
P4-Enabled Bandwidth Management
Yan-Wei Chen, Li-Hsing Yen, Wei-Cheng Wang, Cheng-An Chuang, Yu-Shen Liu, and Chien-Chao Tseng

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Abstract—As the next generation network is supposed to sup-
port diverse service requirements, managing Quality of Service
(QoS) is a crucial part of it. QoS guarantees have long been
deemed too complicated until the emergence of software-defined
networking (SDN) and widely adopted standard OpenFlow.
Recently, Programming Protocol-independent Packet Processors
(P4) has gained much attention because of its features like pro-
grammable data plane and independent protocol and platform.
It is anticipated that the high flexibility of P4 can enhance the
QoS control for production networks.

In this paper, we show a design of bandwidth management
for QoS with SDN and P4-programmable switch. The design
classifies packets into different categories based on their QoS
demands and usages, which are then disaggregated by a two-
level priority queue. Experiments with P4 switch shows that the
proposed design not only effectively limits the maximum allowed
rate but also guarantees the minimum bandwidth of each traffic
flow. As such, the design can maximize bandwidth utilization and
serves a building block for network slicing.

Index Terms—Quality of Services, Bandwidth Manage-
ment, Software Defined Networking, Programming Protocol-
independent Packet Processors

I. INTRODUCTION

A fundamental challenge in the next generation network
is to fully utilize computation and networking resources to
provide services that meet diverse Quality of Services (QoS)
requirements [1]. Such requirements are not only essential to
applications running on end devices but also crucial to the
infrastructure for provisioning network virtualization. As a
promising building block for network virtualization, software-
defined networking (SDN) offers an effective approach to
providing end-to-end QoS management [2] with a global view
of the network topology on the centralized control plane.

There have been many researches on QoS provisioning
or bandwidth management on SDN [3]–[5], mostly with
the widely adopted SDN southbound protocol OpenFlow
[7]. However, OpenFlow-compliant switches built with an
application-specific integrated circuit (ASIC) technology pro-
vide specific and rather restrictive functionalities. More specif-
ically, the number of pipeline stages, the number of supported
header formats, and the types and numbers of actions that
could apply are all limited. Therefore, the implementation
would be clumsy when we want to apply multiple policies
to a flow as a means to achieve differentiated QoS.

As a way to provide flexible functionality, Programming
Protocol-independent Packet Processors (P4) [8] has been
introduced. P4 technology allows customized switch pipelines
so that the switch is not tied to specific header formats and
actions.

In this paper, we present a P4-enabled bandwidth manager
for end-to-end QoS provisioning. The main features of the
manager include peak rate limitation and minimal bandwidth
guarantee. The design also includes a set of REST APIs for
third-party applications to perform meticulously bandwidth
management. The design has been implemented with Open
Network Operating System (ONOS) [9], which provides more
comprehensive support [10] for P4 than other SDN controllers.
The work here serves as an essential building block for
network slicing with QoS awareness [1].

The rest of this paper is organized as follows. We introduce
related work and mechanisms of P4 traffic management in the
next section. Section III will present our design of bandwidth
management. Section IV will provide some traffic evaluation.
Finally, Section V gives a brief conclusion.

II. BACKGROUND AND RELATED WORK

A. QoS support in OpenFlow

In SDN, a typical means of QoS provisioning is to monitor
the bandwidth usage for each flow and perform appropriate
action on the flow based on the bandwidth usage. A set
of actions, each targeting at a specific range of bandwidth
usage, comprise a policy that could apply to a designated
flow. OpenFlow implements a policy with Meter and Queue.
Queue enables the configuration of a multi-level priority queue
associated with an egress port. With this support, packets
toward to the same egress port can have different priorities
when being forwarded.

OpenFlow 1.3 [11] introduced the Meter table, which
measures and controls ingress traffic on a per-flow basis.
Meter entry, as shown in Fig. 1, is attached to a flow entry
and consists of one or more Meter bands. Each Meter band
corresponds to a specific policy that will apply to the flow
when the current bandwidth usage of the flow is within some
designated range. More specifically, a Meter band defines a
specific rate value and an associated operation called band
type. When the measured rate of a flow is r, the Meter band
that has the highest rate among all Meter bands with a rate
lower than r will be selected. For example, suppose that there
are three bands configuring rates 30 Mbps, 60 Mbps, and 90
Mbps, respectively, for a flow. If the current rate of the flow is
70 Mbps, the operation associated with the band of 60 Mbps
will be executed. Currently, OpenFlow supports only two band
types (operations): dropping packets to enforce rate limitation
[3] and setting DSCP fields for packets classification [4], [5].



Fig. 1. OpenFlow Meter Entry

B. QoS support in P4

Compared with OpenFlow, Meter in P4 is more flexible as
it does not tie to fixed band type. With Meter, P4 first classifies
an ingress packet and then executes an action on the packet
based on the classification result [6]. The P4 specification
suggests using Two Rate Three Color Marker (trTCM) [12]
as a default mechanism for packet classification. The trTCM
gauges a packet stream and classifies packets with two user-
configurable parameters, namely Peak Information Rate (PIR)
and Committed Information Rate (CIR). PIR is the highest
allowable data rate for a flow, while CIR is the lowest rate for
the flow guaranteed by the network. The trTCM mechanism
marks packets based on the gauged rate and the setting of
PIR and CIR on a per-flow basis. A packet is marked red if
forwarding it will cause a flow data rate exceeding the PIR. If
the resulting flow data rate will not exceed PIR, the packet is
marked yellow if the resulting rate will exceed CIR and green
otherwise. After the classification, P4 makes use of per-packet
metadata to keep the identified color.

P4 supports two types of Meters. One type called Direct
Meter is used inside a specified flow table. When a flow
entry of a flow table is matched, the associated action may
trigger a Direct Meter in the same table to execute the packet
classification with the identified color kept in the metadata
field. The other type called Indirect Meter is an array of Meters
to be referenced by one or more flow tables. Different Meter
cells in Indirect Meter may be configured with different trTCM
parameters. When a flow entry is matched, the associated
action may trigger an execution of the packet classification
with an index to some cell in the Indirect Meter. Both
Direct Meter and Indirect Meter take user-specified trTCM
parameters for the packet classification, as such a control plane
entity can dynamically modify these parameters for multiple
band requirements on a flow.

C. OpenFlow Meter vs P4 Meter

There are some differences between the OpenFlow Meter
and P4 Meter:

• Number of Bands: An OpenFlow Meter may contain an
arbitrary number of bands while a P4 Meter needs only
two bands for the mechanism of trTCM implemented in
the switch.

• Creation of Meter: OpenFlow controller can dynamically
create a Meter instance and configure the Meter Bands.
In contrast, Meters in P4 are statically defined by the
P4 program; Controller can only dynamically change the
trTCM parameters (PIR and CIR) of an existing Meter.

• Actions of Meter: OpenFlow Meter supports only two ac-
tions (dropping and marking DSCP in the packet header),
but P4 Meter does not have that limitation.

There have been some QoS researches on per-flow traffic
classification with the support of Meters in OpenFlow [4], [5].
These researches used DSCP bit in the IP header to classify
packets. An intrinsic issue with the use of DSCP is that DSCP
remark operation will modify the IP header. Consequently,
when we have multiple DiffServ policers applying to the
same flow, a modification on the IP header by one policer
may interfere with the operations of others, causing policer
interference problem. This problem could be avoided using
P4 Meter because the classification result of a P4 Meter is
kept in a dedicated metadata field. With this feature, we can
define multiple actions, one for each policer, such that the
classification result needed by each policer is kept separately
and hidden from others.

Another limitation with OpenFlow Meter is lacking flexibil-
ity because of vendors fixed-functionality ASIC implementa-
tions. As such, managing a traffic flow by classification result
may demand a loopback connection for header evaluation or a
rewriting between different tables. With P4 switches, we may
extend switch pipelines to add new management rules without
extra loopback connection or a rewiring between different
tables. This implementation is more straightforward and could
save table entries.

III. P4-BASED BANDWIDTH MANAGEMENT

To resolve the policer interference problem and to circum-
vent the limitation by fixed-functionality ASIC implemen-
tation, we design a bandwidth manager on ONOS with a
customized P4 pipeline for traffic engineering. As shown in
Fig. 2, the main concept of our design is to classify flow traffic
into three types, namely guaranteed traffic, best effort traffic,
and abandon traffic. Guaranteed traffic receives high priority
when being forwarded to an egress port, which serves as a
means to allocate a portion of the bandwidth of the forwarding
link to fulfill the guaranteed bandwidth. Best effort traffic
receives low forwarding priority as the traffic can only utilize
unallocated bandwidth of the forwarding link. Abandon traffic
is simply dropped by the switch as forwarding it will give the
flow a rate exceeding the limited bandwidth.

Fig. 2. Design Concept

However, if guaranteed traffic and best effort traffic are all
fed into the same output queue, it is difficult to give priority



to guaranteed traffic over best effort traffic. Therefore, we
use a two-level priority queue scheduler for the egress port.
Guarantee traffic goes to high-priority queue while best-effort
traffic goes to low-priority queue. Packets in the low-priority
queue will not be served unless the high-priority is empty.

The architecture of the implementation is shown in Fig. 3. It
consists of a component in the control plane and another com-
ponent in the data plane. In the control plane, we developed
the Bandwidth Manager as an application running on ONOS to
perform resource management and handle external bandwidth
management requests. In the data plane, we designed a new
P4 program Meter.p4 for P4 switch to perform per-flow traffic
classification and traffic steering. Other existing-applications
running on ONOS provide basic functionalities like forwarding
and Proxy ARP. All ONOS applications use P4Runtime as a
southbound API to communicate with P4 switches.

Fig. 3. The architecture of P4-Enabled Bandwidth Management with ONOS

A. ONOS Bandwidth Manager

As shown in Fig. 4, the kernel of Bandwidth Manager is
Slice Manager, which manages slices, flows, and bandwidth
resource. Each flow is assigned to a single slice, and all flows
assigned to the same slice share whole bandwidth of the slice.

Fig. 4. Bandwidth Manager Application

Slice Manager provides a REST API and CLI commands for
external requests to access slice information and dynamically
manage slices (adding or deleting a slice and adjusting the rate
of an existing slice). The REST API can also accept a JSON
format file, as shown in Fig. 5, to dynamically control slices
and adjust the bandwidth rate parameters in a Meter cell. Each
slice has the following parameters to configure:

• minRate: the guaranteed bandwidth,
• maxRate: the limited bandwidth,

• flows: user-defined field, e.g., a five-tuple field (source IP
address, destination IP address, etc.), used to identify a
flow or flows within a slice.

Fig. 5. Slice Configuration JSON Example

When Slice Manager receives a request through REST API
for the addition of a new flow into a bandwidth slice, it
first checks to see whether the request can be granted with
available bandwidth. If the result is positive, Slice Manager
allocates requested bandwidth to the flow and assigns it to the
slice. Slice Manager also assigns an identifier to the flow and
installs a rule on P4 switch for the identification of packets
belonging to this flow. In addition, it also installs a rule which
takes the flow identifier to trigger a Meter cell of the slice to
perform classification and record the identified color. Finally,
the forwarding policer will process the colored packets and
apply the actions based on the traffic type.

B. P4 Pipeline for Classification

The P4 program Meter.p4 classifies flow packets and then
applies rate limit or bandwidth guarantee actions accordingly.
For packet classification, it takes trTCM parameters PIR as
the limit bandwidth and CIR as the guaranteed bandwidth,
as shown in Fig. 6. With this setting, Meter.p4 classifies
packets into three categories, each with a distinct color, and
the results are kept as metadata of the packets. When packets
of a flow are classified as green, the bandwidth currently
allocated to this flow is lower than its CIR. Therefore, Meter.p4
attempts offering the guaranteed bandwidth by setting high
forwarding priority to these packets. When packets are in
yellow, the allocated bandwidth is between CIR and PIR
(or these parameters are unspecified). In this case, Meter.p4
provides these packets with best-effort packet delivery by



allocating only residual bandwidth to them via low forwarding
priority. For packets in red, the bandwidth currently allocated
to the flow already exceeds PIR. Therefore, Meter.p4 simply
drops these packets.

Fig. 6. Classifying packets into three different colors

The P4 pipeline design of our bandwidth manager is an
extension to the ONOS built-in Basic pipeline [13]. The Basic
pipeline provides fundamental data-plane functionalities of
the switch, such as prefix matching, packet in, and output
to the egress port. It is the Basic pipeline that provides
switch features to our bandwidth manager. The Basic pipeline
connects to our Meter.p4 pipeline, as shown in Fig. 7. Firstly,
a slicing table is used to identify the slice of ingress packets
and assign the identifier. This is done by matching the user-
defined fields of packets within the corresponding slice, and
we use the five-tuple field in this paper. All no-match packets
will get the default slice identifier. The following is the
classifier table, which takes the slice identifier as an index
to a Meter cell in Indirect Meter. The target Meter cell
uses the trTCM mechanism to perform a rate-based packet
classification. Finally, the policer table will drop packets or
set up forwarding priorities for the packets, depending on the
classification result.

Fig. 7. Bandwidth Manager Pipeline

IV. EVALUATION

We conducted some experiments using physical P4 switch
to test our design. We measured the throughputs of flows
under different settings of limited bandwidth and guaranteed
bandwidth. We also compare the results between with and
without the two-level priority queue.

A. Environment

Fig. 8 shows the testbed network for the experiments. There
was an EdgeCore P4 switch (WEDGE100BF-32X) which uses
Tofino chip of Barefoot. The Tofino chip is based on the
Protocol-Independent Switch Architecture (PISA) and can be
programmed by P4 16 [14]. The P4 switch is running Barefoot
Capilano Software Development Environment (SDE) with

customized pipeline and configured priority queue facility. An
independent layer-2 switch is used to measure the data output
rates of the P4 switch and server hosts. We used three server
hosts running Ubuntu 16.04 based on Linux Kernel v4.15.0
with two 20-core Intel Xeon E5-2630 CPUs (3.1GHz). Each
host is equipped with Intel X710 10GbE NICs with MTU set to
1500 bytes. Two of the hosts each was configured to generate
10-Gbps traffic from one port to create congestions on a 10-
Gbps outgoing link of the P4 switch. The third host was used
to receive traffic from two different ports. The bandwidth of
each link in the testbed network is 10 Gbps.

Fig. 8. Testbed

B. Rate Limitation

The first experiment was to test whether the Bandwidth
Manager is effective in rate limitation. We generated a 10-
Gbps UDP flow with the help of Iperf [15], and changed
maxRate of this flow to 4, 8, 1, and 7.5 Gbps after 200,
400, 600, and 800 seconds, respectively. The gauged UDP
throughput is shown in Fig. 9. It clearly shows that the
throughputs were indeed limited by the settings of maxRate,
which confirms the effectiveness of Bandwidth Manager in
rate limitation.

Fig. 9. Rate Limited Result



C. Minimal Bandwidth Guarantee

The second experiment was to test whether the Bandwidth
Manager could guarantee minimum bandwidth. The experi-
ment started with two 10-Gbps UDP flows, one from hosts h1
to h3 and the other from hosts h2 to h3. One flow belonging to
Slice 1 had minRate set while the other serving as background
traffic did not have any rate guarantee. We changed minRate to
3, 7, 0.8, and 6.5 Gbps after 200, 400, 600, and 800 seconds,
respectively. Fig. 10 shows how the measured throughput of
Slice 1 changed with time. We can see that Slice 1 received a
throughout not lower than minRate at all time. The background
traffic received residual bandwidth without any guarantee. The
aggregated bandwidth of Slice1 and the background traffic was
roughly 10 Gbps at all time.

Fig. 10. Bandwidth Guaranteed Result

D. Impact of Two-Level Priority Queue

This section provides a comparison between queue-enabled
and queue-disabled modes for bandwidth guarantee. We set up
two different slices, namely Slice 1 and Slice 2. Slice 1 had a
10-Gbps UDP flow with minRate set to 6 Gbps and maxRate
set to 10 Gbps. Slice 2 had a 4-Gbps UDP flow with both
minRate and maxRate set to 4 Gbps. Slice 2 traffic started
from the 200th second and ended at the 600th second.

When the two-level priority queue was not in use, the
policier sent all traffic to a single output queue of the egress
port. In this case, as can be seen from Fig. 11, the flow of
Slice 2 failed to have the guaranteed bandwidth. With the use
of the two-level priority queue, the throughput of Slice 2 was
4 Gbps as guaranteed.

V. CONCLUSION

In this paper, we present a bandwidth management design
for P4 programmable switch. The design maximizes band-
width utilization by allowing the best effort or non-guaranteed
traffic to use unallocated bandwidth. On the other hand, when
the aggregated input traffic exceeds the capacity of the egress
link, the proposed design guarantees minimal bandwidth by
limiting output traffic and priority forwarding. Compared with
approaches based on OpenFlow, our design on programmable

Fig. 11. Queue Facility Comparison Result

P4 switch is not constrained by limitations such as fixed action
and packet processing. We also avoid policer interference
problem when applying multiple policies to the same flow.

We have conducted experiments on a production network.
The results show that both the limited bandwidth and the
guaranteed bandwidth can be effectively ensured. The results
also show the impact of priority queue on the effectiveness of
bandwidth management.

REFERENCES

[1] Q. Wang et al. ”Enable advanced QoS-aware network slicing in 5G
networks for slice-based media use cases.” IEEE Transactions on Broad-
casting (2019).

[2] Q. Duan. ”Network-as-a-service in software-defined networks for end-
to-end QoS provisioning.” 2014 23rd Wireless and Optical Communi-
cation Conference (WOCC). IEEE, 2014.

[3] P. M. Mohan et al. ”Performance study of TCP flows with QoS-
supported OpenFlow in data center networks.” 2013 19th IEEE Interna-
tional Conference on Networks (ICON). IEEE, 2013.

[4] H. Krishna, N. L. M. van Adrichem, and F. A. Kuipers. ”Providing
bandwidth guarantees with OpenFlow.” 2016 Symposium on Commu-
nications and Vehicular Technologies (SCVT). IEEE, 2016.

[5] N. Kitsuwan and E. Oki. ”Traffic splitting technique using meter table
in software-defined network.” 2016 IEEE 17th International Conference
on High Performance Switching and Routing (HPSR). IEEE, 2016.

[6] F. Paolucci et al. ”P4 Edge node enabling stateful traffic engineering
and cyber security.” Journal of Optical Communications and Networking
11.1 (2019): A84-A95.

[7] N. McKeown et al. ”OpenFlow: enabling innovation in campus net-
works.” ACM SIGCOMM Computer Communication Review 38.2
(2008): 69-74.

[8] P. Bosshart et al. ”P4: Programming protocol-independent packet proces-
sors.” ACM SIGCOMM Computer Communication Review 44.3 (2014):
87-95.

[9] P. Berde et al. ”ONOS: towards an open, distributed SDN OS.” Proceed-
ings of the third workshop on Hot topics in software defined networking.
ACM, 2014.

[10] ONOS Support for P4. url: https://www.opennetworking.org/wp-
content/uploads/2018/12/ONOS-support-for-P4.pdf

[11] OpenFlow Switch Specification Version 1.3.4 March 2014.
url: https://www.opennetworking.org/wp-content/uploads/2012/10/
openflow-switch-v1.3.4.pdf

[12] A Two Rate Three Color Marker. url: https://tools.ietf.org/html/rfc2698
[13] ONOS Basic Pipeline. url: https://github.com/opennetworkinglab/onos/tree

/master/pipelines/basic
[14] P4 16 Language Specification Version 1.1.0 November 2018. url:

https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
[15] iPerf - The ultimate speed test tool for TCP, UDP and SCTP. url:

https://iperf.fr/


