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Abstract—Wireless stations (WSs) in an IEEE 802.11 access
network compete with each other for collective bandwidth offered
by access points (APs). The competition involves selecting an
AP with the consideration of potential link rate and workload
status. From the perspective of system, a good AP selection
policy should be stable, increase overall system throughput, and
maintain bandwidth fairness among WSs. This paper models
AP selections under the framework of game theory, where each
WS’s sole goal is to maximize its achievable throughput. The
achievable throughput depends on not only the number of WSs
that associate with the same AP but also the set of link rates these
WSs use: it is not a monotonically-decreasing function of WS
population when considering the effect of performance anomaly.
We have proven the stability of this game (Nash equilibrium), and
shown that selfish behavior of individual WS in fact improves
overall bandwidth fairness among WSs. Thorough simulations
were conducted to demonstrate the validity of the analytical
results and compare the performance of the proposed game with
that of counterparts.

I. INTRODUCTION

IEEE 802.11 wireless local area networks have been widely
deployed as wireless infrastructures providing data access
services in home, corporate, and public environments. In such
environments, a wireless station (WS) with an IEEE 802.11
interface sends and receives frames via an access point (AP)
to network infrastructure, and all APs in service constitute
an access network. However, traffic load in an access network
may not be fairly shared by all serving APs due to the uncoor-
dinated nature of AP selections among WSs. More specifically,
WSs typically select and associate with an AP with the highest
received signal strength. This problem motivates many load-
balancing schemes for IEEE 802.11 networks [1] with a design
goal to make WS-AP associations load-aware, preventing WSs
from making associations with congested APs. The ultimate
goal is to either increase overall system throughput or maintain
bandwidth fairness among WSs.

In this paper, we analyze the problem of AP selections
under the framework of game theory. Game theory provides a
mathematical modeling for the study of competition strategies
in a game where players have conflicting benefits or goals.
For the last decade, game theory has been used to analyze
duty/resource sharing problems in wireless networks [2]. In
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these games, selfish players usually bring in undesired re-
sults (uneven load distribution or unfair resource share), and
researchers have to introduce incentive or punitive mecha-
nisms to force cooperation among players. For example, a
commonly-adopted mechanism is to design a synthetic utility
function for players that penalizes selfish behaviors. The goal
is to let games naturally fall into stable states called Nash
equilibria where system’s interest could potentially benefit.

Our framework differs from previous ones in that WSs
select and re-select APs merely for their own interest (specif-
ically, achievable throughput that a WS may receive from a
selection). No other external incentive/punitive mechanisms
are introduced to ensure stability or fairness. The purpose
of this research is to study the properties of the proposed
AP selection game. We shall determine whether a Nash
equilibrium exists even in this context, which eliminates the
possibility of unstable association transitions (change of AP
selections). Furthermore, we shall explore if the selfish yet
rational behaviors of WSs under the proposed framework
could improve bandwidth fairness. We shall also present
simulation results for numerical analyses on the properties of
the proposed game model and other alternatives.

The remainder of this paper is organized as follows. Back-
ground information and related work are presented in Sec-
tion II. Section III analyzes several properties of the proposed
game including stability and fairness. In Section IV, simulation
results of the proposed game are discussed and compared with
other alternatives. Section V concludes this paper.

II. BACKGROUND AND RELATED WORK

WSs in an IEEE 802.11 access network essentially compete
for bandwidth offered by APs. Clearly, a WS’s utility depends
on not only its own association choice, but also other WS’s.
This is why game theory becomes a useful tool to apply here.
Intuitively, WSs should select an AP that is the least crowded
to maximize its achievable throughput. Games with player’s
objective defined to minimize the number of other users that
share the same selection are known to be crowding games
[3]. In the literature, crowding games has been used to model
network selections by mobile users [4], [5]. However, this
framework does not well apply to IEEE 802.11 networks as
achievable throughput of WSs in an AP is not necessarily
a monotonically-decreasing function of WS population there.
The irregularity comes from two design features of IEEE
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Fig. 1. A scenario illustrating performance anomaly. Achievable throughputs
are based on the analysis of [6] while those in parentheses were obtained
through simulation with ns2.

802.11. One is its non-deterministic MAC (Medium Access
Control) scheme, which does not guarantee any bandwidth
share to participants. The other is the provision of multiple
link rates in IEEE 802.11 a/b/g networks, which may give rise
to an undesirable phenomenon called performance anomaly
[6]. Performance anomaly refers to the effect that when links
operating at different rates coexist within an AP, throughputs
of high-rate links will all degrade to the level of the lowest-
rate link. Performance anomaly not only impairs achievable
throughputs of WSs, but also makes AP’s actual capacity a
variable. Consider the example of Fig. 1, where two IEEE
802.11b APs are serving four WSs. WS3 there could choose
either AP1 or AP2 to associate with. We can see that selecting
AP1 yields a better result, though AP1 is more crowded than
AP2. AP1 is also a better choice from the perspective of
system’s benefit, as selecting AP1 has a higher total achiev-
able throughput than selecting the counterpart. Perception of
performance anomaly can yield better performance result. But
this cannot be characterized in crowding games.

The AP selection problem under consideration is modeled as
a noncooperative dynamic game. In a noncooperative game,
players do not cooperate with each other to seek system’s
benefit. A noncooperative game is dynamic if players take
turns to make their decisions, knowing what decisions have
already been done. In our model, an associated WS will re-
associate with another AP if that re-association improves its
achievable throughput. The achievable throughput in recogni-
tion of the effect of performance anomaly can be computed
with analytical results from prior work in [6], [7]. Here we
assume WSs pursuing its own throughput improvement rather
than the balance of workloads among APs (e.g., [8]). Although
a lightly-loaded AP in principle offers a high achievable
throughput and selecting an AP with the least load helps load
balancing among APs, we argue that, from WS’s perspec-
tive, AP selections based on achievable throughput are more
straightforward and “natural” than AP selections based on load
balancing. Several other approaches also proposed AP selec-

tions based on achievable throughput (potential bandwidth)
[9], [10], [11]. Another issue of load-based AP selections
comes from the fact that the notion of AP’s load is not well
defined in IEEE 802.11 networks. It could be the number
of WSs associating with an AP, frame drop rate of AP’s
transmission queue during real-time sessions [12], or the total
time that an AP takes to provide each WS one unit of traffic
[13], [8].

Although there have been many approaches proposed for
AP selections, only few of them treat the problem under the
framework of game theory. Mittal et al. [14] introduced an
AP selection game which differs from our setting in that WSs
may need to travel some distance to reach an AP. The cost
of an AP selection is measured by the AP’s load and the
traveling distance required by that selection. With this cost
model, Mittal et al. proposed a simple greedy algorithm that
brings the game to a Nash equilibrium under the condition of
even WS distribution and absence of dynamic WS arrivals
and departures. However, the ability to measure physical
distance between WSs and APs, as required by this model,
is not yet a primitive feature in today’s wireless networks.
Shakkottai et al. [15] studied the problem of a WS associating
with multiple APs and splitting its traffic among these APs
(link-layer multihoming). They used the model of population
game [16], which implies that the impact of individual WS’s
selection on other WS’s utilities is infinitesimal. Although
link-layer multihoming is possible for WSs using a single
wireless interface card [17], this technique is not yet mature
and widely adopted. The population game model also does
not generally apply to IEEE 802.11 networks. Jiang et al. [18]
considered base station (BS) selections by mobile users, where
each user selfishly chooses a BS that gives her the highest
achievable throughput. This work assumes that the throughput
each user can receive is controlled by the BS, and that the
number of users is enormous so as to apply the population
game model. The ability to control user’s throughput share
by the BS is untenable in native IEEE 802.11 networks. The
assumption of numerous users may not hold.

Besides throughput, fairness is also a typical criterion for
AP selection problems. In the context of bandwidth sharing,
max-min [19] is a commonly-adopted metric for fairness par-
ticularly when bandwidth requestors have different bandwidth
demands. With an objective to maximize the minimum share
of a requestor whose demand is not fully satisfied, basic
principles of max-min fairness are to allocate bandwidth to
requestors in increasing demands, to ensure no requestor
receives bandwidth more than its demand, and to equally
split the remaining bandwidth to requestors with unsatisfied
demands. If we use a tuple to denote the set of allocated
bandwidth of every requestor sorted in a nondecreasing order,
then a bandwidth allocation is max-min fair when the corre-
sponding tuple has the highest lexicographical value1 among
all.

A similar notion, min-max fairness, can be defined for the
sharing of workloads among APs. A distribution of workloads

1For any two n-tuples of numbers T = (t1, t2, · · · , tn) and T ′ =
(t′1, t′2, · · · , t′n), T has a higher lexicographical value than T ′ if ∃k ∈
{1..n} : tk > t′k and, if k > 1, ∀i : 1 ≤ i < k :: ti = t′i.



is min-max fair if the tuple denoting the set of workloads
of every AP sorted in a non-increasing order has the lowest
lexicographical value among all possibilities. Bejerano et al.
[13] have studied AP selections that achieve min-max fairness
of AP workloads. They proved that, unless link-layer multi-
homing is allowed, a min-max load balanced association does
not imply a max-min fair bandwidth allocation and vice versa.

Max-min fairness well applies to cases where resource
requestors have limited demands. In our problem setting, how-
ever, every WS has an unlimited bandwidth demand; it could
actually consume all bandwidth available to it. For this kind of
bandwidth sharing, balance index [20] can be used to quantify
the fairness of bandwidth share among all competitors. For a
bandwidth allocation consisting of n portions numbered 1 to n,
let Bi, 1 ≤ i ≤ n, denote the amount of bandwidth allocated
to the ith portion. The balance index β is defined as

β =
(
∑

Bi)2

n×∑
B2

i

. (1)

The value of β becomes 1 when all requestors get an equal
share, and it approaches 1/n in case of extremely unbalanced
allocations. Balance index can be related to max-min fairness
in the sense that, when WSs all have unlimited bandwidth
demands, a bandwidth allocation with β = 1 is also max-min
fair. However, the converse does not hold generally.

III. AP SELECTION GAME

We consider an IEEE 802.11 network consisting of n WSs
and m APs. Neighboring APs are assumed to operate at
different (non-overlapping) frequency channels such that there
is no interference among APs. Let A = (a1, a2, · · · , am) and
W = (w1, w2, · · · , wn) be the tuples of all APs and WSs,
respectively. We assume that each WS can access at least one
AP and denote the set of APs that wi can access (i.e., the
strategy set of wi) by Ai, where 1 ≤ i ≤ n. For a possible AP-
WS association, the WS’s utility is defined to be the achievable
throughput of the WS resulted from that association.

We define a configuration (a strategy profile) to be an
n-tuple C = (c1, c2, · · · , cn), where ci ∈ Ai repre-
sents wi’s association choice. For a specific wi, we may
sometimes express C as C = (ci, C−i), where C−i =
(c1, c2, · · · , ci−1, ci+1, · · · , cn) denotes all other WS’s asso-
ciations other than wi’s. Function ui(C) gives wi’s utility
with respect to configuration C. We shall explore how to
evaluate ui(C) in the next subsection. The AP selection
game Γ = [W ;A; {ui}n

i=1] can be formally defined by
maxci∈Ai ui(ci, C−i) for all i = 1, 2, · · · , n. For the ensuing
discussion, most of the symbols used are summarized in
Table I.

A WS may seek an optimal association decision if the
decision is made by considering all possible decisions that
other WSs could make and what rules other WSs would
follow to make their decisions. An equivalent approach is to
examine all possible configurations to find the best strategy for
a particular WS. The proposed game takes a simpler model
instead, where WSs do not predict or analyze other WS’s
intentions or best strategies: they only respond to other WS’s
actions. With the knowledge of all other WS’s choices, a WS

TABLE I
PARTIAL LIST OF NOTATIONS

Notation Meaning
m Number of APs
n Number of WSs
A The tuple of all APs; A = (a1, a2, · · · , am)
W The tuple of all WSs; W = (w1, w2, · · · , wn)
Ai The set of APs that wi can associate with
Wj The set of WSs that associate with aj

ci, c
∗
i , c′i The AP that wi associates with

ui(C) wi’s utility with respect to configuration C
Σ The configuration space (set of all configurations)
t(a, C) The throughput of any WS residing in AP a with respect to

configuration C.

conducts an association change only if that change maximizes
the net increase of its utility among all possible re-association
choices under the assumption that all other WSs stay un-
changed. Formally, the best response function for WS wi is
bi(C−i) = {ci ∈ Ai|∀c′i ∈ Ai : ui(ci, C−i) ≥ ui(c′i, C−i)}.
This re-association rule may be shortsighted in the sense
that the increase of utility is evaluated without considering
possible responses from other WSs. Theoretically, the decision
of association change may turn out to be a loss when later other
WSs respond with their association changes. Fortunately, this
is not a one-shot game; the original WS may recover its loss by
making another re-association. Our major concern is whether
such interactions result in nonstop chain reactions, and how
the game evolves in terms of bandwidth fairness and overall
system throughput.

In our game model, a transition from one configuration
to another occurs when some WS conducts an association
change. For simplicity, we assume that only one association
change is conducted at a time; simultaneous transitions are
serialized in some arbitrary order. Denote the transition rela-
tion by ‘;’. Formally, for any two configurations Ci and Cj ,
Ci ; Cj if ur(Ci) < ur(Cj), where wr is the only WS that
has different association choices between Ci and Cj .

A. Utility: Achievable Throughput

For each WS wi in the proposed game, its utility function
ui(C) is defined to be the achievable throughput of wi in
configuration C. Heusse et al. [6] have analyzed achievable
throughputs of WSs under IEEE 802.11 multi-rate environ-
ment. Their analysis assumes no interference among neigh-
boring APs and can be summarized as follows. For any WS
wi operating at link rate ri, its MAC-layer throughput can be
expressed as

Xi = Ui × sd

riTi
× ri, (2)

where Ui is the fraction of time wi is able to access the
medium, Ti is overall transmission time (counting protocol
overhead, transmission time, and the time spent in contention
procedure) for a single frame sent by wi, and sd is the size
(in bits) of the frame. By definition, Ui = Ti/Ii, where Ii

is the average time between two consecutive transmissions of
wi. Therefore, (2) can be simplified as

Xi =
sd

Ii
. (3)



Let Wj denote the set of all WSs that associate with AP aj .
One property of 802.11 MAC scheme is that all WSs in Wj

have equal long-term channel access probability regardless of
their link rates. In case of saturated traffic (i.e., every WS
always has packets to transmit), this means that each wi ∈
Wj is expected to have an Ii value that comprises Tk for all
wk ∈ Wj and the expected time spent in all possible collisions
among WSs in Wj during Ii. Formally,

∀wi ∈ Wj : Ii =


 ∑

wk∈Wj

Tk


 + δ(Wj), (4)

where δ(Wj) is the expected time spent in all possible
collisions among WSs in Wj during Ii. Tk consists of a rate-
independent part (corresponding to protocol overhead and the
time spent in contention procedure) and a variable-length part
(transmission time) that depends on frame length sd and link
rate rk. The duration of a collision is also dominated by the
lowest rate of WSs involved in the collision. A WS obtains its
maximal throughput when it always has packets to transmit
and each frame is of the maximal frame size. Therefore, all
WSs that associate with the same AP receive equal amount
of achievable throughput that is determined by the mixture of
their link rates but dominated by low-rate links. Consequently,
the performance of high-rate links is effectively dragged down
by low-rate links. The analysis presented in [7] shows similar
conclusions.

Let t(a,C) be the achievable throughput of any WS residing
in AP a with respect to configuration C. By (3) and (4), we
know that

t(a,C) =
sd(∑

ck=a Tk

)
+ δ({ck = a}) . (5)

In the proposed AP selection game, ui(ci, C−i) = t(ci, C)
and the game can thus be defined by

max
ci∈Ai

ui(ci, C−i) = max
ci∈Ai

sd(∑
ck=ci

Tk

)
+ δ({ck = ci})

(6)

for all i = 1, 2, · · · , n.
Without loss of generality, assume that Ci ; Cj because

some WS wr changes its AP from ak to al. Since Ci ; Cj

implies ur(Ci) < ur(Cj), we have

t(ak, Ci) < t(al, Cj). (7)

Note that all and only all WSs associating with either ak

or al have their achievable throughputs changed by Ci ; Cj .
Therefore, if we are concerned with total achievable through-
put in the system, the net increase due to the transition is

(d− 1)× t(ak, Cj)− d× t(ak, Ci) +
e× t(al, Cj)− (e− 1)× t(al, Ci), (8)

where d is the number of WSs associating with ak in Ci and e
is the number of WSs (including wr) associating with al in Cj .
Clearly, Eq. (7) does not guarantee a positive net increase. In
fact, an association change in the proposed AP selection game
may lead to degradation of total achievable throughput in the
system.

For comparison purpose, we also define a public-interest
first (PIF) re-association model, where a WS makes an asso-
ciation change only if that association results in an increase
of total achievable throughput in the system. In case of
multiple candidates, the WS chooses the one that results in
the maximal net increase. Although WS’s own benefit may be
sacrificed in this model, the system is always benefited from
re-associations.

B. Stability

Definition 1: Nash Equilibrium: Given a game Γ =
[W ; A; {ui}n

i=1], a configuration C∗ = (c∗1, c
∗
2, · · · , c∗n) is a

Nash equilibrium if ∀i ∈ {1..n} : ∀ci ∈ Ai :: ui(c∗i , C
∗
−i) ≥

ui(ci, C
∗
−i).

In other words, Nash equilibrium is a configuration where
no WS can further increase its own utility by unilaterally
changing its choice. Nash equilibrium is not necessarily a
Pareto optimal strategy. A configuration C = (c1, c2, · · · , cn)
is Pareto optimal if and only if there exists no other configu-
ration C ′ = (c′1, c

′
2, · · · , c′n) such that ∀i ∈ {1..n} : ui(C ′) ≥

ui(C) and ∃j ∈ {1..n} : uj(C ′) > uj(C).
Recall that in our model, an associated WS can re-associate

with another AP if that re-association improves its achievable
throughput. The re-association action may trigger another
WS’s re-association and so on. If Nash equilibria do not exist
in this game, re-association activities will last and the system
cannot enter a stable state. By contrast, stability in the PIF re-
association model is always guaranteed as it is impossible to
unlimitedly increase total achievable throughput of the system.
We shall now show the existence of Nash equilibria in the
proposed AP selection game.

Let Σ = A1 × A2 × · · · × An be the configuration space,
i.e., the set of all possible configurations. If there exists
no Nash equilibrium, then for any configuration Ci ∈ Σ,
there must exist another configuration Cj ∈ Σ such that
Ci ; Cj . Since the strategy space is finite, nonexistence
of Nash equilibrium implies that there must be a series
of configurations C ′1, C

′
2, · · · , C ′p, where p ≤ k, such that

C ′1 ; C ′2, C ′2 ; C ′3, · · · , C ′p ; C ′1. We shall prove the
existence of Nash equilibrium by showing that such series
does not exist.

For each configuration Ci ∈ Σ, let T (Ci) =
(α1

i , α
2
i , · · · , αm

i ) be an m-tuple of APs, where
{α1

i , α
2
i , · · · , αm

i } is an ordered set of all APs such
that t(α1

i , Ci) ≤ t(α2
i , Ci) ≤ · · · ≤ t(αm

i , Ci)2. Let
Θ = {T (C)|C ∈ Σ)}. We also define a binary relation
≺ on Θ as follows. For T (Ci), T (Cj) ∈ Θ, we have
T (Ci) ≺ T (Cj) if ∃k ∈ {1..m} : t(αk

i , Ci) < t(αk
j , Cj) and,

if k > 1, ∀l : 1 ≤ l < k :: t(αl
i, Ci) = t(αl

j , Cj). It is not
hard to see that ‘≺’ is a precedence relation [21], i.e., it is
antisymmetric and transitive.

Theorem 1: ∀Ci, Cj ∈ Σ : Ci ; Cj ⇒ T (Ci) ≺ T (Cj).
Proof: Without loss of generality, assume that Ci ; Cj

because some WS wr changes its AP from ak to al. Let ak

2For any AP αj
i that draws no WS in Ci, we define t(αj

i , Ci) to be the
nominal capacity of one AP (11 Mbps in case of IEEE 802.11b) so that such
APs are always ranked after any AP with one or more WS associations.
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Fig. 2. Rank mapping from T (Ci) to T (Cj) when v = min{q, y} > p

be the pth and qth element in T (Ci) and T (Cj), respectively.
In other words, ak = αp

i = αq
j . Similarly, let al = αx

i = αy
j .

Ci ; Cj implies that ur(Ci) < ur(Cj), which in turn implies
that

t(αp
i , Ci) < t(αy

j , Cj). (9)

If there exists at least one WS associating with ak after the
association migration of wr, then t(ak) will be increased,
meaning that

t(αp
i , Ci) < t(αq

j , Cj). (10)

If there is no other WS associating with ak after wr’s leave,
then t(αq

j , Cj) equals to the nominal capacity of one AP as
defined, and (10) still holds. By (9), (10), and the fact that ak

and al are the only two APs whose throughput is changed by
Ci ; Cj , the first p − 1 elements in T (Ci) hold their ranks
in T (Cj). Thus we have

∀s : 1 ≤ s ≤ p− 1 :: t(αs
i , Ci) = t(αs

j , Cj). (11)

Now consider the relation between v = min{q, y} and p. By
(9), (10), and (11), it is impossible that v < p. If v = p, then
we have the proof by (11) and either (9) or (10). If v > p,
then αp

i must change its rank from the pth element in T (Ci)
to at least the vth element in T (Cj), and all APs in between
change their ranks accordingly (Fig. 2). That is,

∀s : p ≤ s ≤ v − 1 :: t(αs
j , Cj) = t(αs+1

i , Ci). (12)

Since ∀s : p ≤ s ≤ v − 1 :: t(αs+1
i , Ci) ≥ t(αs

i , Ci), (12)
implies that

∀s : p ≤ s ≤ v − 1 :: t(αs
i , Ci) ≤ t(αs

j , Cj). (13)

Moreover, from (12) we know that t(αv−1
j , Cj) = t(αv

i , Ci).
This together with the fact t(αv−1

j , Cj) ≤ t(αv
j , Cj) implies

that
t(αv

i , Ci) ≤ t(αv
j , Cj). (14)

Equations (13) and (14) can be merged into

∀s : p ≤ s ≤ v :: t(αs
i , Ci) ≤ t(αs

j , Cj), (15)

which implies that either

∀s : p ≤ s ≤ v :: t(αs
i , Ci) = t(αs

j , Cj) (16)

or
∃s : p ≤ s ≤ v :: t(αs

i , Ci) < t(αs
j , Cj) (17)

holds. If (16) holds, then we have t(αs
i , Ci) = t(αs+1

i , Ci)
for all s, p ≤ s ≤ v − 1, by (12), which in turn implies

that t(αp
i , Ci) = t(αv

j , Cj). The derived result contradicts with
either (9) (when v = y) or (10) (when v = q). Therefore, only
(17) holds. The theorem is thus proven by (11), (15), and (17).

Half of the proof deals with the case that different APs may
provide identical throughputs for WSs associating with them.
If this case were not considered, the equality in (13) would not
hold and all the subsequent arguments would not be needed.

If there is any series of configuration transitions
C ′1, C

′
2, · · · , C ′p, where p ≤ k, in the proposed game such that

C ′1 ; C ′2, C ′2 ; C ′3, · · · , C ′p ; C ′1, then by Theorem 1 we
have T (C ′1) ≺ T (C ′2), T (C ′2) ≺ T (C ′3), · · · , T (C ′p) ≺ T (C ′1).
It follows that T (C ′2) ≺ T (C ′1) as ≺ is transitive, which leads
to a contradiction since ≺ is also antisymmetric. Therefore,
Theorem 1 implies that any loop of configuration transitions
is impossible, and suffices to be a proof for the existence
of Nash equilibria in the proposed game. More specifically,
starting from any configuration, re-association activities made
by WSs always end up with a configuration where no WS
can further increase its own utility by unilaterally changing its
choice.

Note that different initial configurations may end up with
different Nash equilibria. Even with the same initial configura-
tion, different re-association orders may lead to different stable
configurations. Fig. 3 gives an example, where both WS1 and
WS2 have the motivation to re-associate with AP2. Depending
on which one moves first, two possible Nash equilibria can be
reached.

C. Fairness

We shall now address the fairness issue of the game. The
definition of max-min fairness refers to only one configuration.
To quantify the relative degree of fairness for every feasi-
ble configuration, we propose measuring the lexicographical
value of the corresponding utility tuple. More precisely, each
configuration Ci ∈ Σ corresponds to a utility tuple Ui =
(µ1

i , µ
2
i , · · · , µn

i ) which is obtained by sorting {uj(Ci)}n
j=1

in a nondecreasing order.
Definition 2: Given two configurations Ci and Cj with

respective utility tuples Ui = (µ1
i , µ

2
i , · · · , µn

i ) and Uj =
(µ1

j , µ
2
j , · · · , µn

j ), we say that Ci is lexicographically fairer
than Cj if Ui has a higher lexicographical value than Uj , i.e.,
∃k ∈ {1..n} : µk

i > µk
j and, if k > 1, ∀l : 1 ≤ l < k :: µl

i =
µl

j .
Intuitively, Ci is lexicographically fairer than Cj if the

lowest utility in Ci is larger than that in Cj , or the lowest utility
in Ci is equal to that in Cj but the second lowest utility in Ci

is larger than that in Cj , and so on. This definition is consistent
with max-min fairness in the sense that a configuration is max-
min fair if and only if it is lexicographically fairer than any
others.

We can derive Ui from T (Ci) by seeing that all WSs asso-
ciating with the same AP receive equal throughput. Let w(αk

i )
be the number of WSs associating with AP αk

i ∈ T (Ci),
where 1 ≤ k ≤ m. Given T (Ci), we let each AP αk

i map to
w(αk

i ) consecutive elements in Ui. Specifically, the following
function returns the position of the first element in Ui that
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corresponds to a WS associating with αk
i (if there is any WS

associating with αk
i ):

ρ(αk
i ) =

{
1 k = 1,

1 +
∑k−1

l=1 w(αl
i) 2 ≤ k ≤ m.

(18)

If w(αk
i ) = 0, αk

i maps to no element in Ui. Otherwise, all
elements in Ui with ordinal numbers ranging from ρ(αk

i ) to
ρ(αk+1

i )− 1, 1 ≤ k ≤ m− 1, have identical values t(αk
i , Ci).

With the way to derive Ui from a given T (Ci), we shall
further prove that if Ci ; Cj , then Uj also has a higher lexico-
graphical value than Ui, meaning that Cj is lexicographically
fairer than Ci. Consequently, configuration transitions in the
proposed AP selection game always improve utility fairness.

Theorem 2: ∀Ci, Cj ∈ Σ : Ci ; Cj ⇒ Ui ≺ Uj .
Proof: Ui and Uj can be derived from T (Ci) and T (Cj),

respectively, as stated above. We assume the same definitions
of p, q, and y as in the proof of Theorem 1. Since the first
p − 1 APs in T (Ci) hold their ranks in T (Cj), all the first
ρ(αp

i ) − 1 elements in Ui are identical to the corresponding
elements in Uj . That is,

∀k : 1 ≤ k ≤ ρ(αp
i )− 1 : µk

j = µk
i . (19)

Now consider v = min{q, y}. If v = p, then the ρ(αp
i )th

element in Ui is smaller than the corresponding element in Uj

by either (9) or (10), and the proof is done. If v > p, then the
position of either αq

j or αy
j is at least the vth in T (Cj), which

means all the w(αp
i ) elements associating with αp

i are placed

at least the ρ(αv
j )th position in Uj . It follows that

∀k : p ≤ k ≤ v − 1 :: ρ(αk
j ) = ρ(αk+1

i )− w(αp
i ), (20)

∀k : p ≤ k ≤ v − 1 :: w(αk
j ) = w(αk+1

i ), (21)

and

∀k : ρ(αp
j ) ≤ k ≤ ρ(αv

j )− 1 :: µk
j = µ

k+w(αp
i
)

i ≥ µk
i . (22)

See Fig. 4 for the rank mapping from Ui to Uj indicated by
(20). Eq. (22) implies that either

∃s : ρ(αp
j ) ≤ s ≤ ρ(αv

j )− 1 :: µs
j > µs

i (23)

or

∀k : ρ(αp
j ) ≤ k ≤ ρ(αv

j )− 1 :: µk
j = µ

k+w(αp
i
)

i = µk
i . (24)

If (23) holds, the theorem is proven by (19), (22), and (23).
If (24) holds, by (20) we have

∀k : ρ(αp
i ) ≤ k ≤ ρ(αv+1

i )− w(αp
i )− 1 :: µk

i = µ
k+w(αp

i
)

i

⇒ µ
ρ(αp

i
)

i = µ
ρ(αp

i
)+1

i = · · · = µ
ρ(αv+1

i
)−1

i . (25)

Let d = ρ(αp
i ) and e = ρ(αv

j ). The derivation of (26) is based
on (18), (20), and (21):

e = ρ(αv−1
j ) + w(αv−1

j )

⇒ e = ρ(αv
i )− w(αp

i ) + w(αv−1
j )

⇒ e = ρ(αv
i )− w(αp

i ) + w(αv
i )

⇒ e = ρ(αv+1
i )− w(αp

i ) ≤ ρ(αv+1
i )− 1. (26)

By (25) and (26) we have µe
i = µd

i . Furthermore, µe
j > µd

i

by (9) and (10). Therefore, we have µe
j > µe

i . The theorem is
thus proven.

This proof is similar to that of Theorem 1 in the sense that
a lot of efforts are devoted to deal with the case of identical
utility values among adjacent elements in a utility tuple. The
key point is, despite the existence of a continuous series of
identical utility values, we can always find a break point in the
corresponding utility tuple that exhibits a difference between
Ui and Uj .

It should be noted that the definition of lexicographical
fairness does not always comply with the definition of balance
index. Refer to the scenario shown in Fig. 5, where WS1
could select either AP1 or AP2 to associate with. The former
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TABLE II
CONVERSION OF DISTANCE TO LINK RATE

Range of distance d (m) Link rate (Mbps)
0 ≤ d < 50 11
50 ≤ d < 80 5.5
80 ≤ d < 120 2
120 ≤ d < 150 1

d ≥ 150 0

selection results in a higher balance index than the latter while
the latter is lexicographically fairer than the former. Despite
the existence of such counterexample in a synthesized setting,
in the next section we shall show through simulations that
configuration transitions in the proposed AP selection game
generally improve bandwidth fairness in terms of balance
index.

IV. NUMERICAL RESULTS

We conducted extended simulations to study the properties
of the proposed game. The simulation setting is as follows.
APs form a square grid in a 600 × 600 (m2) area with the
dimension of the sides of the grid squares set to 2 to 15.
Neighboring APs (also a border AP and the border of the
area) are separated with equal distance. WSs are randomly
uniformly distributed over the same region with the number
of WSs varied 50 to 500 in increments of 50. The link rate
between a WS and an AP is based on IEEE 802.11b and
determined by their in-between distance (Table II). We also
preclude unconnected WSs by randomly relocating such WSs.
For each setting, 1000 trials were made for an average result.

We let each WS select an AP based on received signal
strength (RSS) initially. Here all APs are assumed identical
transmitting power, and a simple path-loss model is adopted
where RSS decreases with the square of the traveling distance
of the signal. After its initial association, a WS selectees an
AP to re-associate with following either the proposed game
model or the PIF model. When multiple WSs are eligible to
make an association change, we randomly select one WS at
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Fig. 7. Average number of association choices per WS

a time to do so. The achievable throughput of each WS is
calculated based on the analysis of Heusse et al. [6].

A. Number of Re-associations

Figure 6 shows the total number of re-associations in the
proposed game and in the PIF model for each possible setting.
The re-association activities in the proposed game all stop after
a limited number of times, which validates our analysis. In
general, WSs in the PIF model experience more re-associations
than in the proposed game model. The average number of
re-associations per WS in the proposed game is 0.367 with
standard deviation 0.131. For the PIF model, the average value
and standard deviation are 0.393 and 0.185, respectively.

Three key factors govern the number of re-associations: the
nature of the re-association policy, the number of association
choices, and the degree of association competition. The first
factor is model dependent and explains the difference between
Fig. 6(a) and Fig. 6(b). The number of re-associations, as a
result of competitions, generally increases with the number of
association choices and the degree of association competition.
Given a certain experiment setting, the expected number of
association choices owned by a WS can be measured by the
average number of APs accessible to a WS. It is irrelevant
to the total number of WSs deployed. Fig. 7 displays how
the average number of association choices changes with the
number of APs. The degree of competition counts the number
of competitors each WS is expected to face for a particular
WS-AP association. For WS wi to associate with AP aj , the
degree of competition depends on not only the number of other
WSs that can also associate with aj , but also the likelihood
that these potential competitors actually do it. Without resort
to the knowledge of a specific re-association model, let us
assume that every AP in Ai will be chosen by wi with equal
preference and this holds for every WS wi. It follows that the
expected number of competitors wi has to face is

∑

aj∈Ai


 1
|Ai|

∑

wk∈Pj ,k 6=i

1
|Ak|


 , (27)
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Fig. 6. (a) Number of re-associations in the proposed game before Nash equilibrium. (b) Number of re-associations in the PIF model.

where Pj = {wk|aj ∈ Ak} is the set of WSs that can associate
with aj . We take the average value of (27) over all WSs as
the the expected degree of competition. Fig. 8(a) shows the
measured results. Clearly, the average degree of competition
increases with the number of WSs but decreases with the
number of APs. Since the average degree of competition has
a linear relationship with the number of WSs, we divide the
former by the latter and get the result of Fig. 8(b). In the
following, we explain the results of Fig. 6 with the help of
Figs. 7 and 8.
• For a fixed number of WSs, the expected number of

choices is in proportion to the number of APs (Fig. 7).
However, in Fig. 6 we observe a rather high re-association
count when only 4 to 25 or 36 APs are deployed. This
must be contributed by the extremely-high degree of
competition in that range (Fig. 8(b)). When the number
of APs is further increased, the total re-association count
does not rise further but rather declines slightly. This can
be justified as the extremely-low degree of competition
cancels out the trend of increasing re-associations due
to the increase of the expected number of choices. Con-
sequently, WSs experience even fewer re-associations to
reach Nash equilibria.

• For a fixed number of APs, the expected number of
choices is fixed while the expected degree of competition
is proportional to the population of WSs (Fig. 8(a)). When
the number of WSs is small, modest competitions and few
re-associations are observed. As more WSs are involved,
competitions among WSs become intense, giving rise to
more interactive re-associations. Consequently, total re-
association count roughly increases with the number of
WSs. The increasing rate with the PIF model, however, is
generally higher than that with our game model, as Fig. 9
indicates.

B. Balance Index

We also measured balance indices for both AP selection
models. For each trial, the balance index was measured after
the initial RSS-based associations and also after the stop of all
re-association activities. Fig. 10(a) displays the balance indices
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Fig. 9. Comparison of re-association increase rate between the proposed
game and the PIF models.

measured after the initial RSS-based associations. We can see
that when only four APs are deployed, the RSS-based associ-
ation policy results in rather high balance indices. This can be
understood as when only few APs are accessible to numbers
of WSs, all APs are overpopulated and offer a similar amount
of bandwidth share (which is extreme low) to each WS. When
more APs are deployed, the workloads of APs become diverse
due to the fact that RSS-based association policy is not load
aware. Different WSs therefore receive different amounts of
achievable throughput, which explains the sharp drop of the
balance index when the number of APs is increased from
4 to 16. When the number of APs is further increased or
when the number of WSs is decreased, the expected degree
of competition and thus the impact of performance anomaly
both lessen. It turns out that the difference of achievable
throughputs among WSs diminishes. This justifies both the
rise of balance indices with the number of APs and the descent
of balance indices with the number of WSs in the right half
of Fig. 10(a).

Figure 10(b) shows balance indices measured after the stop
of the proposed game model while (c) shows the same results
for the PIF model. Observe that the game model raises the
balance indices for all experimental settings but the PIF model
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Fig. 10. Balance index (a) after the initial RSS-based associations and after the stop of re-association activities in (b) the proposed game and (c) the PIF
models.

does not. Although we only prove that re-associations improve
lexicographical fairness, simulation results reveal that fairness
in terms of balance index also benefits from re-association
activities in the proposed game.

For each trial, the difference of the balance indices between
the initial and the final association configurations can be
viewed as the gain of fairness by re-associations in the trial.
Fig. 11(a) displays the average result for the proposed game
model. We observe all non-negative gains, with the maximum,
average value, and standard deviation 0.558, 0.240 and 0.126,
respectively. The gain generally increases with the number of
WSs, particularly when adequate APs are provided. The result
of the PIF model is shown in Fig. 11(b), where we observe
negative to positive fairness gains. The minimal value, average
value, and standard deviation of the gain are −0.679, −0.085,
and 0.238, respectively. Fig. 11(c) shows excess fairness gains
by the proposed game over the PIF model. We found that
the superiority of the proposed game over the PIF becomes
more significant when fewer APs are introduced. This trend
is generally consistent with the behavior exhibited by the
expected degree of competition (Fig. 8).

C. Aggregated Throughput

Aggregated throughput (counting all WSs) was also in-
vestigated. The results of the RSS-based association policy,
the proposed game model, and the PIF model are shown in
Fig. 12(a)-(c). Clearly, the PIF model outperforms the others.
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Fig. 12. (a) Aggregated throughputs after the initial RSS-based associations.
(b) Aggregated throughputs after the stop of the proposed game model. (c)
Aggregated throughputs after the stop of the PIF model. (d) Aggregated
throughput of the PIF model minus that of the proposed game model.

If a configuration is Pareto optimal, then it must have the high-
est aggregated throughput among all. Therefore, the superiority
of the PIF model over our game model further confirms that
Nash equilibria in the proposed game are typically not Pareto
optimal. Fig. 12(d) shows the excess of the PIF model over
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Fig. 11. Fairness gains by re-associations in (a) the proposed game model and (b) the PIF model. (c) Excess fairness gain by the proposed game over PIF.

the proposed game model in terms of aggregated throughput.

For each trial, the difference of the aggregated throughputs
between the initial and the final association configurations is
viewed as the gain of aggregated throughput by re-associations
in the trial. Fig. 13 shows the gains of aggregated throughput
due to re-associations in the proposed game model and in the
PIF model. We can see that the PIF model yields all-positive
gains while the proposed game model does not necessarily
improve aggregated throughput. Fig. 14 compares throughput
gains between the proposed game and the PIF models. When
few APs are deployed, the difference of the gain between
these two models is either negligible (4 APs) or nearly a
constant (9 or 16 APs). When more APs are deployed, the
throughput gains in both models depend on the number of
WSs. For a specific number of APs, there is an optimal number
of WSs for which the gain of aggregated throughput due
to re-associations is maximized. Deviation from this value
diminishes the gain and might even degrade the aggregated
throughput (in case of the game model). The optimal number
of WSs for 81, 121, 169, and 225 APs are 100, 150, 200, and
250, respectively. For 49 or fewer APs, the optimal number of
WSs is smaller than 50. So the results only exhibit a decrease
of throughput gain with the number of WSs. This phenomenon
can be explained as, when not too many WSs are engaged in
a bandwidth competition, the RSS-based association policy
fails to fully exploit potential bandwidth collectively offered
by all APs, leaving much space for both re-association models
to improve. When many WSs are introduced to the access
network such that few APs are lightly loaded, the RSS-based
association policy leaves little space for re-associations to
improve. Thus the throughput gains decline. In particular, a
WS in the proposed game is likely to increase its throughput
through re-associations at the price of decreasing other WS’s
throughput. Overall throughput therefore may suffer from such
re-associations.

In both models, the maximal gain that can be obtained
roughly increases with the number of APs. This is reasonable
as more APs provide more potential bandwidth. With 81 or
more APs, the proposed game behaves like the PIF model
if not too many WSs are involved. Their difference emerges
when more WSs are added, and increases with the number
of WSs. The PIF model performs better than the game model
in finding potential bandwidth the whole access network can
provide.

V. CONCLUSIONS

This paper has proposed and analyzed an AP selection game
where WSs select APs merely to maximize their achievable
throughput. We have proven that Nash equilibria exist in such
games with the effect of performance anomaly on achievable
throughput considered, which guarantees the convergence of
configuration transitions. Furthermore, we have shown that
association transitions triggered by selfish WSs in fact im-
prove fairness of bandwidth share, which was not expected
previously. We conducted extended simulations to study the
properties of the proposed game and compared the results with
those of the PIF re-association model. The results confirm that
the number of association transitions in the proposed game
is always limited and generally smaller than that in the PIF
model. The proposed game also results in higher bandwidth
fairness (in terms of balance index) than the PIF model in
all settings. Concerning aggregated throughput, the PIF model
always improves the results of the RSS-based association
policy, while the proposed game model does not always yield
positive improvements.
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