
PathMon: Path-Specific Traffic Monitoring in
OpenFlow-Enabled Networks

Ming-Hung Wang, Shao-You Wu, Li-Hsing Yen, and Chien-Chao Tseng
Dept. Computer Science, National Chiao Tung University

Hsinchu, Taiwan, R.O.C.

Abstract—Software-defined networking (SDN) aims to pro-
vide open interfaces, such as OpenFlow protocol, that enable
programmable flow-based network management. Meanwhile,
OpenFlow-enabled switches provide rich statistical information
for specific flows, tables, and ports which facilitates various
network management tasks. However, current traffic monitoring
techniques collecting statistics from existing flow entries do not
provide the flexibility of querying path-specific flow statistics
at any aggregation levels. In this paper, we proposes PathMon
which encodes flow and path information as tags to provide
that flexibility and corresponding link-to-link correlations for
further anomaly detection or traffic engineering tasks. Our
implementation runs on commodity switches which are compliant
to OpenFlow 1.3 specification and requires only a few monitoring
entries for each switch along monitored paths and un-tag entries
for each edge switch.

Keywords—Software-defined networking, traffic engineering,
network monitoring, OpenFlow.

I. INTRODUCTION

Traffic monitoring is essential to network operation and
management. Network statistics constantly collected from net-
working devices can help probe health and performance, as
well as facilitate various management tasks such as anomaly
detection, load balancing, accounting and billing. In this paper,
we are interested in traffic monitoring in the context of
OpenFlow-enabled Software-Defined Networks (SDNs).

SDN is an emerging networking technology that provides
flexibility and programmability in network management [1, 2].
In SDN, control plane is decoupled from data plane. The
control plane is carried out by a logically centralized machine
called controller, which sends instructions using protocol like
OpenFlow to install flow entries to switches. Switches as the
main entities of data plane perform data forwarding tasks fol-
lowing the instructions given by the controller. This centralized
design makes it more flexible and much easier to control the
behavior of the underlying network infrastructure. Network
administrators using control applications running on the con-
troller can perform different traffic-engineering functions, such
as rerouting and dropping packets pertaining to some specific
traffic. Meanwhile, OpenFlow-enabled switches provide rich
statistical information for specific flows, tables, and ports.

There exist some traffic monitoring approaches to
the collection of data plane statistics in SDN. These
approaches either proactively poll switches using
FlowStatisticsRequest for active flows [3] or

Fig. 1. Example of querying statistics from flow entries in each switch along
the designated path may count in irrelevant flows from other paths.

reactively get notified by FlowRemoved massages upon
flow expiration [4]. A common characteristic of these
approaches is that only statistics of existing flow entries can
be acquired. This is fine if network administration needs can
be met with the statistics provided by the existing flows.
However, different management tasks may demand statistics
at different aggregation levels. For instance, a load balancing
scheme may requires flow-specific statistics per unit of time,
while a billing system may require monthly usage data for
each user. In that case existing approaches do not provide
adequate or accurate information. For example, it is usually
sufficient for a switch to forward packets by installing flow
entries that match on ingress port and destination MAC
address of incoming packets. In that case if we want to
query traffic information of a specific TCP flow that traverses
through a series of links, the obtainable flow statistics that
are specific to links are not adequate.

Fig. 1 shows a scenario where we are interested in statistics
of flow1 from hosts H1 to H3. The flow traverses the link
from H1 to Port 1 of S1, followed by the link from Port 3
of S1 to Port 1 of S2, and then the link from Port 3 of S2
to H3. Suppose that only relevant flow entries for these three
links (i.e., R11 and R21 in Fig. 1) are created. We cannot
obtain an accurate statistic for flow1 with current monitoring
approaches because the statistic of flow entry R21 will count
in both relevant statistics of flow1 and irrelevant statistics of
flow2 from another network path.

To resolve this problem, PathMon specifically inserts a
separate set of flow entries called monitoring entries into
every switch along a path to be monitored. With PathMon,
administrators can query flow statistics at any aggregation
level. Since monitoring entries exactly match flows of in-
terest, irrelevant flows are excluded from statistics reported

by switches. In addition to per flow statistics, PathMon also
calculates link-to-link correlation which can facilitate network
management tasks such as loop detection, load balancing, and
virtual machine placement. The details of use scenarios will
be explained in the following sections.

The remainder of this paper is organized as follows. We first
review existing monitoring techniques for SDN. Section III
gives an use scenario and describes the design of PathMon in
details. Section IV presents a case study for loop detection
and numerical results of our experiments. The last section
concludes this paper.

II. RELATED WORK

Traffic monitoring approaches fall into two categories: the
first measures performance metrics such as throughput, packet
loss, delay and jitter by active probes, while the second
collects a set of primitive statistics from networking devices
by using either proprietary interfaces [5] or open protocol like
OpenFlow [2]. In this paper, we focus on the second approach
for SDN.

OpenNetMon [6] provides a way to collect per-flow metrics
such as throughput, delay and packet loss by polling edge
switches at an adaptive rate to reduce network and switch CPU
overhead while optimizing measurement accuracy. Moreover,
OpenNetMon provides monitoring necessary to determine
whether QoS parameters between each pair of end hosts are
actually met. The monitored results are then delivered to traffic
engineering methods for the generation of appropriate paths.

FlowSense [4] is a push-based approach to monitoring
performance changes by receiving notification carrying flow
statistics from switches. This passive way to collect flow
statistics is to minimize the total number of control messages.
However, its estimation may become inaccurate under certain
flow conditions.

PayLess [3] focuses on an adaptive sampling algorithm for
which polling frequency is variable and adaptive to measured
throughputs. Thus, monitoring overhead could be minimized
while avoiding its estimation from sacrificing the accuracy.
Furthermore, PayLess is designed as a flexible framework for
developing a wide range of network monitoring applications.

III. PATHMON

PathMon enables the query of path-specific flow statistics at
any aggregation level. Administrators can specify an arbitrary
monitoring target, a flow F traversing through interested paths
NP , by a set of matching fields and a path expression. Fig. 2
gives an example monitoring target:

F ::= tcp.dst = 80 and

NP ::= 201 : 3 . ∗ (203 : 1 | 205 : 1 | 207 : 1) ,

where dot symbol (.) represents a single physical link in the
network topology and digitSwitchID : digitIngressPort iden-
tifies a network link by an ingress port of a switch; F specifies
HTTP traffic and NP specifies a monitored path starting from
the link connected to ingress port 3 of switch 201, followed

Fig. 2. Example of querying path-specific flow statistics and corresponding
link-to-link correlations using PathMon.

TABLE I
MATRIX OF LINK-TO-LINK CORRELATIONS

Preceding
Subsequent

Link203:1 Link205:1 Link207:1

Link201:3 37% 33% 30%

zero or more links, and ending at one of the following links:
the one connected to ingress port 1 of switch 203, the one
connected to ingress port 1 of switch 205, or the one connected
to ingress port 1 of switch 207. PathMon also provides link-
to-link correlation for each link pair, which is defined as
(statisticsubsequent-link ÷ statisticpreceding-link). Table I shows an
example matrix of link-to-link correlations for the monitored
path. In this example, link201:3-to-link203:1 correlation=37%
means 37% of traffic from link201:3 flows through link203:1.
The matrix helps administrators observe traffic distribution
among different links.

A. Goal and Requirements

Our goal is to acquire flow statistics for a specific path as
well as the corresponding link-to-link correlations, with as few
monitoring entries as possible. This goal can be achieved by
meeting the following requirements:

• Non-invasive: Network behaviour determined by for-
warding entries should not be affected by monitoring
entries. This means that the only function done by
monitoring entries is to match flows of interest, update
corresponding flow statistics, and then deliver the flows
to forwarding tables for further forwarding processing.
The forwarding path should not be altered by monitoring
entries.

• Arbitrary granularity: Administrators should be able
to specify flows of interest at any aggregation levels. The
granularity of monitored flows depends on monitoring
entries rather than existing forwarding entries.

• Accuracy: Path-specific flow statistics should not count
in flow statistics from other irrelevant paths.

• Flexible path monitoring: A monitoring target may
consist of either loose paths or strict paths originated from
a common root switch as illustrated in Fig. 2 and 4.

Fig. 3. Table organization and entry arrangement.

Fig. 4. Example of monitoring a strict path.

B. Design

When administrators designate a monitoring target, Path-
Mon translates it into a set of monitoring entries which are
inserted into switches along the monitored paths. Monitoring
entries encodes flow and path information as tags for each
flow of interest. Tagged flows which divert from the designated
path become irrelevant flows. PathMon pre-installs two un-tag
entries to each edge switch to strip off tags from irrelevant
flows. Without this action, packets of these flows will usually
get dropped out. In addition to monitoring and un-tag entries, a
table-miss entry is also installed into every switch for directing
all irrelevant flows that bear no tag to existing forwarding
entries.

To store different types of entries, flow tables in a switch
are grouped into monitoring and forwarding tables. Because
incoming flows should be checked for monitoring before
being forwarded, monitoring tables must precede forwarding
tables as illustrated in Fig. 3. The first two flow tables called
monitoring tables are reserved for monitoring and un-tag
entries. Forwarding entries which are not installed by PathMon
are placed in the rest of flow tables. In other words, monitoring
and forwarding tables are started from Table 0 and Table 2,
respectively.

C. Table Configuration for Monitoring

Given a monitoring target, PathMon determines config-
uration for monitoring tables in each switch along the
designated path. The entrance switch, immediate switches,
and exit switches associated with the path demand dif-
ferent monitoring entries. In addition, PathMon also pre-
installs un-tag entries into each edge switch. We take a
monitoring target: F ::= tcp.dst = 80 and NP ::=
(202 : 3) (103 : 1) (208 : 1) (308 : 2) as shown in Fig. 4 as an
example for table configuration.

Configuration for entrance switch: Fig. 5a shows entry
arrangement for the first switch along the monitored path.
The main functions of Table 0 in the entrance switch include
classifying incoming flows into interested and non-monitored,
assigning a unique VLAN tag to each interested flow, and
directing non-monitored flows to the first forwarding table.

In OpenFlow, a specific flow is defined as a set of matching
fields. However, switches and middleboxes may modify header
fields. In that case, monitoring entries in the subsequent
switches may fail to match flows of interest. For this reason,
PathMon assigns a unique tag as flow ID to each flow of
interest.

The table-miss entry directs the non-monitored flows to the
first forwarding table. The monitoring entry matches all HTTP
traffic with tcp.dst = 80 and ingress port = 3, pushes a
unique VLAN tag 100 as flow ID, pushes a VLAN tag 3
indicating the current ingress port, and then directs the flow
to the first forwarding table. As the result, flow of interest
contains stacked VLAN tags and is forwarded according to
existing forwarding entries. When tagged flow arrives at an
immediate switch, monitoring entries that match both tags and
the designated ingress port effectively exclude irrelevant flows
from consideration.

Configuration for immediate switch: As shown in Fig. 5b,
the monitoring entry in Table 0 matches all incoming flows
traversing link202:3 first and link103:1 next, pops outer VLAN
tag, encodes the value of removed VLAN tag into the metadata
pipeline field, and then directs the flow to Table 1. After
that, the monitoring entry in Table 1 can further filter out all
irrelevant flows without VLAN tag 100; thus, only the flow
with VLAN tag 100 and traversing link202:3 first and link103:1

next can be matched by the monitoring entry in Table 1; the
monitoring entry then pushes a VLAN tag 1 indicating the
current ingress port into the flow and directs it to the first
forwarding table for further processing.

The flow now carries an outer VLAN tag 1 and an inner
VLAN tag 100. That is, the outer VLAN tag will be replaced
with the current ingress port by each switch along the path.
Similarly, switch 208 processes all incoming flows as switch
103.

Configuration for exit switch: The function of monitoring
entries in the exit switch is almost the same as that of
the monitoring entries in the immediate switches. The only
difference is that the monitoring entry in Table 1 pops the
inner VLAN tag 100 from flow of interest rather than pushes
a VLAN tag. These monitoring entries ensure that the stacked
VLAN tags are stripped off from the flow of interest.

Configuration for edge switch: In this example, the exit
switch 308 happened to be an edge switch. These un-tag
entries are used to strip off stacked VLAN tags from irrelevant
flows which divert from the designated path. To capture
packets with any tag, both un-tag entries match a special tag
value OFPVID_PRESENT defined by OpenFlow specification
as shown in Fig. 5c.

Number of entries for monitoring: PathMon requires
the first two flow tables on every switch for monitoring.

(a) The entrance switch

(b) The immediate switch

(c) The exit switch

Fig. 5. Table configuration.

The additional flow entries can be categorized into three
entries: monitoring entry, un-tag entry, and table-miss entry. As
mentioned above, each monitoring target requires a monitoring
entry in the entrance switch and two monitoring entries on the
remaining switches along the path. That is, if a monitored path
is of N hops, the required monitoring entries are (2×N − 1).
The total number of monitoring entries required for M mon-
itored paths is therefore

(2N1 − 1) + · · ·+ (2NM − 1) = 2

(
M∑
i=1

Ni

)
−M,

where Ni is the number of links in the ith monitored path
for which i ranges from 1 to M . Besides, each switch needs
a table-miss entry to direct non-monitored flows to the first
forwarding table and every edge switch requires two un-
tag entries to strip off tags. In general, the total number of
additional entries can be formulated as

2

(
M∑
i=1

Ni

)
−M + S + 2E,

where S is the total number of switches and E is the total
number of edge switches.

IV. EVALUATION

We evaluate the current PathMon prototype implementation
by conducting a case study and microbenchmarks in mininet

TABLE II
EXPERIMENTAL ENVIRONMENT

Emulated network Hardware specification

Controller Floodlight v1.1 CPU Intel Core i5-2400
3.1GHz×4

Emulator Mininet 2.2.1 Memory 7.5GB

vSwitch CPqD [9] OS Ubuntu 14.04 LTS x64

environment [7], a container-based network emulator. The case
study verifies the effectiveness of our tool for loop detection
while benchmarks evaluate the network overhead imposed by
PathMon. PathMon is implemented as a module for the Flood-
light [8] exposing a set of REST APIs to add/remove/inquire
monitoring targets, to collect path-specific flow statistics, and
to acquire the corresponding link-to-link correlations. Table II
gives information about the emulated network and hardware
specification.

A. Loop Detection

Since multiple control applications, services or adminis-
trators can install forwarding entries independently and dy-
namically in SDN, various unexpected behaviours including
forwarding loops might arise due to many reasons such as
incorrect control logic in the control plane, conflicts among
flow entries installed by different control applications. To
emulate a forwarding loop in a data center network, we
inserted network traffic according to traffic pattern reported
in previous studies [10–13] into a fat-tree topology with four
pods, as shown in Fig. 6; a simple load balance application
was used to determine a path for each destination address every
five seconds (the hard timeout of forwarding entries was set
to five seconds).

Assume that administrators are concerned with forward-
ing behaviour of IPv4 traffic on the path NP ::=
(202 : 3) (103 : 1) (208 : 1) (308 : 2). PathMon collects statis-
tics and updates corresponding link-to-link correlations ev-
ery ten seconds. In this experiment, we created a forward-
ing loop as shown in Fig. 6 at t = 20s. Fig. 7 shows
that the loop can be observed from link-to-link correlations
because link202:3-to-link103:1 correlation exceeds 100% and
grows rapidly; likewise, link103:1-to-link208:1 correlation and
link103:1-to-link308:2 correlation degrade to zero gradually. The
reason is that packets in a loop dominates the statistics related
to the loop gradually.

The result confirms the effectiveness of PathMon for loop
detection. PathMon allows administrators to set a range for
each correlation and generate a notification when a correlation
becomes out of range. Without PathMon, administrators need
manually probe and analyse per-flow statistics from suspected
switches to localize faulty flow entries.

B. Monitoring Overhead

Because PathMon pushes two VLAN tags to flows of inter-
est, increased size of packet may affect end-to-end latency and
throughput. We evaluate monitoring overhead by measuring

Fig. 6. Example of a forwarding loop consisting of four links: link103:1,
link206:1, link104:2, and link202:2.

0 10 20 30 40 50
10−3

10−2

10−1

100

101

102

Time (s)

L
in

k-
to

-l
in

k
co

rr
el

at
io

n

link202:3-to-link103:1 corr. link202:3-to-link208:1 corr.
link202:3-to-link308:2 corr. link103:1-to-link208:1 corr.
link103:1-to-link308:2 corr. link208:1-to-link308:2 corr.

Fig. 7. Example of loop detection using link-to-link correlations of
the monitoring target: F ::= eth.type = 0x0800 and NP ::=
(202 : 3) (103 : 1) (208 : 1) (308 : 2).

round-trip time (RTT) and throughput between hosts H1 and
H2 connected by a linear topology with eight switches. The
transmission rate of network links was limited to 10 Mbps.
The monitored path includes all switches.

Impact on latency: We measured the average RTTs from
H1 to H2 by ping with and without PathMon while disabling
all background traffic. Because the size of an ICMP request
is 98 bytes, the transmission delay can be ignored. The result
shows the average RTTs with and without tagging are 2.1 ms
and 2.96 ms, respectively; PathMon introduces 41% overhead
on average.

Impact on throughput: We used iperf3 to generate unidi-
rectional UDP traffic from H1 to H2 for which flow size and
transmission rate were 100 MB and 10 Mbps, respectively. We
measured throughputs for three different packet sizes: 500,
250 and 125 bytes which resulted in 209715, 419430 and
838860 packets, respectively. The result (Table III) shows that
PathMon degraded throughput from 9.22 Mbps to 9.16 Mbps
(0.65%) for packet size 500 bytes, from 9.22 Mbps to 9.09

TABLE III
AVERAGE THROUGHPUT

Size/Number
Original/Mbps PathMon/Mbps

500/209715 9.22 9.16

250/419430 9.22 9.09

125/838860 8.29 8.14

Mbps (1.41%) for packet size 250 bytes, and from 8.29 Mbps
to 8.14 Mbps (1.81%) for packet size 125 bytes. The ratio of
throughput degradation was disproportionate to packet size.
Tagging consumes no more than 1.81% of throughput at the
extreme setting.

V. CONCLUSION

Monitoring health and performance metrics about networks
is an essential function for enterprise network operators, data
center network operators, and ISPs. In contrast to existing
traffic monitoring tools for SDN, our approach decouples flow
statistics of interest from existing flow entries in networks;
PathMon employs a set of monitoring entries pushing/popping
tags to enable path-specific flow monitoring with a minimal
number of flow entries, whereas existing monitoring ap-
proaches do not provide this kind of monitoring. Furthermore,
PathMon provides link-to-link correlations for each monitored
path which can facilitate many network management tasks.
Overall, our approach provides more accurate and detailed
statistics which enhance the visibility of traffic distribution
among different paths.

ACKNOWLEDGMENT

This work was supported in part by Ministry of Science
and Technology, Taiwan, under Grants MOST 104-2221-E-
009-021-MY3 and MOST 104-2622-8-009-001.

REFERENCES

[1] “Software-defined networking: The new norm for
networks,” White paper, Open Networking Foundation,
April 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“Openflow: Enabling innovation in campus networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp.
69–74, Mar. 2008.

[3] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba,
“Payless: A low cost network monitoring framework
for software defined networks,” in Network Operations
and Management Symposium (NOMS), 2014 IEEE, May
2014, pp. 1–9.

[4] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang,
and H. V. Madhyastha, “Flowsense: Monitoring network
utilization with zero measurement cost,” in Proceedings
of the 14th International Conference on Passive and
Active Measurement, ser. PAM’13. Berlin, Heidelberg:
Springer-Verlag, 2013, pp. 31–41.

[5] “sflow,” http://www.sflow.org/.
[6] N. van Adrichem, C. Doerr, and F. Kuipers, “Opennet-

mon: Network monitoring in openflow software-defined
networks,” in Network Operations and Management Sym-
posium (NOMS), 2014 IEEE, May 2014, pp. 1–8.

[7] “Mininet,” http://mininet.org/.
[8] “Floodlight,” http://www.projectfloodlight.org/floodlight/.
[9] “Cpqd,” https://github.com/CPqD/ofsoftswitch13.

[10] C.-Y. Lin, C. Chen, J.-W. Chang, and Y. H. Chu, “Ele-
phant flow detection in datacenters using openflow-based
hierarchical statistics pulling,” in Global Communica-
tions Conference (GLOBECOM), 2014 IEEE, Dec 2014,
pp. 2264–2269.

[11] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
“Vl2: A scalable and flexible data center network,” in
Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, ser. SIGCOMM ’09. New
York, NY, USA: ACM, 2009, pp. 51–62.

[12] S. Kandula, S. Sengupta, A. Greenberg, P. Patel,
and R. Chaiken, “The nature of data center traffic:
Measurements & analysis,” in Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement
Conference, ser. IMC ’09. New York, NY, USA: ACM,
2009, pp. 202–208.

[13] T. Benson, A. Akella, and D. A. Maltz, “Network
traffic characteristics of data centers in the wild,” in
Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, ser. IMC ’10. New York,
NY, USA: ACM, 2010, pp. 267–280.

