
Churn: a Key Effect on Real-World P2P Software

Cheng-Yun Ho
Department of Computer

Science
National Chiao Tung

University
Hsinchu, Taiwan

cyho@cs.nctu.edu.tw

Ming-Chen Chung
Department of Computer

Science
National Chiao Tung

University
Hsinchu, Taiwan

mcchung@cs.nctu.edu.tw

Li-Hsing Yen
Department of Computer
Science and Information

Engineering
National University of

Kaohsiung
Kaohsiung, Taiwan
lhyen@nuk.edu.tw

Chien-Chao Tseng
Department of Computer

Science
National Chiao Tung

University
Hsinchu, Taiwan

cctseng@cs.nctu.edu.tw

Abstract—Churn refers to a large number of arriving and
departing participants within a short time in peer-to-peer
(P2P) networks. This paper studies the impact of churn on
real-world unstructured P2P networks. To this end, we need
collecting snapshots of P2P network topology and associated
performance metrics. Because P2P topology changes
dynamically, the time to take a snapshot must be sufficiently
short for the snapshots to be accurate. We propose Third-
party-to-servent Crawling with Servent-to-servent Sampling
(TCSS) system. TCSS uses a third-party crawling technique
to collect network topology information without disturbing
the original P2P network under investigation. Furthermore,
TCSS adopts distributed and parallel techniques to speed up
the crawling process. TCSS also employs a servent-to-
servent sampling technique to gather the corresponding
performance metrics of the P2P network simultaneously.
Empirical results show that TCSS takes around 7 minutes to
take a topology snapshot of the P2P network. Besides, we
found that churn is indeed a combined effect of peer
arrivals/departures and neighbor replacements. As the
number of peers increases, the number of very long-lived
peers remains nearly constant and the P2P network
possesses a small-world property. Moreover, as churn
aggravates, the average booting time of peers increases and
the variation is proportional to the degree of churn. The
response time of the top-rank keyword searches is not
affected by the degree of churn.

Keywords-Churn; Real-world; Unstructured; Peer-to-peer;
Performance; TCSS

I. INTRODUCTION
Over the past decade, peer-to-peer (P2P) applications

have increased greatly in popularity and grown
aggressively in Internet traffic. Unlike traditional client-
server model, where the whole processing load is placed
on centralized servers, peers in a P2P network share
contents with each other in a distributed manner. For this
reason, peers in P2P networks are also known as servents
(servers and clients), possessing properties of both a server
and a client. Typical P2P applications include file-sharing
and multimedia streaming.

Many approaches have been proposed to enhance P2P
network performance. These approaches include particular
network structures, efficient search algorithms, and special
mechanisms based on different overlay structures.
However, many mechanisms do not perform well under
real-world conditions. It is believed that the performance
problem is caused by a phenomenon named churn, which

refers to a large number of independent arriving and
departing servents within a short time. This phenomenon
results from unpredictable servent behaviors possibly due
to network conditions, user behaviors, or servent
overloading. Churn exists in a real-world environment but
it is hard to precisely analyze churn in a simple analytical
model.

Overlay is a logical networking structure built on top of
P2P networks that provides connectivity and efficient route
for P2P messages. Churn may affect the main functionality
of the overlay and significantly degrade the performance
of P2P applications. Researchers have analyzed servent
behaviors [2] to study the cause of churn, but the
performance impact of churn on overlay networks has not
yet been considered. From [20], we know that structured
file-sharing P2P has been well-studied. For further
understanding of the correlation between churn and P2P
overlay performance, we focus on analyzing how churn
affects real-world unstructured file-sharing P2P software.

Each servent maintains a servent neighbor list to keep
track of its neighboring servents. To keep the neighbor list
updated, each servent removes neighbors that are no longer
reachable from the list, and attempts to contact potential
new neighbors. This process changes the overlay topology
over time. The goal of this study is to figure out how such
changes affect the performance of the overlay under a real-
world environment. To this end, we need two datasets: a
sequence of topology snapshots and the performance
metrics of a specific topology. We therefore developed
Third-party-to-servent Crawling system with Servent-to-
servent Sampling (TCSS). TCSS integrates the crawler
presented in [4] with accurate snapshot capture techniques
to record overlay topologies as graphs. TCSS also deploys
some customized P2P peers called modified servents
which cooperatively run a sampling technique [3] to gather
particular performance metrics. The combination of
crawler and modified servent has not ever been
implemented before. Consequently, TCSS can efficiently
and accurately collect topology snapshots and performance
metrics (such as initial boot time and search response time)
for P2P overlay. We have used the data collected by TCSS
to study the correlation between fluctuating topologies and
corresponding performance metrics.

In summary, our goals are to accomplish the following
tasks under a real-world environment: (i) datasets
collection and (ii) analysis of overlay performance under
various overlay topologies. The rest of this paper is
organized as follows. Section 2 introduces our target P2P

overlay, Gnutella [8]. We present relevant works on
dataset collection in Section 3. Section 4 describes TCSS
in details and Section 5 shows our analysis results. The last
section concludes this paper and discusses our future work.

II. BACKGROUND
There are several criteria to select a real-world P2P

overlay for our study. First, the overlay type must be
unstructured and file-sharable. Second, the overlay should
be of large size, as a popular overlay will provide us rich
data and thus statistically significant results. Third, the
overlay protocol must be well-designed and well-defined
with clear descriptions and open documentation. Thus, we
decided to conduct our empirical study on the Gnutella
overlay based on a number of its unique features.

A. Unstructured File-Sharing P2P and High-Popularity
Gnutella is widely regarded as the first fully distributed

file-sharing P2P and is one of the most popular P2P
applications [21]. From its inception in 2000, Gnutella is
one of the most studied P2P networks in the literature.
There are many measurement studies [3, 5, 7, 13-15] and
tools [9-12, 16-17, 22] focusing on the Gnutella overlay,
and these works have helped us gain an insight about the
characteristics of Gnutella.

B. Well-Designed P2P Protocol
The Gnutella protocol is defined in RFCs [8] and its

mechanisms are well-documented [18]. For scalability,
current Gnutella (version 0.6) adopts a two-tier overlay
architecture. As shown in Figure 1, there are two types of
peers: top-level peers and leaf peers. Top-level peers
include ultrapeers and legacy peers. High-performance
ultrapeers handle connections and query requests from
other peers. Leaf peers constitute the majority of the
members in the Gnutella overlay; they connect to the
overlay through a few ultrapeers. High-bandwidth and
high-capacity leaf peers become ultrapeers if needed in
order to maintain a proper ultrapeer-to-leaf ratio. This two-
tier architecture of Gnutella greatly reduces the traffic
caused by the flooding mechanism in traditional
unstructured P2P architectures. Moreover, Gnutella
provides a protocol hook that allows shared file lists and
neighbor lists [19] to be easily extracted from a peer
through a method called crawler protocol. These features
enable users to learn of information about other peers.
From this information, we can construct necessary datasets
of the Gnutella overlay.

III. RELATED WORKS

A. Dataset Collection Techniques
The authors in [2] classified prior collection methods

into two groups based on how the peers interact with these
methods. These groups are passive monitoring and active
probing.

1)

2)

Passive Monitoring
Passive data collection techniques gather datasets by

tracking logs in static devices, such as routers in large ISP
networks or trackers in BitTorrent. In [6], the authors
extracted logs of specific P2P protocols according to port
number information in flow-level logs recorded at multiple
border routers across the ISP’s network. This approach

misses some data since P2P applications may randomly
generate port numbers. In addition, this technique finds
only partial overlay topology since not all routers are self-
controlled. Logs from the routers and the trackers may also
be fragmental because some peers may only generate
intermittent traffic throughout the observation period.
These limitations degrade the accuracy of the
measurements made by passive monitoring.

Active Probing
Active probing uses a crawling technique similar to a

web spider that retrieves a list of links to other web pages.
This crawling technique enables us to connect to overlay
peers actively and then send requests to retrieve
information of interest. Unlike passive monitoring, active
probing has the ability to contact each peer on the overlay
as long as it has the peer’s address information. Active
probing can gather more comprehensive topological
information when compared with passive monitoring.

Figure 1. Two-Tier Topology of Modern Gnutella

B. Active Probing Approaches
As mentioned, we use active probing to collect dataset

from the Gnutella overlay. There are two different
crawling techniques for active probing, which are
discussed below.

1)

2)

Third Party Crawler
This type of crawler collects datasets via some crawler

protocol supported by Gnutella. For example, the crawler
in [4] takes a snapshot of the overlay topology by
progressively exploring the Gnutella overlay, querying
peers for their neighbor lists, and adding fresh peers to the
crawler’s ready queue for the next round of crawling. Two
kinds of retrievable data are defined in the crawler
protocols: the neighbor list and the file-sharing list. The
crawler is not a P2P peer. Therefore, it can be
implemented with less overhead and can be customized to
achieve high efficiency.

Modified Servent
The modified servent utilizes inter-peer messages to

gather topological data. Different from the third party
crawler, modified servent is a P2P peer and it can collect
not only topological overviews but also performance
related data through interactions with other overlay peers.
However, this approach can incur high execution latency
due to time-consuming peer interactions [22].

C. Speed-up Techniques for Accurate Datasets
The most common approach to measurement-based

analysis of P2P system is to capture the overlay snapshot
via the active probing technique. In addition, our goal is to
analyze the impact of churn, a dynamically changing
phenomenon, on overlay performance. To identify the
change of churn in a given sequence of overlay snapshots,
the intervals between consecutive snapshots must be of

similar size for a convincible result. Moreover, because of
the large size of the overlay and the dynamic nature of P2P
peers, snapshots taken with a long capturing period will be
distorted. Thus, we need techniques that can shorten the
time period of snapshot capturing.

1)

2)

3)

4)

1)

2)

Gnutella Overlay Protocol
a) Support of Crawler Protocol

Gnutella peers implement a special handshake feature
designed to facilitate crawling, allowing a quick query to
be sent to a peer for connectivity information. This allows
the crawler to discover the addresses of the peer’s
neighbors, and for an ultrapeer, the addresses of its leaves.

b) Two-Tier Architecture
Since each leaf connects to an ultrapeer and there is no

direct connection between leaves, we can capture all the
nodes and links of the overlay by contacting only top-level
peers. Furthermore, the high degree of peer connectivity
within the top-level peers substantially increases the
probability of detecting new ultrapeers.

Distributed System Architecture
The crawler employs a client-server architecture to

achieve high-degree concurrency and to effectively utilize
available resources on multiple workstations. A server
process coordinates multiple client processes that act as
virtual independent crawlers. Each crawler explores a
particular portion of the network and all crawlers work in
parallel. The clients are also responsible for detecting
duplicated peer addresses in the reported neighbor lists. All
newfound peers are reported back to the server, and the
server dispatches these new peers to the clients for the next
crawling.

Asynchronous I/O
Each client crawls hundreds of peers in parallel using

asynchronous I/O. Servers also implement an adaptive
load management mechanism to ensure that the clients’
processes do not become overwhelmed. We adopt this
speed-up technique in our FreeBSD and Linux
workstations.

Sampling Technique
Contacting every peer on the overlay is very time

consuming. A sampling technique finds out representative
peers within a large scale P2P overlay. It greatly reduces
the crawling time by contacting only a group of
representative peers. A study in [3] presents a sampling
technique named Metropolized Random Walk with
Backtracking (MRWB) that shows a nearly unbiased
selection of representative peers. MRWB can correct the
bias towards high degree peers and cope with departed
peers within a highly dynamic P2P overlay.

IV. THIRD-PARTY-TO-SERVENT CRAWLING SYSTEM
WITH SERVENT-TO-SERVENT SAMPLING

A. Datasets vs. Active Probing Approaches
Since churn dynamically changes overlay topology, we

want to track such changes in order to figure out the
correlation between churn and the overlay performance. A
sequence of topology snapshots provides us the scenario
how the Gnutella overlay topology changes over time. Our
task involves two datasets: a sequence of topology
snapshots and the performance metrics of a specific
topology. We used the active probing approach to gather

these datasets. Section 3 already presents two approaches
to active probing (the third party crawler and the modified
servent). Each approach has its own features for dataset
collection. In the following paragraphs, we analyze both
the advantages and shortcomings of these two approaches
and point out the design concept of our system.

Topology of Gnutella Overlay
Both the third party crawler and the modified servent

can capture the snapshot of the overlay topology. However,
they differ in some ways. Here, we look at the two
approaches in details.

a) Third Party Crawler
The third party crawler is implemented using the

Gnutella crawler protocol. It works as follows: (1) The
server gives bootstrapping peers to the crawler. (2) The
crawler queries peers for neighbor lists via crawler
protocol. (3) The crawler extracts fresh peers from the
reported neighbor list. (4) The crawler repeats Steps (2)
and (3) until no new peers can be discovered.

The third party crawler can be customized for topology
collection, and it does not participate in the normal
operations of the Gnutella network. This feature allows us
to implement the third party crawler with low overhead for
the lack of time-consuming peer interactions. Hence, the
third party crawler can achieve higher efficiency than the
modified servent.

b) Modified Servent
The modified servent operates using Gnutella inter-

servent messages. It works as follows: (1) Modified
servents connect to ultrapeers and request for services. (2)
The ultrapeers broadcast requests via inter-servent
messages over the Gnutella overlay. (3) Peers that receive
request messages reply. (4) On receiving peer’s replies,
ultrapeers forward the replies back to the modified servent.

Current version of Gnutella uses several mechanisms to
minimize the number of request messages and prevent the
Internet from being flooded with broadcasting messages.
For this reason, the topological information gathered by
modified servent is fragmented and does not form a full-
scale view. Furthermore, the modified servent is inefficient
due to time-consuming peer interactions.

For the reasons stated above, we choose the third party
crawler to capture the topology dataset. We implemented
the third party crawler with several speed-up techniques
that accelerate the process of data collection, minimizing
the distortion of topology caused by long crawling period.
We call the captured topology dataset crawler-to-servent
dataset.

Performance Metrics
Since the third party crawler is not a servent in the

Gnutella overlay, we can only gather metrics of overlay
performance via the modified servent. We name the
performance metrics dataset gathered by the modified
servent servent-to-servent dataset. We enhanced the
modified servent by adding the sampling technique to
shorten the crawling period. However, there is no way to
capture overlay topology via the sampling technique. We
need complete topologies to identify the changing factors
within each overlay snapshot.

In short, TCSS uses the third party crawler with speed-
up techniques to capture overlay topology and the

modified servent with the sampling technique to gather
performance metrics.

B. TCSS Overview
TCSS is designed to work on the Gnutella overlay. As

shown in Figure 2, TCSS consists of a third-party crawler
and modified servents. The third-party crawler contains
three components: dispatching/sampling server, crawling
clients, and central repository. The modified servents are
Gnutella servents modified to gather performance metrics
in our analysis. The datasets collected by TCSS are the
crawler-to-servent dataset and the servent-to-servent
dataset.

Figure 2. TCSS Architecture

The data-collecting work consumes considerable
computing resources. As an improvement, we implement
TCSS with divide and conquer concepts. The main part of
TCSS is built upon distributed architecture. The
dispatching/sampling server can master several
independent crawling clients and modified servents, and
assign them jobs depending on their functionalities. Both
the crawling client and modified servents adopt
asynchronous I/O for enhancing the parallelism when
handling network communication.

C. Fast Fresh-Peer Refinement
Our experience in implementing the crawling function

in TCSS revealed that numerous peers found in reported
neighbor lists are duplicated. It therefore becomes a
challenge to extract fresh peers in an efficient way. We
devised two approaches that have been incorporated into
crawling clients to deal with this problem.

1)

2)

1)

2)

3)

4)

1)

Cache Mechanism
Since the number of neighbor lists to be reported is

enormous, identifying and eliminating duplicated data can
significantly reduce processing cost. To facilitate
duplication checks and shorten the crawling period, it is
necessary to have a cache in each client.

Multiprocess Programming
We augmented the clients with multiprocessing

abilities to accelerate their crawling tasks. Each client has a
main process that creates child processes called workers.
Workers check whether peers in the reported neighbor lists
are duplicated. Cache for duplication check is divided into
two layers. The first-layer cache, maintained by the main
process, stores all the peers that have ever been explored.
The second-layer cache is maintained by each worker and
synchronized with the first-layer cache periodically. The

use of multiprocessing and divided caching enables a
parallel duplication check and thus shortens the whole
crawling process.

D. TCSS Design Details
In this section, we interpret the functions of the four

components in TCSS.
Dispatching/Sampling Server

a) Fresh Peers Management
This server maintains fresh peers reported by the

crawling clients. The server also manages the queues for
each client and dispatches fresh peers to client’s queues. It
balances the load among crawling clients by controlling
the sending rate of fresh peers to clients.

b) Representative Ultrapeers Sampling/Distributing
When clients crawl the overlay, the server extracts

representative ultrapeers from the overlay simultaneously.
A list of these sampled peers will be forwarded to the
modified servents, which will then attempt to interact with
these sampled peers to gather the servent-to-servent dataset.

Crawling Clients
a) Phase 1 – Neighbor List Query

Crawling clients know the presence of fresh peers from
the server and contact these peers to capture the crawler-
to-servent dataset. A two-tier overlay architecture eases the
crawling task, since all leaf peers connect to the overlay
through a small number of ultrapeers. This means that we
can crawl only the top-level layer to capture the whole
overlay topology. To avoid redundant crawling, the next
phase will detect and remove peers found duplicated in the
reported neighbor list.

b) Phase 2 – Duplication Check
Phase 2 is implemented using multiprocess

programming and cache mechanism. Each process, called
worker, parses out peer addresses from the reported
neighbor lists and checks for duplicated peers. Crawling
clients first check their own caches and, if no duplication is
found, then the central repository. After the check, a list of
fresh peers will then be forwarded to the server and
inserted into the database of the central repository.

Central Repository
The Central Repository is a central database of crawled

peers.
Modified Servents

We choose LimeWire [18] as our target servent. The
modified servents are under the server’s control. As the
server gets sampled results, it will feed the results to
modified servents. The modified servents then use the
sampled peers to join and interact with the Gnutella
overlay.

TCSS is designed in a distributed manner. Crawling
clients are distributed over several workstations and
manipulated via Message Passing Interface (MPI). The
time required for a complete snapshot is about 7.5 minutes.

E. TCSS Dataset Collection Flow
From a dataset’s point of view, the complete processes

for the two datasets are described below:
Crawler-to-servent Dataset

(1) [Server] Start a new round (snapshot). (2) [Server]
Take bootstrapping peers as fresh peers. (3) [Server]

Dispatch fresh peers to clients. (4) [Clients] Probe fresh
peers for neighbor lists. (5) [Clients] Log probing results
for temporary storage of partial crawler-to-servent dataset.
(6) [Clients] Perform duplication check with probing
results. (7) [Server] Gather fresh peers reported by clients.
If this round ends, go to Step (1). Otherwise, go to Step (3).
A sketch of this process is depicted in Figure 3.

Central Repository Dispatching / Sampling Server

Crawling
Client Modified

Servent

TCSS

Crawling

Sampled Peers

Joining

Crawling
Client

Modified
Servent

Sa
m

pl
in

g

Top-Level
Layer

Duplication Check
/ Peer Insertion

Newly Discovered Peers
Dispatching / Gathering

Figure 3. Process of Crawler-to-servent Dataset Collection

2) Servent-to-servent Dataset
a) Dispatching/Sampling Server

(1) [Server] Start a new round (snapshot). (2) [Server]
Sample overlay for representative peers. (3) [Server]
Distribute sampled peers to the modified servents. If this
round ends, go to Step (1). Otherwise, go to Step (2).

b) Modified Servents
(1) [Modified Servents] Interact with sampled peers. (2)

[Modified Servents] Log performance metrics for
temporary storage of partial servent-to-servent dataset. A
sketch of this process is depicted in Figure 4.

Figure 4. Process of Servent-to-servent Dataset Collection

F. Details in Collected Datasets
1)

2)

Crawler-to-servent Dataset
The main information in the crawler-to-servent dataset

includes (i) peer address, (ii) peer type (ultrapeer or
legacy), (iii) peer neighbors, and (iv) peer timestamp. With
this information, we can identify changing factors in a
sequence of topology snapshots. For example, we can
observe the changes in participating peers between two
successive snapshots. We can also derive session lengths
of different peers from the timestamp information.

Servent-to-servent Dataset
The data in the servent-to-servent dataset include

servent connection initialization time and response time for
specific keyword search. To know which keywords should
be used in later measurements, we modify the third party

crawler to query for shared file lists instead of neighbor
lists, and integrate this crawler with the sampling
technique used in dispatching/sampling server. We call
this modified crawler the third party file crawler. The third
party file crawler ran for 24 hours and queried sampled
peers for their shared file lists. The dataset that we
received contain peer address, peer timestamp, and peer
shared file list. After analyzing this dataset, we obtained
some representative keywords for keyword search. The
results are ‘feat’ (the most popular), ‘thought’ (a middle
rank), and ‘hills’ (rank lower than middle).

V. EMPIRICAL ANALYSIS
We ran TCSS for 20 hours from 19:00 21/06/11 to

15:00 22/06/11 and collected 163 snapshots totaling 17Gb.
Table I presents a summary of our dataset, including (i) the
average number of peers, (ii) the average number and
percentage of top-level peers, and (iii) the average number
and percentage of leaf peers.

TABLE I. SUMMARY INFORMATION ABOUT COLLECTED DATASET

Crawling Date Avg. Total
Nodes

Avg. Top-level
Peers (%)

Avg. Leaves
(%)

21~22/06/10 1,273,088 231,364 (18%) 1,041,723 (82%)

Overlay topology is inherently dynamic because the

connections by peers are constantly changing. These
dynamics may affect the main functionality of the overlay,
which is to provide connectivity and efficiently route the
P2P messages. We try to find the correlation between
churn and the overlay performance. Referring to [1] and
[2], we represent each snapshot in the crawler-to-servent
dataset as a graph and analyze the change of several key
factors. We pay special attention to the top-level overlay
since it is the core component of the Gnutella overlay. We
do not maintain peer’s identities across snapshots because
we do not identify peer’s properties by their identifiers. We
also consider a peer a newly joined one in the overlay if it
is not present in the current snapshot but shows up in the
next.

Table II shows all possible results of probing top-level
peers. These results are kept in the crawler-to-servent
dataset, where reachable peers are surely included. For
accuracy, we preclude peers that do not join the overlay
due to networking or resource problems. However,
according to [1], most timeout peers are firewalled, and
they constitute about 20 percent of the total peers. We need
consider firewalled peers for accuracy of our analysis.

TABLE II. CLASSIFICATION OF PEERS IN CRAWLER-TO-SERVENT
DATASET

Connection Status Reasons
Reachable Peer replies its neighbor list
Bad Handshake Incorrect protocol implement
Connection Dropped TCP packages are dropped by router in path
Connection Reset Peer crashes
No Route to Host Routing setting error in path
Timeout Peer shutdown or firewalled
Connection Refused Peer’s listen buffer overflows or port is not

open

To identify peers that should be precluded from the

analysis, we classify all peers into active peers and inactive

peers. If the status of a peer is either reachable or
firewalled, it is an active peer; otherwise, it belongs to
inactive peers. We only retain active peers in the dataset.
To find out active peers in the crawler-to-servent dataset,
we use a method called inactive peers elimination to rule
out inactive peers. We think peers that had been reachable
are not likely to change their firewall settings in a short
time. If a peer’s status has ever switched between timeout
and reachable, we consider it an inactive peer because its
peer status will change to timeout when a peer leaves the
overlay. We also ignore all timeout peers that do not
appear in at least two consecutive snapshots because we
cannot distinguish them between being firewalled and
being absent in the overlay. The flowchart for this
checking is displayed in Figure 5.

Figure 5. Methodology to Filter Out Non-firewalled Peers

In summary, the analysis of the crawler-to-servent
dataset concerns the identification of active and inactive
peers. If a peer is either reachable or firewalled, it is an
active peer; otherwise, it is an inactive peer. Most
importantly, this approach only applies to top-level peers.
Based on this knowledge, we analyze the crawler-to-
servent and servent-to-servent datasets from four different
aspects: (i) member-based, (ii) neighbor-based, (iii)
reachability-based, and (iv) servent-based analyses.

A. Member-Based Analysis
As mentioned above, active peers interact with other

participating peers in the overlay. Inactive peers either
have left the overlay or cannot be reached from any active
peer in the overlay. Active peers provide steady
connections to other peers. In contrast, the presence of
inactive peers indicates that participating peers need extra
efforts to repair failed connections to inactive peers or to
overcome problems such as long search response time.
Member-based analysis focuses on identifying the
presence of a peer (by finding out its arrival and departure
time) and the change of its properties in successive
snapshots. We attempt to observe these membership
related characteristics in the crawler-to-servent dataset and
take them as basic metrics for the analysis in later sections.

1) Arrival Rate
The arbitrary arrival of peers in a P2P overlay is a

major source of churn. Therefore, we should observe the
arrival rate during crawling time by counting every newly
arriving peer in the crawler-to-servent dataset. We consider
a peer a newly arriving one if it appears in the Nth

snapshot but not in the (N-1)th snapshot. Then, we divide
the total number of newly arriving peers by the length of
crawling period to get the arrival rate.

Figure 6 shows that the arrival rate was high from
23:30 to 11:00. More than two thousand top-level peers
joined the overlay every minute during this period, though
the exact number continually fluctuated. Moreover, peak
arrival rates occurred at 3:46, 8:57 and 10:11. We referred
to [23] for the mapping between IP address and country
and found that during the peak hour, most IPs came from
Czech Republic, U.S., and Canada. According to the
geographical analysis in [24], during 2004-2005, most
users came from North America. In the sections below, we
shall discuss whether other overlay analyses in our datasets
exhibit a similar trend as the arrival rate.

Figure 6. Arrival Rate

2) Difference of Active Peers in Adjacent Snapshots
Frequent arrival and departure of peers change the

members of the overlay as well as the overlay topology. To
observe the variation in active members, we use two
adjacent snapshots (S1, S2) and define the difference of
active peers (Dap) as the percentage of peers that are active
in S1 (resp. S2) but are inactive in S2 (resp. S1). The result
shown in Figure 7 indicates that the difference smoothly
changed during the crawling period. We suggest that as the
size of the Gnutella network increases and decreases, the
difference of active peers becomes slightly higher and
lower, respectively.

Figure 7. Difference of Active Peers

3) Departure Rate
Arbitrary departure is also a key source of churn.

However, the probing technique implemented in TCSS
does not report a correct number of leaving peers from the
crawler-to-servent dataset, which is crucial to the
calculation of the departure rate. In the result shown in
Figure 8, the departure rate exhibits a trend similar to the
arrival rate reported in Figure 6. A deep examination of the
data reveals that the arrival rate sometimes exceeds the
departure rate and sometimes not. The network size shown
in Figure 7 also matches the growth and decline of the
arrival and departure rates. Hence, the number of
departures increases with a high population in the Gnutella
network. To maintain a large network size, the number of
arrivals must also rise.

Figure 8. Departure Rate

4) Composition of Session Length in Snapshot
Prior studies reveal that session length is also important

in observing churn. Generally speaking, the more long-
session neighbors that a peer has, the better performance it
achieves. Therefore, maintaining adequate neighbor
connections can cope with dynamic changes in a P2P
overlay. Such maintenance needs a large amount of control
messages, causing non-negligible overhead. We examine
the session length composition in each snapshot to
determine whether session length is a key factor in
analyzing churn.

We pre-scanned the crawler-to-servent dataset to find
the distribution of session lengths for all reachable peers
present in our dataset. Then, we re-scanned the crawler-to-
servent datasets, snapshot by snapshot, to calculate the
percentage of specific session intervals with references to
each peer’s session length computed in the first scan. We
set up six specific session intervals: 10 minutes, 30
minutes, 2 hours, 5 hours, 20 hours, and 1 day. We placed
peers with lifespan longer than or equal to 20 hours into
the 1 day interval group and then classified all peers into
two categories: short-lived part (10 minutes, 30 minutes,
and 2 hours) and long-lived part (5 hours, 20 hours, and 1
day).

Figure 9 shows that neither the short-lived part nor the
long-lived part varies significantly during our crawling
period. The short-lived part grew slightly from 23:00 to
11:00, but the increasing rate was small. It does not well
match the arrival rate shown in Figure 6. Nevertheless,
there was a group of peers during the whole crawling
period that we call very long-lived peers. The number of
very long-lived peers almost remained constant in each
snapshot. However, the percentage of very long-lived
peers decreased from 23:00 to 12:00 in addition to a
slightly increasing number of short-lived peers from 23:00
to 11:00. The ratio of the number of specific session
intervals to the number of total peers in each snapshot
varies smoothly, unlike the dynamically varying arrival
rates shown in Figure 6. Session length is also used as a
basic property for other analyses in the remaining datasets.

Figure 9. Session Length Composition

The above results show that the number of arrivals,
departures and short-lived peers, as well as the variation of
active peers in consecutive snapshots, stayed high from
23:00 to 12:00. We call this period high variation period.

B. Neighbor-based Analysis
The above results indicate that members in an overlay

dynamically change and the degree of change is high
during certain periods. It is sure that the changes of
membership in an overlay will cause constant change of
neighbor connections. Neighbor-based analysis focuses on
the issue of churn from the neighbor connection’s
perspective. The reachable top-level peers in the crawler-
to-servent dataset reply with their neighbor lists, where
other top-level peers (or leaves if any) may be included.
However, TCSS does not track neighborhood information
for leaf peers. Since top-level peers are the core of the
Gnutella overlay, we focus on top-level neighbors of
reachable peers in this paragraph.

1) Difference of Peer Neighbors in Consecutive
Snapshots

The dynamics of the overlay make connections change
constantly. As a reaction to the dynamic changes in
overlay members, participating peers attempt to repair the
connections as their neighbors join or leave the overlay.
Meanwhile, the dynamics also affect overlay
functionalities as some neighbor connections become
inadequate and unreliable.

This paragraph explores the variations in peer neighbor
connections. For a specific peer that is present in two
consecutive snapshots, we identify difference of its
neighbor lists between snapshots. If the difference is
significant, the peer may experience severe disturbance,
which may be caused by arrivals and departures of peers or
bad network conditions. Under such unstable condition,
the peer may break several troublesome neighbor
connections and/or establish new neighbor connections,
but this behavior may cause further overhead and degrade
the overlay performance.

The curve of our first analyzed result is not consistent
with the trend shown in Figure 7. There exist several peaks
and the curve in the rear part remains high. To explain this
result, we conjecture that the changes in neighbor
connections involve two factors: peer arrival-departure and
neighbor replacement.

a) Peer arrival-departure
Peers may join or leave the overlay due to user

behaviors, peer overloading or network conditions. Such
changes either create or remove connections between peers.
In other words, the peer’s arrival-departure change is
caused by peer’s arrivals and departures.

b) Neighbor replacement
Active servents may seek peers with high available

computing resources to replace inferior neighbors for a
better overlay performance. In this scenario, the replaced
neighbors would keep their connection status healthy
(maintain a certain number of neighbors for normal
operations in the overlay) by trying to connect with new
neighbors. These neighbor replacement cases are difficult
to study because different P2P applications may take
different neighbor reselection policies. In addition, the
factors that cause such change need to be considered so as
to characterize the properties of neighbor replacement.

Knowing that neighbor changes can be caused by peer
arrival-departure or neighbor replacement, we know which
phase each neighbor in Figure 10 belongs to. Given two
consecutive snapshots (S1, S2), neighbors that appear in

only one of these two snapshots (S1 or S2) are grouped
under peer arrive-departure change. Other changed
neighbors are grouped under neighbor replacement change.

Figure 10. Difference of Reachable Peers’ Active Neighbors

Figure 10 indicates that the difference (Dn) was high
from around 0:00 to 12:30. The change in peer arrival-
departure follows the trend of the arrival and departure rate
depicted in Figure 8. This time period also nearly matches
the time period having increasing short-lived peers in
Figure 9. Peaks that occurred in our first analyzed result
were obviously caused by the neighbor replacement
change. The neighbor replacement change in the empirical
environment at the time we collected the datasets can be
explained by a high network jitter or a significant amount
of busy active peers. The result in Figure 10 shows that
churn is contributed by not only peers’ arrival and
departure but also different network conditions or the
statuses of peers’ capacities. In summary, two changes
reshape the topology: peer’s arrival-departure change,
which depends on the rate of arrival and departure, and
neighbor replacement change, which depends on the
condition of overlay at the time.

C. Reachability-Based Analysis
The metric of reachability concerns the distance or hop

count between peers. It decides how much effort a peer
must make to reach a remote servent.

1) Shortest Path
Although the propagation delays vary in different

network conditions, we want to minimize the delays.
Furthermore, a long distance in the overlay means a high
time-to-live (TTL) value in the Gnutella message to let the
message reach a faraway target servent. Flooding a high-
TTL message causes an extremely high cost. If the
messages can arrive at the remotest targets with a low TTL
value, the overhead brought to the network and the
propagation delay can both be reduced. We therefore
identify the shortest paths between all pairs of top-level
peers and classify these paths into various groups
depending on their lengths.

Figure 11. Shortest Path between All Pairs of Top-Level Peers

Figure 11 shows that most of the shortest paths
between top-level peers were within 4 or 5 hops, and the
hop count did not vary dramatically throughout the whole
period. This result indicates that the shortest paths between
any pairs of top-level peers remain fairly constant.

According to [1], the shortest paths between leaves are 1 or
2 hops longer than those of top-level peers. Although
peer’s neighbor connections fluctuated during the high
variation period in the crawler-to-servent dataset, we found
that this reshaping topology still exhibited small-world
network property. The maximum network diameter in our
analysis was 9.

D. Servent-Based Analysis
We studied the servent-to-servent dataset to explore the

correlation between churn and the performance of overlay.
We examined two basic metrics to mimic the experience of
regular users: the initialization time for neighbor
connection when booting and the response time for
searching specific keywords. Both metrics are important in
P2P applications because high connection or response time
may lower the users’ will to use this service. Hence, we
looked at the servent-to-servent dataset from a user’s point
of view and analyzed it with the results from the crawler-
to-servent dataset.

1) Booting Connection Initialization Time
Figure 12 shows that the booting time fluctuated

significantly from around 0:00 to 12:00. We found that the
fluctuating period in Figure 12 matches the high variation
period. We therefore make two inferences. First, the
probability of getting low performance increases as churn
becomes high. Second, the performance variation is
proportional to the degree of churn. With high arrival and
departure rate or bad overlay condition, churn becomes
severer and the servents on the overlay are more likely to
experience low performance.

Figure 12. Booting Connection Initialization Time

2) Keyword Search Response Time
Figure 13 shows keyword search response time for the

keyword ‘hills’. The response time started to disperse and
values higher than 40 seconds began to increase from
23:00 to 10:00, when the response times decrease
gradually.

Figure 13. Keyword Search Response Time in Lower Rank: hills

Figure 14 shows the result for the keyword ‘thought’.
Response time rised earlier than that of ‘hills’ (around
22:30, the time at which the size of the overlay network
started to grow linearly). Even the time for the 100th
response increased until 11:00. Hence, we know that the

response time fluctuated significantly from 22:30 to 11:00
for the keyword ‘thought’.

Figure 14. Keyword Search Response Time in Middle Rank: thought

Figure 15 shows the result for the most popular
keyword ‘feat’. Here response time was usually low except
for the time from 0:30 to 10:30. This result is still
acceptable for most applications since almost all the
searches respond quickly. In summary, the results of
search response time support our two inferences. That is,
the impact of churn depends on the network condition of
the involved peers and more importantly, the conditions of
their neighbors.

Figure 15. Keyword Search Response Time in Top Rank: feat

VI. CONCLUSION AND FUTURE WORK
This paper presents TCSS, a system that can quickly

capture an overlay snapshot containing both the overlay
topology and overlay performance metrics. TCSS prevents
collecting distorted snapshots by shortening the collection
period and achieves our objective by analyzing the
collected datasets.

Based on the Gnutella overlay, TCSS finds the
correlation between churn and overlay performance in an
unstructured file-sharing P2P network. Our results reveal
that variations in the overlay topology stem from two
causes, changes in peer arrival-departure and peer
neighbor replacement. These changes may be caused by
network condition, peer status, or peer arrival and
departure, all of which are also additional sources of churn.
Though the degree of churn varies dynamically, the
Gnutella overlay still keeps a small world property. When
churn is frequent, the probability of receiving a low
overlay performance increases. In other words, when the
degree of churn rises, the peers in the overlay have higher
probabilities of getting low performance, depending on
their neighbors’ statuses. We discover that the variation in
overlay performance is proportional to the degree of churn.

This study provides an insight into the overlay
topologies under churn and serves as a reference for
possible improvement on P2P applications. Our results
show that performance degradation caused by the change
in neighbor replacement is hard to improve because it is

hardly possible to consider many overlay conditions at that
time. We may focus on the change in peer arrival-
departure and attempt to lower the effect of peer arrivals
and departures. Our results show that although a
considerable number of top-level peers constantly join and
leave the overlay, the top-level layer in the Gnutella
overlay remains relatively stable. This leads us to think
that when leaf peers have the capacities to become
ultrapeers, the numbers of the degrees for top-level and
leaf peers are not suitable. It is possible that these new
ultrapeers do not stay in the overlay for as long as we
expect. However, we can correct this problem if the ratio
of new ultrapeers can increase over time. As a result, it
may be possible to minimize the impact caused by the
change in peer arrival-departure.

ACKNOWLEDGMENT
This work was supported in part by National Science

Council, Taiwan, under Grants NSC 100-2221-E-009-072-
MY3, NSC 101-2221-E-009-031-MY3 and NSC 101-
2219-E-009-028, and D-Link Co., Taiwan.

REFERENCES
[1] D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing Unstructured

Overlay Topologies in Modern P2P File-Sharing Systems,”
IEEE/ACM Transactions on Networking, Vol. 16, Issue 2, pp. 267-
280, April 2008.

[2] D. Stutzbach and R. Rejaie, “Understanding Churn in Peer-to-Peer
Networks,” Proceedings of the 6th ACM SIGCOMM conference
on Internet measurement, pp. 189-202, October 2006.

[3] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger,
“On Unbiased Sampling for Unstructured Peer-to-Peer Networks,”
IEEE/ACM Transactions on Networking, Vol. 17, Issue 2, pp. 377-
390, April 2009.

[4] D. Stutzbach and R. Rejaie, “Capturing Accurate Snapshots of the
Gnutella Network,” INFOCOM 2005. Proceedings IEEE 24th
Annual Joint Conference of the IEEE Computer and
Communications Societies, Vol. 4, pp. 2825 - 2830, March 2005.

[5] S. Zhao, D. Stutzbach, and R. Rejaie, “Characterizing Files in the
Modern Gnutella Network: A Measurement Study,” Proceedings of
SPIE/ACM Multimedia Computing and Networking, Vol. 6071,
2006.

[6] S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic Across Large
Networks,” IEEE/ACM Transactions on Networking, Vol. 12,
Issue 2, pp. 219-232, April 2004.

[7] F. E. Bustamante and Y. Qiao, “Friendships that Last: Peer
Lifespan and its Role in P2P Protocols,” Web Content Caching and
Distribution, pp. 233-246, 2004.

[8] Gnutella Protocol Development, [Online]. Available: http://rfc-
gnutella.sourceforge.net/

[9] S.K. Dhurandher, S. Misra, M.S. Obaidat, I. Singh, R. Agarwal,
and B. Agarwal, “Simulating Peer-to-Peer Networks,” IEEE/ACS
International Conference on Computer Systems and Applications,
pp. 336 - 341, May 2009.

[10] S. Naicken, An. Basu, B. Livingston, and S. Rodhetbhai, “A
Survey of Peer-to-Peer Network Simulators,” Proceedings of 7th
Annual Postgraduate Symposium, 2006.

[11] R. Bhardwaj, V.S. Dixit, and A.Kr. Upadhyay, “An Overview on
Tools for Peer-to-Peer Network Simulation,” International Journal
of Computer Applications, Num. 19, Article 13, 2010.

[12] A. Brown and M. Kolberg, “Tools for Peer-to-Peer Network
Simulation,” IRTF P2PRG, Internet Draft, July, 2006.

[13] Q. He, M. Ammar, G. Riley, H. Raj, and R. Fujimoto, “Mapping
Peer Behavior to Packet-Level Details: A Framework for Packet-
Level Simulation of Peer-to-Peer Systems,” MASCOTS 2003. 11th
IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer Telecommunications Systems, pp. 71-78,
Oct. 2003.

[14] J. Liang, R. Kumar, and K. W. Ross, “The KaZaA Overlay: A
Measurement Study,” Computer Networks, Vol. 50, Issue 6, pp.
842-858, April 2006.

[15] G. F. Riley, R. M. Fujimoto, and M. H. Ammar, “A Generic
Framework for Parallelization of Network Simulations,”
Proceedings of 7th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems, pp. 128-135, 1999.

[16] PDNS – Parallel / Distributed NS, [Online]. Available:
http://www.cc.gatech.edu/computing/compass/pdns/

[17] Packet-level P2P (Gnutella) Simulation, [Online]. Available:
http://www.cc.gatech.edu/computing/compass/gnutella/

[18] LimeWire Wiki, [Online]. Available: http://limewire.negatis.com/

[19] Crawling Gnutella Network, [Online]. Available:
http://www.ece.ubc.ca/~samera/TA/411/project/Gnutella-
Protocol.html

[20] J. F. Buford, H. Yu, and E.K. Lua, “P2P Networking and
Applications,” Elservier Inc, 2009.

[21] Slyck.com, [Online]. Available: http://www.slyck.com/
[22] Gnurella Crawler, Wikipedia, the free encyclopedia, [Online].

Available: http://en.wikipedia.org/wiki/Gnutella_crawler
[23] Max Mind GeoLite Country, [Online]. Available:

http://www.maxmind.com/app/geoip_country
[24] A.H. Rasti, D. Stutzbach, and R. Rejaie, “On the Long-term

Evolution of the Two-Tier Gnutella Overlay,” INFOCOM 2006.
Proceedings 25th IEEE International Conference on Computer
Communications, pp. 1-6, April 2006.

	I. INTRODUCTION
	II. Background
	A. Unstructured File-Sharing P2P and High-Popularity
	B. Well-Designed P2P Protocol

	III. Related Works
	A. Dataset Collection Techniques
	1) Passive Monitoring
	2) Active Probing

	B. Active Probing Approaches
	1) Third Party Crawler
	2) Modified Servent

	C. Speed-up Techniques for Accurate Datasets
	1) Gnutella Overlay Protocol
	a) Support of Crawler Protocol
	b) Two-Tier Architecture

	2) Distributed System Architecture
	3) Asynchronous I/O
	4) Sampling Technique

	IV. Third-party-to-servent Crawling system with Servent-to-servent Sampling
	A. Datasets vs. Active Probing Approaches
	1) Topology of Gnutella Overlay
	a) Third Party Crawler
	b) Modified Servent

	2) Performance Metrics

	B. TCSS Overview
	C. Fast Fresh-Peer Refinement
	1) Cache Mechanism
	2) Multiprocess Programming

	D. TCSS Design Details
	1) Dispatching/Sampling Server
	a) Fresh Peers Management
	b) Representative Ultrapeers Sampling/Distributing

	2) Crawling Clients
	a) Phase 1 – Neighbor List Query
	b) Phase 2 – Duplication Check

	3) Central Repository
	4) Modified Servents

	E. TCSS Dataset Collection Flow
	1) Crawler-to-servent Dataset
	2) Servent-to-servent Dataset
	a) Dispatching/Sampling Server
	b) Modified Servents

	F. Details in Collected Datasets
	1) Crawler-to-servent Dataset
	2) Servent-to-servent Dataset

	V. Empirical Analysis
	A. Member-Based Analysis
	1) Arrival Rate
	2) Difference of Active Peers in Adjacent Snapshots
	3) Departure Rate
	4) Composition of Session Length in Snapshot

	B. Neighbor-based Analysis
	1) Difference of Peer Neighbors in Consecutive Snapshots
	a) Peer arrival-departure
	b) Neighbor replacement

	C. Reachability-Based Analysis
	1) Shortest Path

	D. Servent-Based Analysis
	1) Booting Connection Initialization Time
	2) Keyword Search Response Time

	VI. Conclusion and Future Work
	Acknowledgment
	References

