2 – Duplication Check 
Phase 2 is implemented using multiprocess 

programming and cache mechanism. Each process, called 
worker, parses out peer addresses from the reported 
neighbor lists and checks for duplicated peers. Crawling 
clients first check their own caches and, if no duplication is 
found, then the central repository. After the check, a list of 
fresh peers will then be forwarded to the server and 
inserted into the database of the central repository. 

Central Repository 
The Central Repository is a central database of crawled 

peers. 
Modified Servents 

We choose LimeWire [18] as our target servent. The 
modified servents are under the server’s control. As the 
server gets sampled results, it will feed the results to 
modified servents. The modified servents then use the 
sampled peers to join and interact with the Gnutella 
overlay. 

TCSS is designed in a distributed manner. Crawling 
clients are distributed over several workstations and 
manipulated via Message Passing Interface (MPI). The 
time required for a complete snapshot is about 7.5 minutes. 

E. TCSS Dataset Collection Flow 
From a dataset’s point of view, the complete processes 

for the two datasets are described below: 
Crawler-to-servent Dataset 

(1) [Server] Start a new round (snapshot). (2) [Server] 
Take bootstrapping peers as fresh peers. (3) [Server] 



Dispatch fresh peers to clients. (4) [Clients] Probe fresh 
peers for neighbor lists. (5) [Clients] Log probing results 
for temporary storage of partial crawler-to-servent dataset. 
(6) [Clients] Perform duplication check with probing 
results. (7) [Server] Gather fresh peers reported by clients. 
If this round ends, go to Step (1). Otherwise, go to Step (3). 
A sketch of this process is depicted in Figure 3. 

Central Repository Dispatching / Sampling Server

Crawling
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Joining
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Figure 3.  Process of Crawler-to-servent Dataset Collection 

2) Servent-to-servent Dataset 
a) Dispatching/Sampling Server 

(1) [Server] Start a new round (snapshot). (2) [Server] 
Sample overlay for representative peers. (3) [Server] 
Distribute sampled peers to the modified servents. If this 
round ends, go to Step (1). Otherwise, go to Step (2). 

b) Modified Servents 
(1) [Modified Servents] Interact with sampled peers. (2) 

[Modified Servents] Log performance metrics for 
temporary storage of partial servent-to-servent dataset. A 
sketch of this process is depicted in Figure 4. 

 
Figure 4.  Process of Servent-to-servent Dataset Collection 

F. Details in Collected Datasets 
1) 

2) 

Crawler-to-servent Dataset 
The main information in the crawler-to-servent dataset 

includes (i) peer address, (ii) peer type (ultrapeer or 
legacy), (iii) peer neighbors, and (iv) peer timestamp. With 
this information, we can identify changing factors in a 
sequence of topology snapshots. For example, we can 
observe the changes in participating peers between two 
successive snapshots. We can also derive session lengths 
of different peers from the timestamp information. 

Servent-to-servent Dataset 
The data in the servent-to-servent dataset include 

servent connection initialization time and response time for 
specific keyword search. To know which keywords should 
be used in later measurements, we modify the third party 

crawler to query for shared file lists instead of neighbor 
lists, and integrate this crawler with the sampling 
technique used in dispatching/sampling server. We call 
this modified crawler the third party file crawler. The third 
party file crawler ran for 24 hours and queried sampled 
peers for their shared file lists. The dataset that we 
received contain peer address, peer timestamp, and peer 
shared file list. After analyzing this dataset, we obtained 
some representative keywords for keyword search. The 
results are ‘feat’ (the most popular), ‘thought’ (a middle 
rank), and ‘hills’ (rank lower than middle). 

V. EMPIRICAL ANALYSIS 
We ran TCSS for 20 hours from 19:00 21/06/11 to 

15:00 22/06/11 and collected 163 snapshots totaling 17Gb. 
Table I presents a summary of our dataset, including (i) the 
average number of peers, (ii) the average number and 
percentage of top-level peers, and (iii) the average number 
and percentage of leaf peers. 

TABLE I.  SUMMARY INFORMATION ABOUT COLLECTED DATASET 

Crawling Date Avg. Total 
Nodes 

Avg. Top-level 
Peers (%) 

Avg. Leaves 
(%) 

21~22/06/10 1,273,088 231,364 (18%) 1,041,723 (82%)
 
Overlay topology is inherently dynamic because the 

connections by peers are constantly changing. These 
dynamics may affect the main functionality of the overlay, 
which is to provide connectivity and efficiently route the 
P2P messages. We try to find the correlation between 
churn and the overlay performance. Referring to [1] and 
[2], we represent each snapshot in the crawler-to-servent 
dataset as a graph and analyze the change of several key 
factors. We pay special attention to the top-level overlay 
since it is the core component of the Gnutella overlay. We 
do not maintain peer’s identities across snapshots because 
we do not identify peer’s properties by their identifiers. We 
also consider a peer a newly joined one in the overlay if it 
is not present in the current snapshot but shows up in the 
next. 

Table II shows all possible results of probing top-level 
peers. These results are kept in the crawler-to-servent 
dataset, where reachable peers are surely included. For 
accuracy, we preclude peers that do not join the overlay 
due to networking or resource problems. However, 
according to [1], most timeout peers are firewalled, and 
they constitute about 20 percent of the total peers. We need 
consider firewalled peers for accuracy of our analysis. 

TABLE II.  CLASSIFICATION OF PEERS IN CRAWLER-TO-SERVENT 
DATASET 

Connection Status  Reasons 
Reachable  Peer replies its neighbor list 
Bad Handshake  Incorrect protocol implement 
Connection Dropped  TCP packages are dropped by router in path 
Connection Reset  Peer crashes 
No Route to Host  Routing setting error in path 
Timeout  Peer shutdown or firewalled 
Connection Refused  Peer’s listen buffer overflows or port is not 

open 
 
To identify peers that should be precluded from the 

analysis, we classify all peers into active peers and inactive 



peers. If the status of a peer is either reachable or 
firewalled, it is an active peer; otherwise, it belongs to 
inactive peers. We only retain active peers in the dataset. 
To find out active peers in the crawler-to-servent dataset, 
we use a method called inactive peers elimination to rule 
out inactive peers. We think peers that had been reachable 
are not likely to change their firewall settings in a short 
time. If a peer’s status has ever switched between timeout 
and reachable, we consider it an inactive peer because its 
peer status will change to timeout when a peer leaves the 
overlay. We also ignore all timeout peers that do not 
appear in at least two consecutive snapshots because we 
cannot distinguish them between being firewalled and 
being absent in the overlay. The flowchart for this 
checking is displayed in Figure 5. 

 
Figure 5.  Methodology to Filter Out Non-firewalled Peers 

In summary, the analysis of the crawler-to-servent 
dataset concerns the identification of active and inactive 
peers. If a peer is either reachable or firewalled, it is an 
active peer; otherwise, it is an inactive peer. Most 
importantly, this approach only applies to top-level peers. 
Based on this knowledge, we analyze the crawler-to-
servent and servent-to-servent datasets from four different 
aspects: (i) member-based, (ii) neighbor-based, (iii) 
reachability-based, and (iv) servent-based analyses. 

A. Member-Based Analysis 
As mentioned above, active peers interact with other 

participating peers in the overlay. Inactive peers either 
have left the overlay or cannot be reached from any active 
peer in the overlay. Active peers provide steady 
connections to other peers. In contrast, the presence of 
inactive peers indicates that participating peers need extra 
efforts to repair failed connections to inactive peers or to 
overcome problems such as long search response time. 
Member-based analysis focuses on identifying the 
presence of a peer (by finding out its arrival and departure 
time) and the change of its properties in successive 
snapshots. We attempt to observe these membership 
related characteristics in the crawler-to-servent dataset and 
take them as basic metrics for the analysis in later sections. 

1) Arrival Rate 
The arbitrary arrival of peers in a P2P overlay is a 

major source of churn. Therefore, we should observe the 
arrival rate during crawling time by counting every newly 
arriving peer in the crawler-to-servent dataset. We consider 
a peer a newly arriving one if it appears in the Nth 

snapshot but not in the (N-1)th snapshot. Then, we divide 
the total number of newly arriving peers by the length of 
crawling period to get the arrival rate. 

Figure 6 shows that the arrival rate was high from 
23:30 to 11:00. More than two thousand top-level peers 
joined the overlay every minute during this period, though 
the exact number continually fluctuated. Moreover, peak 
arrival rates occurred at 3:46, 8:57 and 10:11. We referred 
to [23] for the mapping between IP address and country 
and found that during the peak hour, most IPs came from 
Czech Republic, U.S., and Canada. According to the 
geographical analysis in [24], during 2004-2005, most 
users came from North America. In the sections below, we 
shall discuss whether other overlay analyses in our datasets 
exhibit a similar trend as the arrival rate. 

 
Figure 6.  Arrival Rate 

2) Difference of Active Peers in Adjacent Snapshots 
Frequent arrival and departure of peers change the 

members of the overlay as well as the overlay topology. To 
observe the variation in active members, we use two 
adjacent snapshots (S1, S2) and define the difference of 
active peers (Dap) as the percentage of peers that are active 
in S1 (resp. S2) but are inactive in S2 (resp. S1). The result 
shown in Figure 7 indicates that the difference smoothly 
changed during the crawling period. We suggest that as the 
size of the Gnutella network increases and decreases, the 
difference of active peers becomes slightly higher and 
lower, respectively. 

 
Figure 7.  Difference of Active Peers 

3) Departure Rate 
Arbitrary departure is also a key source of churn. 

However, the probing technique implemented in TCSS 
does not report a correct number of leaving peers from the 
crawler-to-servent dataset, which is crucial to the 
calculation of the departure rate. In the result shown in 
Figure 8, the departure rate exhibits a trend similar to the 
arrival rate reported in Figure 6. A deep examination of the 
data reveals that the arrival rate sometimes exceeds the 
departure rate and sometimes not. The network size shown 
in Figure 7 also matches the growth and decline of the 
arrival and departure rates. Hence, the number of 
departures increases with a high population in the Gnutella 
network. To maintain a large network size, the number of 
arrivals must also rise. 



 
Figure 8.  Departure Rate 

4) Composition of Session Length in Snapshot 
Prior studies reveal that session length is also important 

in observing churn. Generally speaking, the more long-
session neighbors that a peer has, the better performance it 
achieves. Therefore, maintaining adequate neighbor 
connections can cope with dynamic changes in a P2P 
overlay. Such maintenance needs a large amount of control 
messages, causing non-negligible overhead. We examine 
the session length composition in each snapshot to 
determine whether session length is a key factor in 
analyzing churn. 

We pre-scanned the crawler-to-servent dataset to find 
the distribution of session lengths for all reachable peers 
present in our dataset. Then, we re-scanned the crawler-to-
servent datasets, snapshot by snapshot, to calculate the 
percentage of specific session intervals with references to 
each peer’s session length computed in the first scan. We 
set up six specific session intervals: 10 minutes, 30 
minutes, 2 hours, 5 hours, 20 hours, and 1 day. We placed 
peers with lifespan longer than or equal to 20 hours into 
the 1 day interval group and then classified all peers into 
two categories: short-lived part (10 minutes, 30 minutes, 
and 2 hours) and long-lived part (5 hours, 20 hours, and 1 
day). 

Figure 9 shows that neither the short-lived part nor the 
long-lived part varies significantly during our crawling 
period. The short-lived part grew slightly from 23:00 to 
11:00, but the increasing rate was small. It does not well 
match the arrival rate shown in Figure 6. Nevertheless, 
there was a group of peers during the whole crawling 
period that we call very long-lived peers. The number of 
very long-lived peers almost remained constant in each 
snapshot. However, the percentage of very long-lived 
peers decreased from 23:00 to 12:00 in addition to a 
slightly increasing number of short-lived peers from 23:00 
to 11:00. The ratio of the number of specific session 
intervals to the number of total peers in each snapshot 
varies smoothly, unlike the dynamically varying arrival 
rates shown in Figure 6. Session length is also used as a 
basic property for other analyses in the remaining datasets. 

 
Figure 9.  Session Length Composition 

The above results show that the number of arrivals, 
departures and short-lived peers, as well as the variation of 
active peers in consecutive snapshots, stayed high from 
23:00 to 12:00. We call this period high variation period. 

B. Neighbor-based Analysis 
The above results indicate that members in an overlay 

dynamically change and the degree of change is high 
during certain periods. It is sure that the changes of 
membership in an overlay will cause constant change of 
neighbor connections. Neighbor-based analysis focuses on 
the issue of churn from the neighbor connection’s 
perspective. The reachable top-level peers in the crawler-
to-servent dataset reply with their neighbor lists, where 
other top-level peers (or leaves if any) may be included. 
However, TCSS does not track neighborhood information 
for leaf peers. Since top-level peers are the core of the 
Gnutella overlay, we focus on top-level neighbors of 
reachable peers in this paragraph. 

1) Difference of Peer Neighbors in Consecutive 
Snapshots 

The dynamics of the overlay make connections change 
constantly. As a reaction to the dynamic changes in 
overlay members, participating peers attempt to repair the 
connections as their neighbors join or leave the overlay. 
Meanwhile, the dynamics also affect overlay 
functionalities as some neighbor connections become 
inadequate and unreliable. 

This paragraph explores the variations in peer neighbor 
connections. For a specific peer that is present in two 
consecutive snapshots, we identify difference of its 
neighbor lists between snapshots. If the difference is 
significant, the peer may experience severe disturbance, 
which may be caused by arrivals and departures of peers or 
bad network conditions. Under such unstable condition, 
the peer may break several troublesome neighbor 
connections and/or establish new neighbor connections, 
but this behavior may cause further overhead and degrade 
the overlay performance. 

The curve of our first analyzed result is not consistent 
with the trend shown in Figure 7. There exist several peaks 
and the curve in the rear part remains high. To explain this 
result, we conjecture that the changes in neighbor 
connections involve two factors: peer arrival-departure and 
neighbor replacement. 

a) Peer arrival-departure 
Peers may join or leave the overlay due to user 

behaviors, peer overloading or network conditions. Such 
changes either create or remove connections between peers. 
In other words, the peer’s arrival-departure change is 
caused by peer’s arrivals and departures. 

b) Neighbor replacement 
Active servents may seek peers with high available 

computing resources to replace inferior neighbors for a 
better overlay performance. In this scenario, the replaced 
neighbors would keep their connection status healthy 
(maintain a certain number of neighbors for normal 
operations in the overlay) by trying to connect with new 
neighbors. These neighbor replacement cases are difficult 
to study because different P2P applications may take 
different neighbor reselection policies. In addition, the 
factors that cause such change need to be considered so as 
to characterize the properties of neighbor replacement. 

Knowing that neighbor changes can be caused by peer 
arrival-departure or neighbor replacement, we know which 
phase each neighbor in Figure 10 belongs to. Given two 
consecutive snapshots (S1, S2), neighbors that appear in 



only one of these two snapshots (S1 or S2) are grouped 
under peer arrive-departure change. Other changed 
neighbors are grouped under neighbor replacement change. 

 
Figure 10.  Difference of Reachable Peers’ Active Neighbors 

Figure 10 indicates that the difference (Dn) was high 
from around 0:00 to 12:30. The change in peer arrival-
departure follows the trend of the arrival and departure rate 
depicted in Figure 8. This time period also nearly matches 
the time period having increasing short-lived peers in 
Figure 9. Peaks that occurred in our first analyzed result 
were obviously caused by the neighbor replacement 
change. The neighbor replacement change in the empirical 
environment at the time we collected the datasets can be 
explained by a high network jitter or a significant amount 
of busy active peers. The result in Figure 10 shows that 
churn is contributed by not only peers’ arrival and 
departure but also different network conditions or the 
statuses of peers’ capacities. In summary, two changes 
reshape the topology: peer’s arrival-departure change, 
which depends on the rate of arrival and departure, and 
neighbor replacement change, which depends on the 
condition of overlay at the time. 

C. Reachability-Based Analysis 
The metric of reachability concerns the distance or hop 

count between peers. It decides how much effort a peer 
must make to reach a remote servent. 

1) Shortest Path 
Although the propagation delays vary in different 

network conditions, we want to minimize the delays. 
Furthermore, a long distance in the overlay means a high 
time-to-live (TTL) value in the Gnutella message to let the 
message reach a faraway target servent. Flooding a high-
TTL message causes an extremely high cost. If the 
messages can arrive at the remotest targets with a low TTL 
value, the overhead brought to the network and the 
propagation delay can both be reduced. We therefore 
identify the shortest paths between all pairs of top-level 
peers and classify these paths into various groups 
depending on their lengths. 

 
Figure 11.  Shortest Path between All Pairs of Top-Level Peers 

Figure 11 shows that most of the shortest paths 
between top-level peers were within 4 or 5 hops, and the 
hop count did not vary dramatically throughout the whole 
period. This result indicates that the shortest paths between 
any pairs of top-level peers remain fairly constant. 

According to [1], the shortest paths between leaves are 1 or 
2 hops longer than those of top-level peers. Although 
peer’s neighbor connections fluctuated during the high 
variation period in the crawler-to-servent dataset, we found 
that this reshaping topology still exhibited small-world 
network property. The maximum network diameter in our 
analysis was 9. 

D. Servent-Based Analysis 
We studied the servent-to-servent dataset to explore the 

correlation between churn and the performance of overlay. 
We examined two basic metrics to mimic the experience of 
regular users: the initialization time for neighbor 
connection when booting and the response time for 
searching specific keywords. Both metrics are important in 
P2P applications because high connection or response time 
may lower the users’ will to use this service. Hence, we 
looked at the servent-to-servent dataset from a user’s point 
of view and analyzed it with the results from the crawler-
to-servent dataset. 

1) Booting Connection Initialization Time 
Figure 12 shows that the booting time fluctuated 

significantly from around 0:00 to 12:00. We found that the 
fluctuating period in Figure 12 matches the high variation 
period. We therefore make two inferences. First, the 
probability of getting low performance increases as churn 
becomes high. Second, the performance variation is 
proportional to the degree of churn. With high arrival and 
departure rate or bad overlay condition, churn becomes 
severer and the servents on the overlay are more likely to 
experience low performance. 

 
Figure 12.  Booting Connection Initialization Time 

2) Keyword Search Response Time 
Figure 13 shows keyword search response time for the 

keyword ‘hills’. The response time started to disperse and 
values higher than 40 seconds began to increase from 
23:00 to 10:00, when the response times decrease 
gradually. 

 
Figure 13.  Keyword Search Response Time in Lower Rank: hills 

Figure 14 shows the result for the keyword ‘thought’. 
Response time rised earlier than that of ‘hills’ (around 
22:30, the time at which the size of the overlay network 
started to grow linearly). Even the time for the 100th 
response increased until 11:00. Hence, we know that the 



response time fluctuated significantly from 22:30 to 11:00 
for the keyword ‘thought’. 

 
Figure 14.  Keyword Search Response Time in Middle Rank: thought 

Figure 15 shows the result for the most popular 
keyword ‘feat’. Here response time was usually low except 
for the time from 0:30 to 10:30. This result is still 
acceptable for most applications since almost all the 
searches respond quickly. In summary, the results of 
search response time support our two inferences. That is, 
the impact of churn depends on the network condition of 
the involved peers and more importantly, the conditions of 
their neighbors. 

 
Figure 15.  Keyword Search Response Time in Top Rank: feat 

VI. CONCLUSION AND FUTURE WORK 
This paper presents TCSS, a system that can quickly 

capture an overlay snapshot containing both the overlay 
topology and overlay performance metrics. TCSS prevents 
collecting distorted snapshots by shortening the collection 
period and achieves our objective by analyzing the 
collected datasets. 

Based on the Gnutella overlay, TCSS finds the 
correlation between churn and overlay performance in an 
unstructured file-sharing P2P network. Our results reveal 
that variations in the overlay topology stem from two 
causes, changes in peer arrival-departure and peer 
neighbor replacement. These changes may be caused by 
network condition, peer status, or peer arrival and 
departure, all of which are also additional sources of churn. 
Though the degree of churn varies dynamically, the 
Gnutella overlay still keeps a small world property. When 
churn is frequent, the probability of receiving a low 
overlay performance increases. In other words, when the 
degree of churn rises, the peers in the overlay have higher 
probabilities of getting low performance, depending on 
their neighbors’ statuses. We discover that the variation in 
overlay performance is proportional to the degree of churn. 

This study provides an insight into the overlay 
topologies under churn and serves as a reference for 
possible improvement on P2P applications. Our results 
show that performance degradation caused by the change 
in neighbor replacement is hard to improve because it is 

hardly possible to consider many overlay conditions at that 
time. We may focus on the change in peer arrival-
departure and attempt to lower the effect of peer arrivals 
and departures. Our results show that although a 
considerable number of top-level peers constantly join and 
leave the overlay, the top-level layer in the Gnutella 
overlay remains relatively stable. This leads us to think 
that when leaf peers have the capacities to become 
ultrapeers, the numbers of the degrees for top-level and 
leaf peers are not suitable. It is possible that these new 
ultrapeers do not stay in the overlay for as long as we 
expect. However, we can correct this problem if the ratio 
of new ultrapeers can increase over time. As a result, it 
may be possible to minimize the impact caused by the 
change in peer arrival-departure. 
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