
Distributed Approach to Adaptive SDN Controller
Placement Problem

Wei-Li Liu, Li-Hsing Yen
Department of Computer Science,

National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
{s0656539.cs06g, lhyen}@nctu.edu.tw

Tsan-Pin Wang
Department of Computer and Information Science,
National Taichung University, Taichung, Taiwan.

tpwang@mail.ntcu.edu.tw

Abstract—In software defined networking (SDN), a controller
may manage several SDN switches to be cost-effective while a
switch may demand management service from multiple con-
trollers for fault tolerance. The controller placement problem
(CPP) is to determine the locations of SDN controllers to
minimize the total deployment cost subject to constraints such as
controller-switch latency, inter-controller latency, and controller
capacity. This problem is challenging especially in interconnected
geo-distributed SDN networks. Existing centralized solutions
do not well adapt to network dynamics. This paper proposes
several distributed mechanisms based on the exact potential
game. These mechanisms dynamically adapt to network faults
such as link and controller failures. The simulation result shows
that these mechanisms need fewer controllers than an existing
approach in static networks. When links or controllers may fail,
our mechanisms still perform better while only a part of the
network nodes is affected. The latter is impossible in non-adaptive
approaches.

I. INTRODUCTION

Software Defined Networking (SDN) decouples control
plane from data plane in packet-switching data networks. SDN
controller on control plane learns of network topology and de-
cides routing for traffic flows. On the other hand, SDN switch
on data plane identifies packet flows and applies flow-specific
packet forwarding and filtering rules. SDN controller instructs
SDN switch to create, update, or delete packet-processing
rules and receives notification about unrecognized packets
from SDN switch through so-called southbound application
programming interface (API) such as OpenFlow.

An SDN controller may manage more than one SDN
switches subject to its processing capacity. A controller can
also manage a remote switch as long as the in-between
propagation delay is small enough to meet the reaction-time
requirement. We may also connect an SDN switch to more
than one controllers for a resilient control plane [1], [2].
When a controller fails, all switches under its management can
quickly switch to another controller that meets the capacity
constraint and has the lowest worst-case switch-controller
latency [3], [4]. In that case, all controllers that manage
a common switch should communicate with each other for
coordination such as state synchronization. For this reason, the
propagation delay between any two such controllers should not
exceeded some preset value.

In this paper, we follow the model in [2] and consider a
networking architecture where a set of geo-distributed SDN

Switch(es)

Controller

Data traffic

Southbound 
traffic 

Control 
Plane

Data 
Plane

Application

Software-defined 
LAN/MAN A

Switch(es)

Controller
Southbound 

traffic 

East-westbound 
Traffic

Software-defined 
LAN/MAN B

Management 
Plane

Switch(es)

Controller

Software-defined 
LAN/MAN C

Northbound traffic 

Fig. 1: A network architecture with multiple software-defined networks
interconnected by a WAN

switches are physically interconnected by a wide area network
(WAN) (Fig. 1). Each switch generates a certain southbound
traffic load and demands some number of controllers to
manage it. We have a predetermined set of candidate loca-
tions where we can dynamically instantiate or activate SDN
controllers to meet the collective demands of all switches. The
controller placement problem (CPP) is to determine the set of
controller locations so as to minimize overall placement cost
while meeting all the mentioned constraints (controller-switch
latency, inter-controller latency, and controller capacity).

The CPP is a variant of capacitated facility location prob-
lems. Many existing approaches to CPP [5], [3], [6], [7], [2]
aimed to find out the best placement on a static network topol-
ogy. They did not consider network dynamics such as changes
of network topology and traffic conditions. Change of network
topology caused by the failure of one or more controllers or
links can make an optimal CPP solution suboptimal or even
invalid (i.e., the solution no longer meets some constraint).
A possible response to the change of network topology is
to reconstruct another solution for the new topology. Sallahi
and St-Hilaire [8] considered controller capacities and link
latency constraints when minimizing the reconstruction cost
which accounts for installing controllers, linking switches to
the controller, and linking all controllers that manage the same
switch. This approach enumerates all possible placements to
select the optimal one, which is not time-efficient.

Even if network topology remains unchanged, traffic load
may shift over time which makes a fixed configuration sub-
optimal. ul Huque et al. [9] dealt with dynamic traffic load



by first determining the locations to place controllers and
then dynamically adjusting the number of active controllers in
each location to adapt to traffic load variations. The approach
proposed by Yao et al. [10] mitigates overloaded controllers
by handing over some switches from overloaded controllers to
other lightly-loaded ones, achieving dynamic load balancing.

Rath et al. [11] proposed a distributed CPP approach where
each controller independently determines whether it should
switch off (if it is underutilized), offload its workload to other
neighboring controllers, or trigger an addition of controllers
(if it is overloaded). The authors modeled this approach as a
non-zero-sum game. However, the authors did not prove the
stability of the game. They neither considered the possibility
of multiple controllers managing a common switch.

This paper presents two game-theoretic distributed ap-
proaches (and a variant) to CPP. The proposed approaches
determine the locations of controllers considering the traffic
load generated and the number of controllers demanded by
each switch and taking the switch-controller latency, the con-
troller capacity, and the inter-controller latency as constraints.
The approaches are autonomous as an agent in each candi-
date location independently decides whether to instantiate or
activate a controller or not. When a link or node fails, the
remaining agents can adaptively respond to the change and
find a new controller placement in a distributed manner. We
prove that the considered game model is an exact potential
game (EPG) which guarantees stability regardless of agent’s
decision making sequence. Simulation results show that one of
the proposed approaches demands fewer controllers compared
with RCCPP [2]. More importantly, only a part of nodes are
affected by link or node failure in all the proposed approaches.
This is impossible in non-adaptive approaches such as RCCPP.

The rest of this paper is organized as follows. The next sec-
tion formulates CPP and reviews related work. Sec. III presents
the proposed game designs. Sec. IV shows the experimental
results and the final section concludes this paper.

II. PROBLEM FORMULATION AND RELATED WORK

A. Problem Formulation

We follow the problem formulation in [2] and consider a
network topology G = (S,E), where S = {1, 2, · · · , n} is the
set of switch locations and E is the set of network links with
weights. The weight associated with a link denotes the latency
between the two end locations of the link. We assume that
each controller is co-located with some switch. Therefore, S
is also the set of locations where a controller can be statically
placed or dynamically activated. We refer to the switch placed
in location i and the controller (if any) activated or placed in
location i as switch i and controller i, respectively. For each
i ∈ S, yi indicates whether a controller is indeed placed or
activated at location i. For each i, j ∈ S, xij indicates whether
controller i (if any) manages switch j.

The objective of CPP is to minimize the number of active
controllers, i.e.,

min
{xi,j}

∑
i∈S

yi, (1)

subject to several constraints. First, both xij and yi are binary
variables:

xij , yi ∈ {0, 1} ,∀i, j ∈ S. (2)

Second, no switch can be managed by an inactive controller:

yi ≥ xij ,∀i, j ∈ S. (3)

Third, every switch j needs tj controllers to manage it, where
tj ≥ 1 is a positive integer.∑

i∈S

xij = tj ,∀j ∈ S. (4)

Fourth, the distance between a controller and any switch under
its management must not exceed a threshold SCmax to meet the
controller-switch latency constraint.

dist (i, j) · xij ≤ SCmax,∀i, j ∈ S. (5)

Fifth, the distance between two controllers i and j that manage
a common switch must not exceed a threshold CCmax for the
synchronization of their states in real time.

dist (i, j) · xik · xjk ≤ CCmax,∀i, j, k ∈ S. (6)

Finally, every controller i can process at most ci southbound
traffic load. This controller-dependent capacity constraint pre-
vents controllers from overloading.∑

j∈S

lj · xij ≤ ci · yi,∀i ∈ S, (7)

where lj is the southbound traffic load imposed by switch j.

B. Related Work

Killi et al. [12] proposed an approach to CPP which
first uses k-means algorithm to partition an SDN network.
The algorithm then uses cooperative game to form coalitions
among switches. Each coalition is a sub-network for controller
deployment and the formation is to maximize the value of
coalition. Simulation results showed that the worst latency of
switch and controller is close to optimal solution.

Heller et al. [5] modeled CPP as k-median or k-center
minimization problem that minimizes the average-case and
worst-case controller-switch latency. Yao et al. [6] defined Ca-
pacitated Controller Placement Problem (CCPP) and proposed
an algorithm to minimize the worst-case propagation delay
with the consideration of controller capacity. These two meth-
ods obtained placement solutions without considering link or
controller failure. Ros and Ruiz [7] defined fault-tolerant CPP,
which considers node disconnection due to link failure, and
proposed a heuristic algorithm to find a placement that meets
the reliability constraint. Killi and Rao [4] proposed a failover
mechanism where every switch keeps a backup controller
list. When a controller fails, every switch managed by the
controller selects a backup controller from its list. Hock et
al. [3] proposed Pareto-optimal controller placement (POCO)
to find out all potentially good placements. They handled
controller failure by deploying multiple controllers for a single
switch and considered several objective functions considering



controller failure tolerance, node-to-controller latency, inter-
controller latency, and balance of the controller’s workloads.
However, these works aimed to find out the best placement
in a static network topology and did not consider network
dynamics.

Meta-heuristic approaches such as Genetic Algorithm (GA),
Simulated Annealing (SA) and Particle Swarm Optimization
(PSO) can also be used for CPP. Lange et al. [13] proposed a
heuristic approach called Pareto Simulated Annealing (PSA).
Jalili et al. [14] modeled CPP as a multi-objective optimization
problem and used GA to find the Pareto-optimal front of the
CPP. This work needs the exact number of controllers as the
input. However, CPP generally takes the number of controllers
as the output rather than the input of the problem.

Some studies used divide-and-conquer algorithms to solve
the CPP [15], [16]. These algorithms split an SDN network
into clusters or sub-regions and find the number of needed
controllers for each cluster or sub-region. Based on the result,
the best switch or location to place the controller in each
cluster or sub-region is then determined.

Tanha et al. [2] proposed a heuristic algorithm to minimize
the number of controllers according to the controller capacity,
switch-controller latency, and inter-controller latency. It takes
switch traffic load and controller resilience (failure) as two
constraints. Based on the clique concept, each switch and its
controllers form a clique such that each link connecting any
pair of them must meet the latency constraint. The proposed
approach finds out all maximal cliques and used a greedy
approach to assign switches to active controllers. Bari et
al. [17] studied a dynamic version of CPP where the flow setup
changes over time. They proposed a heuristic algorithm to find
a placement that minimizes the aggregate cost of status gath-
ering, flow setup, synchronization, and switch reassignment.

III. PROPOSED DISTRIBUTED APPROACHES

A. Basic CPP Game

Let P = {p1, p2, ..., pn} be the set of all agents in the
game, where pi is for switch location i ∈ S. The strategy
(i.e., decision choices) of each agent pi is to determine
whether controller i (if any) should manage each switch j
in the network. The strategy is essentially a decision vector
xi = (xi1, xi2, · · · , xin), where xij = 1 if controller i
manages switch j and xij = 0 otherwise. We have xi = 0
if and only if pi decides not to deploy or activate controller
i. Let Fij = {0, 1} be the range of xij . Strategy set Ωi =
Fi1 ×Fi2 × · · · ×Fin is the set of pi’s feasible strategies. Let
ui(·) be pi’s utility. The CPP game is defined as a three-tuple
Γ = (P, {Ωi}ni=1, {ui(·)}ni=1).

The strategy space of the game Ω = Ω1 × Ω2 × · · · × Ωn

is the Cartesian product of all agent’s strategy sets. A strategy
profile x = (x1, x2, · · · , xn) ∈ Ω is a possible game state and
also a potential solution to CPP.

The objective shown in (1) is to find a game state x ∈ Ω
that minimizes the number of active controllers. As a non-
cooperative game, where agents do not cooperate with each
other, we decompose the global objective into local objectives,

one for each agent. Let ui(x) be pi’s utility in a game state x.
The local objective of each agent pi ∈ P is to maximize its
utility, i.e.,

max
xi∈Ωi

ui (xi, x−i) , (8)

where x−i denotes the set of all agent’s strategies other than
pi’s.

Our design centers on the gain of utility that a controller
may have when it manages a particular switch. More explicitly,
pi will be granted a utility gain of α (a positive constant) from
managing switch j (i.e., xij = 1) if the management is really
needed and also valid.

In a game state x, a controller management on switch j is
really needed if and only if vj(x) ≤ tj , where vj(x) counts the
number of qualified controllers that decide to manage switch
j. Controller i is qualified to manage switch j if the distance
between them does not exceed SCmax. Formally,

vj (x) =
n∑

i=1

xijZij , (9)

where

Zij =

{
1, if dist (i, j) ≤ SCmax

0, otherwise. (10)

Each valid management on switch j receives a gain gj (x)
defined as

gj (x) =
{

α if vj(x) ≤ tj ,
0 otherwise, (11)

where α > 0 is a constant. Eq. (11) implies that no controller
can benefit from its management on j if excessive controllers
decide to manage j at the same time, which motivates some
controller to retract the management decision.

Controller i’s management on switch j is valid if i is
qualified to manage j (i.e., Zij = 1) and the management also
meets the capacity and the inter-controller latency constraints.
For capacity constraint, function ki (xi) indicates whether the
aggregated load of switches managed by controller i is still
within its capacity ci:

ki (xi) =

 1, if
n∑

j=1

xij lj ≤ ci,

0, otherwise.
(12)

For the inter-controller latency constraint, let Yik indicate
whether the distance between controllers i and k exceeds the
threshold CCmax that corresponds to the inter-controller latency
constraint:

Yik =

{
1 if dist (i, k) > CCmax,
0 otherwise. (13)

Function Conij(x) indicates whether there exists any other
controller k that also manages switch j but with a distance
to controller i larger than CCmax. It is 1 if there is no such
controller and 0 otherwise. Formally,

Conij(x) =

{
1 if

∑
k ̸=i

xkjZkjYik = 0,

0 otherwise.
(14)



Now the utility function ui(x) for every agent pi ∈ P can be
defined as

ui(x) =
n∑

j=1

xij (ki(xi)Zijgj(x)Conij(x)− β) , (15)

where 0 < β < α is another constant that denotes the cost
to manage a switch. Because 0 < β < α, pi’s management
on switch j is profitable only if the management is valid and
really needed (i.e., ki(xi)Zijgj(x)Conij(x) = α).

We can derive the following non-deterministic protocol
from the defined game model. We say that agents i and k
are neighbors if ZijZkj = 1 for some j ∈ S. Each agent
initializes its strategy with an arbitrary value and inform all
its neighbors of the strategy. Afterwards, every agent pi ∈ P
can independently choose xi ∈ Ωi to maximize ui(xi, x−i), but
only one agent can do so at a time. All agents are myopic in the
sense that they only choose the best strategies that maximize
their utilities with respect to the current game state without
considering the impact of their choices on future play in the
game. The myopic best response function defines the best-
response set of strategies

Ri(x−i) = {xi ∈ Ωi | ∀x′i ∈ Ωi, ui(xi, x−i) ≥ ui(x′i, x−i)}
(16)

for every agent pi ∈ P .
Whenever an agent pi detects that xi ̸∈ Ri(x−i), it changes

its strategy to some strategy in Ri(x−i) and informs all its
neighbors of the change. That action may trigger other agent’s
reactions. When network condition changes due to events such
as link or controller failure, agents may detect the failure
locally or receive strategies updates from other agents. In
either case, agents may change their strategies locally as their
responses and notify all their neighbors of such changes.

B. Stability of The Basic CPP Game

An agent’s strategy change causes a state transition of the
game. A sequence of game state transitions each caused by
an agent’s best-response action can be finite or infinite. A
sequence is finite if and only if it ends at a game state where no
agent can further improve its utility by changing its strategy.
Such a game state is a Nash equilibrium (NE). Formally,
a strategy profile x∗ = (x∗

1, x∗2, · · · , x∗
n) ∈ Ω is an NE if

x∗i ∈ Ri(x−i) for all pi ∈ P .
An NE corresponds to a stable solution of the game. How-

ever, as agents autonomously change strategies, the resulting
game state transitions are non-deterministic. We must ensure
that every possible sequence of game state transitions is finite,
i.e., eventually leads to an NE despite the non-determinism of
best-response dynamics.

In the following, we prove that the CPP game Γ always
ends up with an NE. First, (12) implies that each agent pi
will only manage a subset of S to maximize its utility (15).
Each controller with a valid management on the same switch
j will receive the same amount of payoff gj(x), which is a
function of the number of valid managements on j. Also, the
utility of pi is the sum of the payoffs it can receive from

all switches under its management. These two characteristics
make Γ a congestion game. It is known that every congestion
game is an exact potential game (EPG), which admits an exact
potential function ϕ(x) such that ∀pi ∈ P , ∀xi, x∗

i ∈ Ωi,

ui(x∗i , x−i)− ui(xi, x−i) = ϕ(x∗
i , x−i)− ϕ(xi, x−i). (17)

The exact potential function of Γ is

ϕ(x) =
n∑

j=1

wj(x)∑
k=0

δ(j, k)− β

n∑
i=1

n∑
j=1

xij , (18)

where wj(x) =
∑n

i=1 xij and

δ(j, k) =

{
α if 0 < k ≤ tj
0 otherwise. (19)

By [18], Γ possesses at least one NE and the best-response
dynamics will lead the game into an NE.

C. Prioritized CPP (PCPP) and Quick PCPP Games

x1=(1,1,1,1,1)

x5=(0,0,1,0,0)

x3=(1,1,0,0,0)

x4=(0,0,0,1,1)

x2= (0,0,0,0,0)

1

3

54

2

active

inactive

Fig. 2: An NE with four active controllers in the basic CPP game. Each edge
(i, j) in the network topology indicates that a controller placed in location i
(resp. j) is qualified to manage the switch in location j (resp. i).

Although the basic CPP game guarantees stability, it may
not yield the optimal result. Fig. 2 shows an example where
four controllers are activated. Here we assume that the capacity
and latency constraints are all met and tj = 2 for all j ∈ S.
The game state is already an NE and also a solution to CPP.
However, provided that all the constraints are still met, there
exists another NE with only two active controllers (Fig. 3).

x1=(1,1,1,1,1)

x5=(0,0,0,0,0)

x3=(1,1,1,1,1)

x4=(0,0,0,0,0)

x2= (0,0,0,0,0)

1

3
2

active

inactive

4 5

Fig. 3: Another NE with two active controllers in the basic CPP game.

One way to induce a sequence of game state transitions
from the NE shown in Fig. 2 to that shown in Fig. 3 is to
redefine the game utility function. We refer to the new game
as prioritized CPP (PCPP) game. The basic idea of PCPP game
is try to utilize controllers that already manage more switches
than their peers. To this end, we define

Si =

{
j

∣∣∣∣ n∑
k=1

Zjkxjk ≥
n∑

k=1

Zikxik

}
(20)



to be the set of locations where controllers manage no fewer
switches than controller i. We then redefine (9) so that when
pi counts the number of qualified controllers that decide to
manage switch j, it only counts those in Si:

vij(x) =
∑
k∈Si

xkjZkj . (21)

Similarly, we also redefine Conij(x) for the new game.

Conij(x) =

{
1 if

∑
k∈Si

xkjZkjYik = 0

0 otherwise.
(22)

In the basic CPP game, a controller management on any
switch cannot be preempted by any other controller. In the
PCPP game, controller i can still decide to manage switch
j as long as the number of qualified controllers in Si that
decide to manage j does not exceed tj − 1. For example,
though controllers 1 and 5 already manage switch 3 in Fig. 2,
controller 3 can still decide to manage switch 3 because it sees
only one controller (i.e., controller 1) that already manages the
same switch (as v33(x) = 1). Afterwards, the best response of
controller 5 is to retract its management on switch 3, resulting
in only three active controllers. Further state transitions can
lead the game into the result shown in Fig. 3.

Each agent in the PCPP game need O(2n) time to find its
best response. We thus consider a variant of the PCPP game:
Quick PCPP. When making a strategy, each agent pi first tests
if managing each individual switch j is worthy. The answer
is positive if xijZijgj(x)Conij(x) = α (after setting xij = 1).
Let Φi be the set of switches for which the management of
controller i is worthy. If the aggregate workload in Φi does
not exceed ci, then Φi will be the switch set that controller i
will manage. Otherwise, pi repeatedly removes a switch with
the most workload from Φi until the aggregate workload no
longer exceeds ci. The final Φi will then be pi’s strategy. In
this way, the strategy making time reduces to O(n2).

IV. NUMERICAL RESULTS

A. Simulation Setup

We used the Sprint topology in [19] as our WAN topology
and followed the setting in [2]. Since every node in the
topology is a city in the U.S., we calculated the physical
distance between any two cities based on their longitude and
latitude coordinates. Let dmax be the largest distance between
any two cities. SCmax was set to 0.4 × dmax whereas CCmax

was 0.8× dmax. Other default settings were ci = 2000 k req/s
and ti = 2 for all i ∈ S. The values of li’s were exponentially
distributed with mean 200 k req/s. Since game play sequences
are non-deterministic, all results are averaged over 200 trials.

B. Static Topology

We changed the mean value of ti in the first experiments.
We modified RCCPP [2] for performance comparison with
the proposed approaches. Fig. 4a shows the number of active
controllers found by each approach. In general, more con-
trollers were needed as the mean of ti increased. Among all

1 1.5 2 2.5 3 3.5 4

Value of t
i

2

4

6

8

10

12

N
u

m
b

e
r 

o
f 

a
c
ti
v
e

 c
o

n
tr

o
ll
e

rs

Basic Game

Quick PCPP

PCPP

RCCPP

(a) Number of controllers

1 1.5 2 2.5 3 3.5 4

Value of t
i

10

12

14

16

18

20

N
u

m
b

e
r 

o
f 

s
ta

te
 t

ra
n

s
it
io

n
s

Basic Game

Quick PCPP

PCPP Game

(b) Convergence time

Fig. 4: Results with different settings of ti

5 10 15 20 25

Number of controlles

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti
v
e

 r
a

ti
o

 o
f 

c
o

n
tr

o
ll
e

rs

Basic Game

PCPP Game

RCCPP

(a) Number of controllers

50 60 70 80 90

convergence time (state transitions)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti
v
e

 r
a

ti
o

 o
f 

c
o

n
v
e

rg
e

n
c
e

 t
im

e

Basic Game

PCPP Game

(b) Convergence time

Fig. 5: Results in the DFN topology

approaches, the PCPP game yielded the fewest controllers,
followed by the Quick PCPP game and then RCCPP. The
Basic CPP game needs the most controllers, which is expected
as it is not designed to minimize the number of active
controllers. Fig. 4b shows the convergence time of our game-
based approaches in terms of the average length of game play
sequences. Here the Basic CPP game outperforms the others.
The Quick PCPP game performs slightly better than the PCPP
game. The “no free lunch” theorem applies here considering
the result shown in Fig. 4a.

For large-scale network, we used the DFN topology in [19].
We changed ci to 10000 k req/s and kept all the other settings.
Fig. 5a shows the cumulative ratios of controllers in the result.
RCCPP always needs 11 controllers. By contrast, the PCPP
game needs fewer while the basic CPP game needs more.
Fig. 5b compares these games in terms of convergence time.
We can see that the superiority of the PCPP game over the
basic CPP game comes at the cost of convergence time.

C. Link and Controller Failures

To simulate a link failure, we first generated a CPP solution
for the given static network. We then randomly chose a link
and manually made the link latency larger than SCmax. We
increased the number of link failures and observed how the
number of active controllers changes. Fig. 6a shows the result.
The Basic CPP game is more resilient to link failures than the
others because it normally activates excessive controllers. All
the other schemes exhibit the same increasing trend and their
rankings remain unchanged. Since RCCPP does not react to
link failure, we reran RCCPP every time we introduced link
failures into the network. Therefore, all nodes were affected
by link failures in RCCPP. By contrast, only a part of agents



1 2 3 4 5 6 7 8

Number of link failures

4

5

6

7

8

9

10

N
u

m
b

e
r 

o
f 

a
c
ti
v
e

 c
o

n
tr

o
ll
e

rs

Basic Game

Quick PCPP

PCPP Game

RCCPP

(a) Number of controllers

1 2 3 4 5 6 7 8

Number of link failures

 0%

10%

20%

30%

40%

50%

60%

P
e

rc
e

n
ta

g
e

 o
f 

a
ff

e
c
te

d
 n

o
d

e
s

Basic Game

Quick PCPP

PCPP Game

(b) Percentage of affected nodes

Fig. 6: Impact of link failure

1 1.5 2 2.5 3 3.5 4

Number of controller failures

4

5

6

7

8

9

N
u

m
b

e
r 

o
f 

a
c
ti
v
e

 c
o

n
tr

o
ll
e

rs

Basic Game

Quick PCPP

PCPP Game

RCCPP

(a) Number of controllers

1 1.5 2 2.5 3 3.5 4

Number of controller failures

30%

40%

50%

60%

70%

80%

90%

P
e

rc
e

n
ta

g
e

 o
f 

a
ff

e
c
te

d
 n

o
d

e
s

Basic Game

Quick PCPP

PCPP Game

(b) Percentage of affected nodes

Fig. 7: Impact of controller failure

changed their strategies when link failures occurred. Fig. 6b
shows the ratios of nodes (i.e., agents) affected by link failures
(i.e., ever changing their strategies due to link failures) in
all game-based mechanisms. The Basic CPP and the Quick
PCPP games both have lower ratios than the PCPP game.
Nevertheless, no more than 50% nodes were affected in all
game-based mechanisms even with eight failed links.

We simulated a controller failure by randomly removing an
active controller (together with the co-located switch) from a
CPP solution. Fig. 7a shows the resulting numbers of active
controllers with an increasing number of controller failures.
The number with the Basic CPP game decreases linearly
with the number of controller failures. This can be explained
as the survival controllers suffice to take over the switches
managed by failed controllers. By contrast, the PCPP and the
Quick PCPP games recruited additional controllers because
the survival controllers are almost fully utilized. RCCPP
needs fewer controllers simply because we regenerated a new
solution for the same network with fewer switches.

Fig. 7b shows the ratios of nodes affected by controller
failures. Compared with Fig. 6b, we can see that the impact
of controller failures is severer than that of link failures. When
four controllers failed, the ratio can be near 90%. Similar to
the case of link failures, the Basic CPP and the Quick PCPP
games both have lower ratios than the PCPP game.

V. CONCLUSIONS

We have proposed three game-theoretic approaches to CPP:
basic CPP, PCPP, and Quick PCPP games. The basic CPP
game has the shortest convergence time but activates the most
controllers. On the other hand, the PCPP game activates the
fewest controllers but also induces the longest convergence

time. The Quick PCPP game is a trade-off between these
two extremes. In static networks, the PCPP and the Quick
PCPP games can activate fewer controllers than RCCPP [2].
When link or controller failure may occur, the PCPP game
outperforms all the other approaches in terms of the number
of active controllers. More importantly, all game-theoretic
approaches exhibit a strong point that link or node failures
only affect a part of nodes in the network.

REFERENCES

[1] R. Ahmed and R. Boutaba, “Design considerations for managing wide
area software defined networks,” IEEE Commun. Mag., vol. 52, no. 7,
p. 116–123, Jul. 2014.

[2] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan, “Capacity-aware and delay-
guaranteed resilient controller placement for software-defined WANs,”
IEEE Trans. Netw. Service Manag., vol. 15, no. 3, pp. 991–1005, Sep.
2018.

[3] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-
Gia, “Pareto-optimal resilient controller placement in SDN-based core
networks,” in Proc. 25th Int’l Teletraffic Congress (ITC), Sep. 2013, pp.
1–9.

[4] B. P. R. Killi and S. V. Rao, “Optimal model for failure foresight
capacitated controller placement in software-defined networks,” IEEE
Commun. Lett., vol. 20, no. 6, pp. 1108–1111, Jun. 2016.

[5] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proc. 1st Workshop on Hot Topics in Software Defined
Networks, 2012, pp. 7–12.

[6] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller
placement problem in software defined networks,” IEEE Commun. Lett.,
vol. 18, no. 8, pp. 1339–1342, Aug. 2014.

[7] F. J. Ros and P. M. Ruiz, “On reliable controller placements in software-
defined networks,” Comput. Commun., vol. 77, pp. 41–51, 2016.

[8] A. Sallahi and M. St-Hilaire, “Expansion model for the controller
placement problem in software defined networks,” IEEE Commun. Lett.,
vol. 21, no. 2, pp. 274–277, Feb. 2017.

[9] M. T. I. ul Huque, G. Jourjon, and V. Gramoli, “Revisiting the controller
placement problem,” in Proc. IEEE 40th Conf. on Local Comput. Netw.,
Oct. 2015, pp. 450–453.

[10] L. Yao, P. Hong, W. Zhang, J. Li, and D. Ni, “Controller placement and
flow based dynamic management problem towards SDN,” in IEEE Int’l
Conf. on Commun. Workshop, Jun. 2015, pp. 363–368.

[11] H. K. Rath, V. Revoori, S. M. Nadaf, and A. Simha, “Optimal controller
placement in software defined networks (SDN) using a non-zero-sum
game,” in Proc. IEEE Int’l Symp. on a World of Wireless, Mobile and
Multimedia Netw., Jun. 2014, pp. 1–6.

[12] B. P. R. Killi, E. A. Reddy, and S. V. Rao, “Cooperative game theory
based network partitioning for controller placement in SDN,” in Proc.
10th Int’l Conf. on Commun. Syst. Netw., Jan. 2018, pp. 105–112.

[13] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,
and M. Hoffmann, “Heuristic approaches to the controller placement
problem in large scale SDN networks,” IEEE Trans. Netw. Service
Manag., vol. 12, no. 1, pp. 4–17, Mar. 2015.

[14] A. Jalili, V. Ahmadi, M. Keshtgari, and M. Kazemi, “Controller place-
ment in software-defined WAN using multi objective genetic algorithm,”
in 2nd Int’l Conf. on Knowledge-Based Engineering and Innovation,
Nov. 2015, pp. 656–662.

[15] J. Liao, H. Sun, J. Wang, Q. Qi, K. Li, and T. Li, “Density cluster
based approach for controller placement problem in large-scale software
defined networkings,” Comput. Netw., vol. 112, pp. 24–35, 2017.

[16] M. T. I. ul Huque, W. Si, G. Jourjon, and V. Gramoli, “Large-scale
dynamic controller placement,” IEEE Trans. Netw. Service Manag.,
vol. 14, no. 1, pp. 63–76, Mar. 2017.

[17] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in soft-
ware defined networks,” in Proc. 9th Int’l Conf. on Netw. and Service
Manag., Oct. 2013, pp. 18–25.

[18] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic
Behavior, vol. 14, no. 1, pp. 124 – 143, 1996.

[19] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet topology Zoo,” IEEE J. Sel. Areas Commun., vol. 29,
no. 9, pp. 1765–1775, Oct. 2011.


